

Ada County Highway District Commit Stormwater Management Program NPDES Phase I Permit #IDS027561

September 2022

3775 Adam Street, Garden City, ID 83714 208-387-6100 www.achdidaho.org

Table of Contents

List	of Fig	ures		ii
List	of Tab	les		ii
Acro	onyms			iv
1.	Introd	duction		1-1
	1.1	Organiz	ation of Guidance Document	1-2
	1.2	ACHD J	urisdiction and Regulated Area	1-2
	1.3	Staff O	rganization	1-3
	1.4	Permitt	ee Organization	1-5
	1.5	Receivi	ng Waters	1-6
	1.6	SWMP	Information, Analyses, and Assessment	1-7
		1.6.1	Outcome Levels	1-8
		1.6.2	Data Collection and Analysis Activities	1-10
		1.6.3	Assessment Methods	1-12
	1.7	Owners	hip, Operational Authority, or Responsibility for SWMP Implementation	1-14
2.	Desc	ription of	f Separate Stormwater System	2-1
	2.1	Physica	I Setting and Climate	2-1
	2.2	Existing	g Land Use and Growth	2-1
	2.3	Descrip	tion of Phase I MS4	2-2
	2.4	Map of	the Phase I MS4	2-3
3.	Targe	ting Poll	utants of Concern	3-1
	3.1	Stormw	ater Monitoring and Evaluation Program	3-1
		3.1.1	Wet Weather Stormwater Outfall Monitoring	3-1
		3.1.2	Subwatershed Monitoring	3-2
		3.1.3	Effectiveness Evaluation of Structural, Non-Structural and/or Green Storm	
	~ ~	-	Infrastructure Controls	
4	3.2		rature Monitoring	
4. 5	-		y and Enforcement	
5.			ontrol Measures to Reduce Pollutants to the Maximum Extent Practicable	
	5.1		Education and Outreach on Stormwater Impacts	
		5.1.1	Permit Requirements	
		5.1.2	Current Compliance Activities	
		5.1.3	Planned 2022 Compliance Activities	
	5.2		scharge Detection and Elimination	
		5.2.1	Permit Requirements	
		5.2.2	Current Compliance Activities	
		5.2.3	Planned 2022 Compliance Activities	5-5

5.3	Constru	uction Site Stormwater Runoff Control	5-5
	5.3.1	Permit Requirements	5-6
	5.3.2	Current Compliance Activities	5-6
	5.3.3	Planned 2022 Compliance Activities	5-6
5.4	Post-Co	onstruction Stormwater Management, New Development and Redevelopmer	nt5-7
	5.4.1	Permit Requirements	5-7
	5.4.2	Current Compliance Activities	5-8
	5.4.3	Planned 2022 Compliance Activities	5-10
5.5	Stormw	vater Infrastructure and Street Management	5-11
	5.5.1	Permit Requirements	5-11
	5.5.2	Current Compliance Activities	5-11
	5.5.3	Planned 2022 Compliance Activities	5-14
5.6	Industr	ial and Commercial Stormwater Discharge Management	5-15
	5.6.1	Permit Requirements	5-15
	5.6.2	Current Compliance Activities	5-15
	5.6.3	Planned 2022 Compliance Activities	5-16
Refer	ences		6-1
endix /	A: Opera	ting Guidelines and Intergovernmental Agreements	A-1
endix l	B: Phase	e I Receiving Waters and Outfall Ownership	B-1
endix	C: MS4 \$	Stormwater Infrastructure Maps	C-1
endix l	D: Phase	e I Outfall Inventory, Map, and Dry Weather Irrigation and Groundwater Flows	s D-1
endix l	E: Comp	liance and Implementation Status	E-1
endix l	F: Phase	e I Illicit Discharge Map, Complaints Received and Follow-up	F-1
endix (G: Dry W	/eather Outfall Screening Plan (version 1.2)	G-1
	5.4 5.5 5.6 Refer bendix bendix bendix bendix bendix bendix bendix bendix bendix	5.3.1 5.3.2 5.3.3 5.4 Post-Co 5.4.1 5.4.2 5.4.3 5.5 Stormw 5.5.1 5.5.2 5.5.3 5.6 Industr 5.6.1 5.6.2 5.6.3 References pendix A: Operation pendix B: Phase pendix C: MS4 Store pendix C: MS4 Store p	 5.3.1 Permit Requirements

List of Figures

Figure 1. Phase I Permit Area1-3	
Figure 2. Six Outcome Levels and General Associated Outcome Type1-9	

List of Tables

Table 1. ACHD Stormwater Management Program Responsibilities
Table 2. 2021 Phase I Assessment Unit, Receiving Water, and Outfall Ownership Summary1-6

Table 3. 2021 ACHD Phase I MS4 to MS4 Connections Summary	1-7
Table 4. Data Collection Methods	1-11
Table 5. Applicable Assessment Methods for Specific Outcome Levels	1-13
Table 6. Ada County Population by City	2-1
Table 7. Phase I Area Stormwater Facility Inventory	2-2
Table 8. Water Temperature Monitoring Station Information	3-3
Table 9. Coordinated Compliance Activities	4-2
Table 10. 2022 Public Education and Outreach on Stormwater Impacts Work Plan	5-2
Table 11. Complaints Received by Pollutant Type and Category	5-4
Table 12. 2022 Illicit Discharge Detection and Elimination Work Plan	5-5
Table 13. 2022 Construction Site Stormwater Runoff Control Work Plan	5-7
Table 14. 2022 Post-Construction Stormwater Management Work Plan	5-10
Table 15. ACHD Drainage Maintenance Activities Summary October 1, 2021 – July 1, 2022.	5-13
Table 16. SLD Program Activities Summary* October 1, 2021 – July 1, 2022	5-13
Table 17. Maintenance Materials Usage and Snowfall Total	5-14
Table 18. ACHD Facilities and Roadside Chemical Applications October 1, 2021 – July 1, 202	225-14
Table 19. 2022 Pollution Prevention/Good Housekeeping Work Plan	5-15
Table 20. 2022 Industrial and Commercial Stormwater Management	5-16

Acronyms

ACHD	Ada County Highway District
ACM	Alternative Control Measure
AU	Assessment Unit
AVL	Automatic Vehicle Location
BMP	Best Management Practice
BSU	Boise State University
CASQA	California Stormwater Quality Association
CGP	Construction General Permit
CSDC	Construction Site Discharge Control
CWA	Clean Water Act
DD3	Drainage District #3
GPS	Global Positioning System
EPA	Environmental Protection Agency
ESC	Erosion Sediment Control
FTE	Full Time Equivalent (position)
HOA	Homeowner Association
IGA	Intergovernmental Agreement
IDDE	Illicit Discharge Detection Elimination
IDEQ	Idaho Department of Environmental Quality
ITD	Idaho Transportation Department
LA	Load Allocation
MEP	Maximum Extent Practicable
MS4	Municipal Separate Storm Sewer System
NPDES	National Pollution Discharge Elimination System
PCSM	Post-Construction Stormwater Management
ROW	Right of Way
SLD	Sheriff Labor Detail
SWMP	Stormwater Management Program
SWPPP	Stormwater Pollution Prevention Plan
TMDL	Total Maximum Daily Load
TSS	Total Suspended Solids
WLA	Waste Load Allocation
WQS	Water Quality Standards

Section 1 Introduction

Ada County Highway District's (ACHD) Stormwater Management Program (SWMP) Document describes the activities and control measures conducted to meet the terms and conditions of NPDES Permit #IDS027561. ACHD holds both a Phase I and Phase II Permit. This document addresses requirements of the Phase I Permit (IDS027561). The National Pollutant Discharge Elimination System (NPDES) permit program is a requirement of the federal Clean Water Act (CWA), which is intended to protect and restore waters for "fishable, swimmable" uses. The EPA has delegated permit authority to most state environmental agencies, and these agencies can set permit conditions in accordance with and in addition to the minimum federal requirements. Authority for issuing stormwater individual permits was delegated to Idaho Department of Environmental Quality (IDEQ) on July 1, 2021.

The Environmental Protection Agency, Region 10 (EPA) reissued a third cycle Phase I National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Permit (Permit) (No.IDS-027561), effective October 1, 2021, to Ada County Highway District, Ada County Drainage District #3 (DD3), Boise State University (BSU), City of Boise, City of Garden City, and the Idaho Transportation Department District (ITD) #3, (collectively "Permittees"), The current Permit is available at https://www.epa.gov/sites/default/files/2021-06/documents/r10-npdes-boise-garden-city-ms4s-ids027561-final-permit-2021.pdf and is implemented by each Permittee and collectively through the Partners for Clean Water https://www.partnersforcleanwater.org/. The Permit authorizes discharge of all MS4 outfalls in the permit area to waters of the United States, including the Boise River and its tributaries in accordance with the conditions and requirements of the Permit. The Phase I permit area includes the cities of Boise and Garden City. A map of the Phase I permit area is included in Figure 1 below. The Permit expires on September 30, 2026.

This SWMP document describes specific actions ACHD is taking, or planning to take, to ensure compliance with Permit requirements. The Permit requires ACHD to "maintain relevant regulatory mechanisms to control pollutant discharges into and from its MS4 and comply with the Permit." (Permit, 2.5.5). This SWMP document establishes the foundation on which ACHD will continue to build as best management practices (BMPs) are identified and implemented. Through the Permit required annual reporting process, ACHD will assess and report annually on the activities implemented and, their effectiveness, recommend enhancements to the program, and implement changes as necessary to ensure continued permit compliance. The SWMP document will be updated as needed. Annual reports will be submitted to the IDEQ no later than January 30 of each year.

Per the Permit ACHD is allowed to discharge stormwater runoff from the MS4 into waters of the United States, including the Boise River and its tributaries if programs are implemented to protect water quality by reducing the discharge of "nonpoint source" pollutants to the "maximum extent practicable" (MEP) through application of Permit-specified BMPs. The BMPs specified in the Permit are collectively referred to as the SWMP Document and grouped under the following SWMP components:

- Public Education and Outreach on Stormwater Impacts
- Illicit Discharge Detection and Elimination (IDDE)
- Construction Site Stormwater Runoff Control
- Post-Construction Stormwater Management for New Development and Redevelopment

- Stormwater Infrastructure and Street Management
- Industrial and Commercial Stormwater Discharge Management

1.1 Organization of Guidance Document

The contents of this document are based upon previous versions of ACHD's Phase I Stormwater Management Plan with updated content to address the third cycle NPDES Phase I requirements including updated effectiveness assessment strategies outlined in Section 1.6. The organization of this SWMP document is based on EPA's Example Template: Storm Water Management Program Document, provided in Appendix B.1 of the Permit:

- Section 1 addresses basic SWMP information including ACHD's jurisdiction, staff organization, receiving waters, and program information and analyses.
- Section 2 addresses MS4 description and mapping information.
- Section 3 addresses Permit requirements for targeting pollutants of concern.
- Section 4 addresses ACHD's legal authorities allowed under Idaho law to implement and enforce the requirements of the Permit.
- **Section 5** addresses how ACHD meets the required program requirements to reduce pollutants in the MS4 to the maximum extent practicable.

Each section includes a summary of the relevant Permit requirements and a description of current and planned compliance activities.

1.2 ACHD Jurisdiction and Regulated Area

Established in 1972 as an independent government entity, the ACHD is responsible for all shortrange planning, construction, maintenance, operations, rehabilitation and improvements to Ada County's urban streets, rural roadways (excluding state highways) and bridges. ACHD is the only consolidated countywide highway district in the State of Idaho. Geographically, the ACHD's jurisdiction includes Boise, Eagle, Garden City, Kuna, Meridian, and Star. The Phase I permit area includes the city limits of Boise and Garden City, as shown in Figure 1. Although this SWMP document is specific to the Phase I permit, ACHD has also developed a SWMP document for the Phase II permit area that includes the 2010 U.S. Census based urbanized areas of Eagle, Meridian, and incorporated Ada County. This document is available on ACHD's website at https://www.achdidaho.org/Departments/Engineering/Stormwater/resources.aspx.

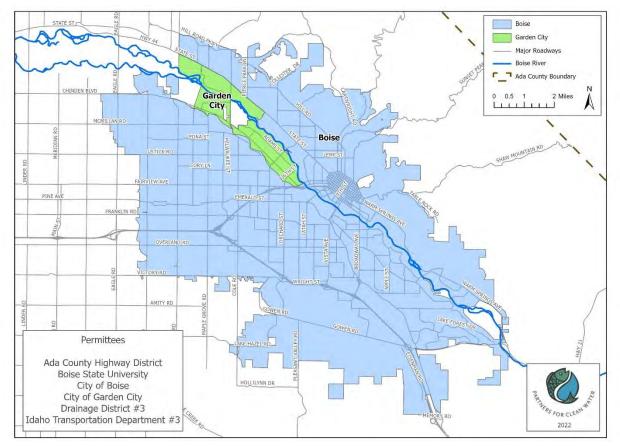


Figure 1. Phase I Permit Area

ACHD maintains and operates approximately 5,301 lane miles of roads and streets in Ada County, with an estimated value of three billion dollars. This infrastructure includes facilities that range from multi-lane, arterial streets with a computerized signal system, to narrow, farm-to-market roadways. To protect public safety and prevent property damage, ACHD designs and operates its stormwater drainage systems to prevent standing water on roadways. Roadways in urban settings typically have curbs and gutters that direct stormwater runoff to enclosed drainage systems, whereas stormwater from rural roadways typically flow to roadside ditches and swales. In recent years, ACHD has included Green Stormwater Infrastructure (GSI) BMPs into ACHD's stormwater management design standards and programmed funding for GSI implementation. All new, rebuilt, and retrofitted ACHD stormwater basins are vegetated to mitigate stormwater pollutants and GSI opportunities are explored for all new roadway projects.

1.3 Staff Organization

Five Commissioners govern the ACHD. Together, they are responsible for guiding the planning, development, and implementation of transportation facilities throughout the county. Elections are held every two years on a rotating basis, and each Commissioner represents a separate sub-district. A Commission appointed Director, who serves as chief administrator, manages the ACHD on a day-to-day basis.

Within the ACHD organization, the Environmental Department is the point of contact and Permit administrator for all MS4 NPDES Permit activities (Phase I and Phase II). The Environmental Department consists of nine full-time equivalent positions (FTEs) and one part-time student intern.

Environmental Department FTE positions include Environmental Manager (1), Environmental Engineer (1), Environmental Programs Coordinator (1), Stormwater Quality Supervisor (1), Stormwater Quality Program Coordinator (1), and Environmental Specialist (4). The Maintenance Division performs countywide MS4 maintenance activities and plays a significant role in ACHD's stormwater management activities. Stormwater related FTEs in the Maintenance Department include 14 FTEs dedicated to stormwater system cleaning and 26 FTEs dedicated to street sweeping activities. Stormwater Management Program responsibilities and activities are performed by various departments within the ACHD organization and are summarized in Table 1.

Table 1. A	CHD Stormwater Management Program Re	esponsibilities
ACHD Department/Section	Summary of Activities	SWMP Control Measures*
Development & Technical Services Environmental	 Administration of ACHD's NPDES Phase I and Phase II stormwater permits Review and inspection of construction controls for ACHD projects and private work in ACHD right-of-way (ROW) Education and outreach activities Wet and dry weather monitoring Outfall delineation and inspection Illicit discharge inspection and response, stormwater bmp design standards GSI implementation and basin revegetation Administration of Industrial and Commercial Stormwater Management contracts. 	Construction, Education and Outreach, Public Participation, Post-Construction Stormwater Management, Illicit Discharge, Stormwater Infrastructure and Street Management, Industrial and Commercial Stormwater Discharge Management
Development & Technical Services Development Review	 Development project review Inspection of public roadways and storm drain system in private development e.g., subdivisions and developer sponsored roadway projects 	Post-Construction Stormwater Management
Development & Technical Services Construction	 Issuance of Work in ROW permits, collection of fees Private construction in ROW inspections Distribution of pollution prevention educational brochures 	Construction, Education and Outreach, Illicit Discharge
Development & Technical Services Project Inspection	 Inspection of ACHD projects for construction and new development controls Construction General Permit administration for ACHD construction projects 	Construction, Post-Construction Stormwater Management
Development & Technical Services Design	 Incorporation of construction and new development controls into ACHD roadway project plans 	Construction, Post-Construction Stormwater Management

Table 1. ACHD Stormwater Management Program Responsibilities				
ACHD Department/Section	Summary of Activities	SWMP Control Measures*		
Development & Technical Services Traffic Operations	 Implementation of pollution prevention activities in traffic operations (e.g., roadway stripping, signal construction/installation) 	Stormwater Infrastructure and Street Management		
Maintenance Operations Administration	 Administration and implementation of pollution prevention and good housekeeping at ACHD facilities and operation yards 	Stormwater Infrastructure and Street Management		
Maintenance Operations Cloverdale	 Maintenance of MS4 system including detention and retention ponds (ACHD and Homeowner Association (HOA)-owned) Illicit discharge response Storm drain system inspection and cleaning 	Stormwater Infrastructure and Street Management, Illicit Discharge		
Maintenance Operations Adams	 Maintenance of MS4 system Illicit discharge response Street sweeping 	Stormwater Infrastructure and Street Management, Illicit Discharge		
Planning and Project Management Capital Projects	 Incorporation of construction and new development controls into ACHD roadway project plans 	Construction, New Development		
Communications	Development and implementation of stormwater education and outreach resources	Public Education, Outreach, and Public Involvement		
Human Resources Training	 Implementation and tracking of Permit required internal training resources 	Illicit Discharge, Construction, Post- Construction Stormwater Management, Stormwater Infrastructure and Street Management		
Information Technology GIS	 Maintenance of the geographic information system storm drain layers and auxiliary tools. 	Illicit Discharge, Construction, Post- Construction Stormwater Management		

*See Section 5 of this document for a description of the SWMP control measures

1.4 Permittee Organization

The Permittees' cooperative partnership spans more than twenty years and is based on established operating guidelines and intergovernmental agreements. These agreements have been amended and are currently being reviewed. Draft operating guidelines and intergovernmental agreements are provided in Appendix A and described below;

• Intergovernmental Agreement (IGA) for Roles and Responsibilities under the NPDES Municipal Stormwater Permit (Permit #IDS-027561). Historically, this IGA has been updated following the issuance of each Permit in 2001 and 2013. This document is currently being updated to reflect the 2021 Permit issuance. The purpose of this agreement is to detail the duties, roles, and responsibilities of the Permittees to comply with federal NPDES stormwater rules, regulations, and requirements, including establishing stormwater program lead agencies and apportionment of costs.

- Renewal of Interagency Agreement for the Enforcement of Stormwater Management. Enforcement agreements have been enacted between ACHD, ITD, DD3, and City of Boise. A second agreement exists between ACHD, ITD, and City of Garden City. These agreements allow the City of Boise and City of Garden City to enact police powers to enforce their stormwater ordinances on behalf of the other Permittees.
- Interagency Agreement for the Inspection, Monitoring and Enforcement of Industrial and Commercial High-Risk Runoff. Annually, ACHD coordinates with the City of Boise and the City of Garden City to mutually agree on a scope of work to conduct industrial and commercial stormwater inspections within the respective cities on behalf of ACHD. These inspections are conducted outside of the public right-of-way and therefore outside of ACHD jurisdiction. Agreements with both cities are currently being updated to reflect the 2021 Permit.

1.5 Receiving Waters

The waterbodies identified in Table 2 receive stormwater discharges from ACHD's MS4 outfalls in the Phase I permit area. The waterbodies designated in Idaho's water quality standards (IDAPA 58.01.02) include waterbody assessment units (AU) and assigned beneficial uses. More information associated with the AU's is available in Idaho's 2022 Integrated Report¹. In addition to the waterbodies listed below, ACHD discharges to numerous conveyances including canals, laterals, and drains that are not within the AU database maintained by IDEQ. A complete list of Phase I Permit Receiving Waters and Outfall Ownership is available in Appendix B. Table 3 includes a list of the ACHD outfalls that discharge to the MS4 of another entity.

Table 2. 2021 Pha	ase I Assessment Unit, Receiving	Water, and Outf	all Ownership Si	ummary
Assessment Unit	Receiving Waterbody (per ACHD inventory)	ACHD Owned*	Non-ACHD Owned	Total Outfalls
	Eightmile Creek	6	0	6
	Fivemile Creek	21	10	31
ID17050114SW010_02	Fivemile Creek Trib.	8	3	11
	Threemile Creek	7	2	9
	Threemile Lateral	7	1	8
ID17050114SW010_03	Fivemile Creek	27	9	36
	Boise City Canal	1	0	1
ID17050114SW011a_02	Unnamed	5	0	5
	Boise City Canal	1	0	1
	Cottonwood Creek Trib.	1	0	1
1547050444000040.00	Crane Creek	18	0	18
ID17050114SW012_02	Crane Gulch	2	1	3
	Eagle Drain	1	0	1
	Farmers Union Canal	0	1	1

A map and description of the Phase I MS4 is included in Section 2 and Appendix C.

¹ <u>www.deq.idaho.gov</u>

Table 2. 2021 Pha	ase I Assessment Unit, Receiving	Water, and Out	fall Ownership S	ummary
Assessment Unit	Receiving Waterbody (per ACHD inventory)	ACHD Owned*	Non-ACHD Owned	Total Outfalls
	Hulls Gulch	4	2	6
	Penitentiary Canal	1	0	1
ID17050114SW012_02	Pierce Creek	4	0	4
continued	Pierce Gulch	1	0	1
	Polecat Gulch	15	0	15
	Stewart Gulch	8	0	8
ID17050114SW012_03	Cottonwood Creek	3	5	8
	Boise River	4	3	7
ID17050114SW005_06	Davis Drain	2	0	2
	Eureka Canal	0	1	1
	Boise River	34	20	54
	Crane Creek	1	1	2
104705044400044-00	Farmers Union Canal	5	0	5
ID17050114SW011a_06	Logger Creek	12	13	25
	Unnamed	0	1	1
	Walling Creek	1	0	1
TOTAL	-	200	73	273

*ACHD Owned also includes partial ownership with another entity

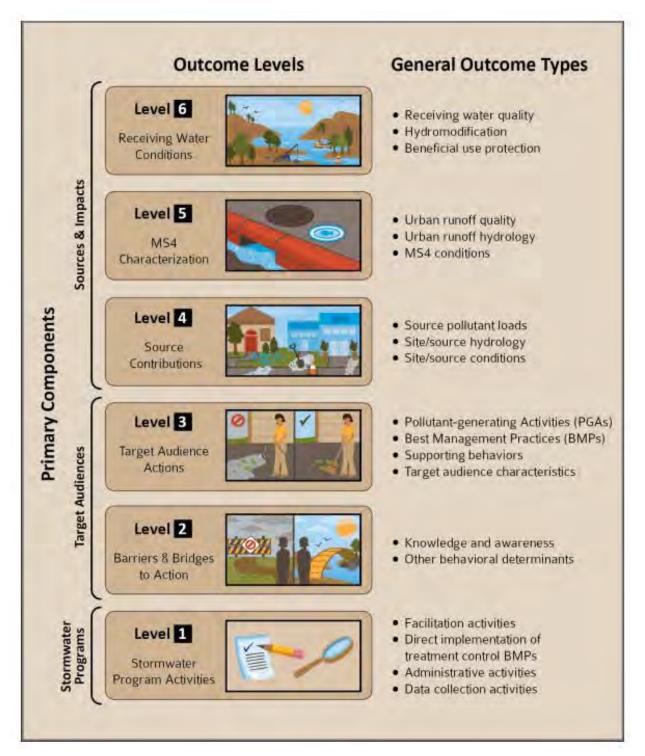
	Table 3. 202	21 ACHD Phase I MS4 to I	MS4 Connectio	ons Summary	
Receiving Waterbody Segments	WQS Classification	Impairment/Pollutant of Concern	TMDLs? (Yes/No)	Applicable WLAs (Yes/No)	No. of Discharging Outfalls
Drain A	N/A	N/A	No	No	17
Drain B	N/A	N/A	No	No	11
Drain B-1	N/A	N/A	No	No	1
Drain D	N/A	N/A	No	No	6
Drain E	N/A	N/A	No	No	4

1.6 SWMP Information, Analyses, and Assessment

A Permit required element of the SWMP is to "begin to assess, or participate in one or more efforts to assess, the understanding of the relevant messages and adoption of appropriate behaviors by their target audience(s). The resulting assessments must be used to direct future stormwater education and outreach resources most effectively." (Permit, 3.1.5) Effectiveness assessment is a process that is used to evaluate whether stormwater management activities are producing desired outcomes.

This SWMP adopts an effectiveness assessment approach based on A Strategic Approach to Planning for and Assessing the Effectiveness of Stormwater Programs².

1.6.1 Outcome Levels


Six outcome levels are used to refer to the results of control measures and activities discussed in Sections 3 and 5 of this SWMP document and shown in Figure 2. Outcome levels help to categorize and describe the desired results or goals of programs and activities. For the purposes of this SWMP, Outcome Levels 1-5 are the primary focus. As the Phase I SWMP matures, Outcome Level 6 will become more relevant.

Each Outcome Level is described below:

- <u>Level 1</u>-Stormwater Program Activities Level one outcomes provide direct feedback on whether the activities or control measures are being developed and implemented as planned and on schedule.
- **Level 2 Barriers and Bridges to Action** Level two outcomes provide feedback on how effective the various control measures have been in raising awareness and changing attitudes of the target audiences.
- **Level 3 Target Audience Actions** Level three outcomes provide feedback on how effective the activities and control measures have been in motivating target audiences to change their behaviors and implement appropriate BMPs.
- **Level 4 Source Contributions** Level four outcomes provide feedback regarding reductions in the amounts of pollutants associated with the specific sources resulting from the implementation or enhancement of a BMP.
- Level 5 MS4 Characterization Level five outcomes may be measured as reductions in one or more specific pollutants and may reflect effectiveness at a variety of scales ranging from sitespecific to programmatic.
- **Level 6 Receiving Water Conditions** Level six outcomes focus on compliance with water quality standards, protection of biological integrity, and beneficial use attainment.

Each outcome level is a building block to the next level. However, most often the outcome levels are presented in reverse order as shown in Figure 2. The reverse order allows planning and assessment activities to be developed by looking at the measured or observed effects and trying to establish the cause.

² <u>https://www.casqa.org/resources/stormwater-effectiveness-assessment/guidance-document</u>

1.6.2 Data Collection and Analysis Activities

Data collection and analysis provide the feedback necessary to plan and evaluate outcomes³. A range of data collection methods are used to meet specific desired outcomes and goals. The data collection methods used by ACHD depends on the activity being measured and intended outcome. Often, more than one data collection method will be used to collect meaningful data for a particular program or activity.

Internal Tracking by Stormwater Program is the primary method ACHD will use to account for stormwater program activities which relies on good record keeping and can be used to document trends over time. An example is the number of catch basins cleaned or inspections completed in a year.

Reporting to Stormwater Program includes various types of program data reported to ACHD through citizen reports via the stormwater hotline, Tellus (ACHD's online portal), municipal staff, ACHD staff or IDEQ. Typically, these reports will require complaint investigations or site visits and involve potential illicit discharges and/or spill response.

Interviews will most often be performed in response to complaint investigations and inspection results. Interviews are useful to gain insight into current practices and assessing understanding of BMPs.

- v	
-	
2-1	
2 - 1	- 10

Surveys can be done via different methods and are designed to determine the knowledge, awareness, and behaviors of a specific population (school children, residents, etc.). For public education and involvement activities, surveys will be used to assess change in the public's awareness and attitudes regarding stormwater management.

ICD	
$q \leq 1$	

Inspections or Site Visits - include any method used to directly observe or assess practices used by a target audience. They may be regulatory or part of an information gathering educational outreach effort. ACHD will document inspections of activities that can be visually assessed.

Monitoring and Sampling is performed as part of ACHD's phase I monitoring program. Both dry weather and wet weather monitoring programs provide data to assess ACHD's stormwater programs. Dry weather data collection is useful in detecting illicit discharges and source tracing when flow is present. These outcomes can be accomplished with relatively little data. In contrast, due to the variability of stormwater runoff and the resources needed to perform wet weather sample collection, long term data sets and extensive analysis are often needed to realize overall program improvement using wet weather monitoring data. ACHD is performing stormwater discharge characterization monitoring at five sites in the Phase I permit area. See Section 3 for additional information.

Multiple data collection methods are used to meet specific desired outcomes and goals. The applicability of data collection assessment methods to specific outcome levels are depicted in Table 4.

³ <u>https://www.casqa.org/resources/stormwater-effectiveness-assessment/guidance-document</u>

	Table 4. Data Collection Methods							
Outcome			Methods					
Level	Outcome Type	Internal Tracking	Reporting to Stormwater Program	Interviews	Surveys	Inspections or Site Visits	Monitoring & Sampling	
	Administrative activities	•						
1	Facilitation activities	•						
	Data Collection	•			•			
2	Awareness knowledge & attitudes			•	•			
	Information seeking	•		•	•	•	•	
	Pollution reporting			-				
	Participating and involvement	•	•		•	•		
3	Administrative and procedure behaviors			-				
	Implementation of control measures	•	•			•	•	
	Regulatory compliance	•	•		•	•	•	
4	Source pollutant loads				•	•	•	
4	Site/source hydrology					•	•	
-	Urban runoff quality					•	•	
5	Urban runoff hydrology							
	Receiving water quality					•	•	
6	Hydromodification impacts						•	
	Beneficial use protection						•	

1.6.3 Assessment Methods

Assessment methods are activities, actions, or processes used to obtain and evaluate assessment data or information⁴. Like data collection, the methods of assessment vary depending on the control measure. Control measures refer to any action, activity, BMP, or other method used to control the discharge of pollutants in MS4 discharges. Table 5 represents outcome levels achieved through implementation of the stormwater program control measures. As programs are implemented and data is collected, ACHD will evaluate the actual outcome of these implementation actions compared to the targeted outcome to determine the effectiveness of the action.

⁴ <u>https://www.casqa.org/resources/stormwater-effectiveness-assessment/guidance-document</u>

Section T	Section	1
-----------	---------	---

		Table 5. A	pplicable Assessme	ent Methods for Specif	ic Outcome Levels		
			Sto	rmwater Program Contr	ol Measure		
Outcome Level	Public Education & Outreach	Illicit Discharge Detection & Elimination	Construction Site Stormwater Runoff Control	Post-Construction Stormwater Management	Stormwater Infrastructure and Street Management	Industrial and Commercial Stormwater Discharge Management	Monitoring
Level 6 Receiving Water Conditions							Pollution Reduction Activities
Level 5 MS4 Characterization		 Dry weather sampling program 					Wet weather sampling
Level 4 Source Contributions		 Mapping of MS4 			 Catch basin inspection and cleaning Street sweeping 		 Subwatershed Monitoring Pollutant load and reduction estimates
Level 3 Target Audience Actions	Distribute educational messages to selected audiences	 Stormwater hotline Illicit discharge complaint response 	Implement and enforce Construction Site Discharge Control Program	 Implement Policy 8000 (Drainage and Stormwater Management) 8200 Stormwater Design Manual 	 Implement and update BMP manual for ACHD O&M activities 	 Implement and enforce Commercial Stormwater Management Program 	
Level 2 Barriers & Bridges to Action	 Assess audience's understanding 		Communicate with construction community	 Develop high priority inspection prioritization process 		Communicate with business owners and operators	
Level 1 Stormwater Program Activities	 Publicly available website 	 Conduct dry weather inspections ACHD Staff training 	 Inspection prioritization ACHD Staff training 	 Require O&M Plans Review of proposed subdivision and new development 	 ACHD Staff training Maintain facility SWPPPs 	Conduct site investigations	

1.7 Ownership, Operational Authority, or Responsibility for SWMP Implementation

Permit requirements include the implementation of control measures in all new areas added or transferred to ACHD's MS4, or areas for which ACHD becomes responsible for implementing stormwater quality controls, no later than one (1) year from the addition of the new areas.

ACHD implements the Phase I and Phase II SWMPs throughout Ada County. City annexations, if any, are included in annual mapping updates. Over time, city boundaries may change slightly, however this does not impact ACHD's overall jurisdiction nor implementation of control measures.

Section 2

Description of Separate Stormwater System

This section shows a map of the stormwater system and provides a detailed description of the setting and system.

2.1 Physical Setting and Climate

Ada County is part of the Treasure Valley located in the Snake River Plain of southwest Idaho. The Treasure Valley is bound by the Boise Mountains to the north and the Owyhee Mountains to the south. The Boise River runs approximately east to west in the northern half of the county while the Snake River bounds the county's southern border. The physical setting of the county is a semiarid high mountain desert, characterized by cold wet winters and hot dry summers. Annually the area receives an average of 12 inches of precipitation with the majority received between the months of November through May.

2.2 Existing Land Use and Growth

Ada County covers approximately 1,060 square miles in southwestern Idaho and is the most populous county in the state. According to the Community Planning Association of Southwest Idaho (COMPASS) estimates, Ada County has a population of 532,710 people in 2022, with the majority (87.6%) living in one of Ada County's six municipalities: Boise, Meridian, Eagle, Garden City, Kuna, and Star. The remaining 12.4% of residents live in unincorporated Ada County.⁵ A population summary for Ada County by city is provided in Table 6.

Table 6. Ada County Population by City				
City	2022 Population	% Of County Total		
Boise	243,570	45.72%		
Meridian	133,470	25.05%		
Unincorporated	66,240	12.43%		
Eagle	33,960	6.37%		
Kuna	27,480	5.16%		
Garden City	13,040	2.45%		
Star	14,950	2.81%		
Total	532,710	100.0%		

Source: COMPASS 2022

⁵ <u>https://www.compassidaho.org/documents/prodserv/demo/2022PopulationEstimateOfficialHistoric.pdf</u>

Recent projections by COMPASS suggest the population of Ada County could reach 674,000 people by 2040 – an increase of over 141,000 residents during the next 18 years. Growth in Ada County will be compounded by growth in neighboring counties. Together with Canyon County (expected to grow by over 340,000 residents by 2040), COMPASS predicts the region will be home to over 1 million people by 2040. Land uses in Ada County vary greatly by location. Most "urban" uses are found within the six municipalities located in north-central Ada County, while a more "rural" character pervades in the unincorporated areas. Irrigated agriculture, which was once a predominant feature in many areas of Ada County, has decreased as residential and other non-agricultural uses have become more prevalent. A unique feature of land use in Ada County is the prevalence of public lands (both federal and state owned and/or managed), which account for roughly 52% of the total land area. Within unincorporated Ada County, residential land uses are most common within Areas of City Impact, or one of four planned communities (Avimor, Cartwright Ranch, Dry Creek Ranch, or Hidden Springs) located in the northeastern part of Ada County. Much of southern Ada County remains undeveloped and falls within the Snake River Birds of Prey National Conservation Area, managed by the Bureau of Land Management, and/or within the Orchard Combat Training Center, used by the U.S. armed forces and Idaho National Guard for training and other military exercises.⁶

2.3 Description of Phase I MS4

The stormwater drainage system within the Phase I permit area is comprised of the ACHD owned and operated MS4 and privately owned on-site drainage facilities. To add complexity, numerous irrigation/drainage conveyance systems are connected to the MS4 and conversely, the MS4 is connected to the irrigation/drainage systems. The irrigation and drainage districts are privately owned and operated and are not subject to NPDES MS4 permitting regulations.

Water does not follow natural drainage paths in much of the lower Boise Valley. Historically, most natural waterways in the valley were deepened, lengthened, straightened, and diverted to serve primarily as irrigation conveyances to water agricultural crops and provide flood control. Drains, laterals, and canals were also constructed for agricultural purposes. Today, these conveyance systems are used and managed in much the same way as in the past with the exception that much of the water is now used to irrigate urban landscapes instead of agricultural fields and cropland.

The Phase I MS4 serves the cities of Boise and Garden City. The current inventory of stormwater facilities in the Phase I permit area is detailed in Table 7.

Table 7. Phase I Area Stormwater Facility Inventory					
Structure Type Inventory (updated 7/1/22)					
Storm Drain Pipe (miles)	391				
ACHD Outfalls	866				
Non ACHD Owned Outfalls	328				
Storm Drain Inlets	20,582				
Sediment/Combo Boxes	2,799				
Proprietary Hydrodynamic Separators	10				
Seepage Beds	1,519				

⁶ <u>https://adacounty.id.gov/developmentservices/strategic-planning-division/comprehensive-plans/</u>

Table 7. Phase I Area Stormwater Facility Inventory					
Structure Type Inventory (updated 7/1/22)					
Swales	166				
Stormwater Tree Cell	47				
Pervious Paver Installations	10				
ACHD-owned Basins	62				
Homeowner Association Basins (detention and retention)	267				

Appendix D includes the outfall inventory for 2022 and the MS4 outfall locations identified as having dry weather flows caused by irrigation return flow or ground water seepage. More information is located under Dry Weather Outfall Screening Program in Section 5.2.2.4.

ACHD is responsible for all maintenance activities for ACHD owned stormwater basins. Additionally, ACHD provides heavy maintenance for privately-owned stormwater basins that receive stormwater runoff from the right-of-way. Distinctions between light and heavy maintenance responsibilities are described in ACHD Policy 8200. Light maintenance predominately addresses aesthetic features of the stormwater control facility such as landscaping, litter control, and erosion control, whereas heavy maintenance addresses functional aspects such as sediment removal, rebuild, or replacement.

2.4 Map of the Phase I MS4

The ACHD Phase I MS4 stormwater infrastructure maps are presented in Appendix C. The maps are divided into eight sections to show a more detailed view of stormwater drainage system features. In the legend of each map, a spatial grid index shows which section of the map is being viewed. The features of the map can be turned on and off in the Layers tab of the PDF document. This allows viewers to determine which features are visible. A table of waterbody use impairments by assessment unit is included with the map.

Section 3

Targeting Pollutants of Concern

The Phase I monitoring program is designed to meet Permit requirements by providing stormwater quality monitoring data to identify pollutants of concern. This monitoring data is used to characterize the stormwater discharging from ACHD's MS4 and assess the effectiveness of programs discussed in Sections 5.1 - 5.6. To provide the information, the following monitoring activities are/will be performed:

- Wet weather stormwater outfall monitoring/characterization
- Subwatershed monitoring
- Effectiveness evaluation of structural, non-structural and/or green stormwater infrastructure controls
- Dry weather outfall screening/monitoring

This section focuses on the Stormwater Monitoring and Evaluation Program which consists of wet weather stormwater outfall monitoring, subwatershed monitoring, and BMP effectiveness evaluation activities. Dry weather outfall screening and monitoring is discussed in greater detail in Section 5.2.1. Temperature monitoring to comply with Permit Section 4, Special Conditions, is described in Section 3.2. Final reports summarizing all the monitoring data collected during the report term and the Controls Effectiveness Evaluation Report will be submitted as an attachment to the Permit Renewal Application required by Permit Section 8.2, no later than April 3, 2026.

3.1 Stormwater Monitoring and Evaluation Program

The purpose of the Stormwater Monitoring and Evaluation Program is to continue to characterize the quality of stormwater discharges from the MS4, and to evaluate overall effectiveness of selected stormwater management practices. As stated in Permit Section 6.2, the Stormwater Monitoring and Evaluation Program is designed to:

- Broadly estimate reductions in annual pollutant loads of sediment, bacteria, phosphorus and temperature discharged to impaired receiving waters from the MS4, occurring as a result of SWMP activity implementation;
- Assess effectiveness and adequacy of the permanent stormwater controls and Green Infrastructure techniques and/or improve overall pollutant reduction in stormwater discharges; and
- Identify and prioritize portions of each Permittee's MS4 where additional controls can be accomplished to reduce the volume of stormwater discharged and/or reduce pollutants in MS4 discharges to waters of the U.S.

3.1.1 Wet Weather Stormwater Outfall Monitoring

The ACHD has led the Wet Weather Outfall Monitoring Program on behalf of the Permittees (Partners for Clean Water) since 1999. The Permittees are required to continue to conduct wet weather stormwater outfall monitoring and submit an updated Stormwater Outfall Monitoring Plan (SWOMP) as part of the Year I Annual Report by January 30, 2023.

The sampling design strategy consists of data collection at monitoring stations near the outfall of representative drainages throughout the MS4 to estimate the impact of pollution prevention efforts

and the potential for pollutant loading reductions throughout the permit area. Data collected is sitespecific but may include a combination of continuous rainfall data, continuous flow data from background sources and stormwater discharges, and stormwater quality data. Stormwater monitoring is conducted at a minimum frequency of three wet weather events per year at each of the four monitoring stations: Lucky, Whitewater, Main, and Americana. More information on the sampling process design, monitoring equipment, sampling procedures, maps, data management, and reporting are available on ACHD's website at

https://www.achdidaho.org/Documents/Engineering/Stormwater/StormWaterOutfallMonitoringPlan. pdf

3.1.2 Subwatershed Monitoring

The Americana subwatershed is one of the largest urban subwatersheds on the lower Boise River and drains a significant portion of downtown Boise, the North End, and Foothills residential areas. Connections with natural surface waters, irrigation canals, and dewatering activities further complicate the profile of stormwater runoff and non-stormwater background flows. Stormwater runoff monitoring is currently conducted at the Americana monitoring station. Additional information is available in the SWOMP in Section 3.1.1.

The Americana Subwatershed Monitoring Plan is a complement to the SWOMP. Whereas the SWOMP is used to guide data collection at outfall locations, including the Americana outfall, the Americana Subwatershed Monitoring Plan is used to guide data collection at multiple locations throughout the storm drain network within the Americana subwatershed. This sampling approach is intended to yield results that present a picture of the amount, duration, and quality of wet weather and dry weather flows throughout various locations within the storm drain system. The Permit specifies the Permittees must continue to conduct monitoring in the Americana Subwatershed to better define wet weather and dry weather flow volumes, sources, and pollutant loads according to the Americana Subwatershed Monitoring Plan as updated December 28, 2020. Data collected includes a combination of continuous flow and level data, continuous rainfall data and water quality data. More information on the sampling design strategy, monitoring equipment, sampling procedures, maps, and data management and reporting are available on ACHD's website at <a href="https://www.achdidaho.org/Documents/Engineering/Stormwater/AmericanaSubwatershedMonitoring-stormwater/AmericanaSubwatershedMonitoring-stormw

3.1.3 Effectiveness Evaluation of Structural, Non-Structural and/or Green Stormwater Infrastructure Controls

The ACHD will conduct effectiveness evaluations of at least two different types of structural, nonstructural, and/or green infrastructure stormwater management controls to determine whether the technique is effective at treating or preventing the discharge of sediment, bacteria, and/or nutrients into receiving waters. The specific controls to be evaluated have not been selected as of this SWMP document update but are expected to be determined in 2023. The ACHD evaluated effectiveness of silva cells, sand and grease traps and permeable pavers during the past Phase I Permit term.

3.2 Temperature Monitoring

The ACHD collects temperature data in all monitoring efforts including both stormwater and dry weather flows. Permit Part 4 includes a provision to monitor temperature in stormwater discharges from the MS4 to the Boise River, including the assessment units listed below. Two of the four stormwater outfalls monitored as part of the SWOMP discharge directly to the Boise River – Diversion Dam to Veterans Memorial Parkway (AU ID17050114SW011a_06), which is not currently 303D listed as impaired for temperature. These outfalls are outfall 3n2e09_024 located at

Americana Blvd. in Boise and outfall 3n2e04_010 located at Main St. in Boise. The ACHD collects continuous temperature and flow data to characterize both dry and wet weather flows from the watershed at outfall 3n2e09_024. Since outfall 3n2e04_010 is not impacted by continuous dry weather flows, temperature and flow data are only collected during targeted storm sampling events.

The ACHD operates and maintains six outfalls in the Phase I permit area that discharge to the Boise River assessment units specified in Permit Section 4.

- 17050114SW005_06, Veterans Memorial Parkway to Star Bridge Six ACHD stormwater outfalls.
- 17050114SW005_06a, Star to Middleton Not within the Phase I permit area.
- 17050114SW005_06b, Middleton to Indian Creek Not within the Phase I permit area.

ACHD has selected a stormwater outfall located at 6553 W. Plantation Ln. to address stormwater temperature monitoring into the Boise River in assessment unit 17050114SW005_06. Monitoring station information is provided in Table 8.

Table 8. Water Temperature Monitoring Station Information				
Station Information				
Outfall ID	4n2e30_012			
Location	6553 W. Plantation Ln.			
Station GPS Coordinates	43.657674, -116.270547			
Subwatershed Area	18 ac.			
Receiving Water	Boise River			
Distance from Station to Outfall	331 ft			
Pipe Construction	18 in, circular, concrete pipe			
Power Source	Battery			
Parking	W. Plantation Ln.			
Equipment Location	In manhole			

Section 4 Legal Authority and Enforcement

ACHD is the governing agency responsible for construction and maintenance of all local roads, including the storm drain system, in Ada County, Idaho. ACHD's legal authority is based upon the laws of the State of Idaho. Specific authority is found in Title 40, Idaho Code, Chapters 13 and 14 https://legislature.idaho.gov/statutesrules/idstat/title40/. Because of the limited purpose of ACHD, as defined by the State Code, such legal authorities and provisions are interpreted as intended for facilities and operation and maintenance within the jurisdictional right-of-way of ACHD. ACHD does not provide police or enforcement power and must rely on the powers of municipal government.

Specific legal authority granted to ACHD through state code includes the following:

Powers and Duties of Highway Commissioners, Idaho Code 40-1406
 https://legislature.idaho.gov/statutesrules/idstat/title40/t40ch14/

ACHD Commissioners are empowered to pass ordinances, rules, and regulations as necessary for carrying into effect or discharging all powers and duties conferred to a Countywide highway district by state code.

- Drainage Authority, Idaho Code 40-1451(1)(d) https://legislature.idaho.gov/statutesrules/idstat/title40/t40ch14/ ACHD has authority over drainage where it is necessary for motorist safety or necessary for right- of-way maintenance. This code provision limits the extent and nature of authority in which ACHD is empowered.
- Subdivision Plat Review, Acceptance and Approval, Idaho Code 40-1415(6)
 https://legislature.idaho.gov/statutesrules/idstat/Title40/T40CH14/SECT40-1415/
 Subdivision plats are required to be submitted to ACHD for acceptance and approval for highway design, drainage provisions, and traffic conditions.
- Common Law Authority

ACHD has certain common law authority to control discharges of stormwater into any storm drains which are located within the public right-of-way by means of ACHD's control and owner's interest in the public right-of-way.

• Authority as a Municipal Corporation

ACHD may have certain inherent authority as a municipal corporation by virtue of its ordinance authority to regulate discharges of stormwater into ACHD's stormwater system.

ACHD implements the following ACHD policy sections and provisions to address stormwater system drainage and management, stormwater design, construction site illicit discharges and erosion and sediment control (respectively): Section 8000 – Drainage & Stormwater Management, Section 8200 – Stormwater Design Manual, Section 6000 – Construction, Permits & Inspection, and Section 8300 – Construction Site Discharge Control Program (http://www.achdidaho.org/AboutACHD/policyManual.aspx).

The municipal governments of Boise and Garden City have specific stormwater ordinances related to illicit discharge and construction site discharge control. ACHD coordinates with the City of Boise and City of Garden City for assistance, as needed, using the ordinances referenced below.

- City of Boise
 - Ordinance No. 10-6-2 Discharge Regulations and Requirements <u>https://codelibrary.amlegal.com/codes/boiseid/latest/boise_id/0-0-0-13536</u>
 - Ordinance No. 9-14-2 Erosion Control Regulations and Requirements <u>https://codelibrary.amlegal.com/codes/boiseid/latest/boise_id/0-0-0-11723</u>
- City of Garden City
 - Ordinance No. 4-14-5 Discharge of Pollutants
 <u>https://www.codepublishing.com/ID/GardenCity/#!/GardenCity04/GardenCity0414.html#4-14-5</u>
 - Ordinance No. 4-15-2 Erosion Control Regulations and Requirements
 <u>https://www.codepublishing.com/ID/GardenCity/#!/GardenCity04/GardenCity0415.html#4-15-2</u>

ACHD also works with other State and local entities to coordinate compliance addressing SWMP control measures provided in Table 9.

Table 9. Coordinated Compliance Activities				
Agency	Summary of Activities	SWMP Control Measures*		
City of Boise	 Enforcement assistance in illicit discharge, erosion, and sediment control 	Illicit Discharge, Construction		
City of Garden City	 Enforcement assistance in illicit discharge, erosion, and sediment control 	Illicit Discharge, Construction		
Idaho Department of Environmental Quality	 Enforcement assistance in illicit discharge response related to hazardous materials, petroleum products, and dust control (air quality) IPDES compliance assistance 	Illicit Discharge, Construction		
Idaho Department of Water Resources	 Provide GIS coverage data and resources, information regarding irrigation/drainage districts and facilities, shallow/deep injection well program 	Illicit Discharge, New Development		
Idaho Department of Agriculture	 Enforcement assistance in illicit discharge response related to confined feeding operations waste in the right of way 	Illicit Discharge		
Irrigation and Drainage Districts	Assist in locating drainage facilities, review roadway drainage plans	Illicit Discharge, New Development		
ITD District 3	 Assist in locating stormwater facilities and illicit discharge activities Erosion and sediment control on federally funded roadway projects 	Illicit Discharge, Construction		
Public	Report illicit discharges, participate in education and activities	Education and Outreach, Public Participation, Illicit Discharge		
Service Organizations	 Assist in storm drain marking, participate in education activities 	Education and Outreach, Public Participation		

*See Section 5 of this document for a description of the SWMP control measures

Section 5

Stormwater Control Measures to Reduce Pollutants to the Maximum Extent Practicable

The following sections describe ACHD's program to reduce pollutants in the MS4 discharges to the maximum extent practicable, as required by Permit Part 3. Each section consists of a summary of the program and describes how ACHD meets each program component. The compliance and implementation status for each program component, Permit reference, and location of updated information (SWMP or Annual Report) is provided in Appendix E.

The stormwater control measures are:

- Public Education and Outreach on Stormwater Impacts
- Illicit Discharge Detection and Elimination
- Construction Site Stormwater Runoff Control
- Post-Construction Stormwater Management for New Development and Redevelopment
- Stormwater Infrastructure and Street Management
- Industrial and Commercial Stormwater Discharge Management

These measures are described in greater detail in the following sections:

5.1 Public Education and Outreach on Stormwater Impacts

To educate and involve members of the public about stormwater pollutants, ACHD must conduct, or contract with other entities to conduct, an ongoing education, outreach, and public involvement program based on stormwater issues of significance in the ACHD's jurisdiction. When applicable, ACHD must comply with State and local public notice requirements when conducting public involvement activities.

5.1.1 Permit Requirements

ACHD must, at a minimum, (<u>MS4 Permit 3.1</u>):

- ✓ Select at least one audience and focus its efforts on conveying relevant messages.
 - Distribute and/or offer at least eight (8) educational messages or activities over the permit term to selected audience(s) (3.1.3 and 3.1.4).
 - Begin to assess, and track, activities to gauge the audience's understanding of the relevant messages and adoption of appropriate behaviors (3.1.5 and 3.1.6).
- ✓ Target specific educational material to the construction/engineering/design community regarding construction site runoff control and permanent stormwater controls (3.1.7).
- Maintain and advertise a publicly accessible website to provide all relevant SWMP materials (3.1.8).

5.1.2 Current Compliance Activities

Environmental staff currently organizes and participates in public education and outreach efforts on a routine basis and distribute educational materials through a variety of programs and media. ACHD maintains a stormwater webpage on its website and updates with current reports and documents. Additionally, ACHD participates in the Partners for Clean Water education partnership with the Phase I Permittees. Details on Partners for Clean Water activities are identified in the City of Boise's SWMP document. ACHD's current educational activities include the following:

- ACHD Environmental staff distributes educational materials throughout the year in formal training events, public events, and informal settings such as complaint response.
- Outreach and targeted advertising include radio sponsorships, magazine advertisements, social media posts, public service announcements, digital billboards, commuter bus wraps, and a regularly maintained Partners for Clean Water website (<u>Partners for Clean Water</u>).
- ACHD regularly maintains and promotes its website at <u>www.achdidaho.org</u>. The website has a section dedicated to stormwater <u>http://www.achdidaho.org/Departments/Engineering/Stormwater/stormwater.aspx</u> where this NPDES Phase I SWMP document is posted along with the following required information.
 - Phone numbers and information to report illicit discharges, illicit connections, and illegal dumping activity.
 - Reports, plans, and documents relevant to the Permit and SWMP.
 - Information regarding policies and/or guidance documents related to ACHD's requirements for construction and permanent stormwater management control. This includes education opportunities, training, licensing, and permitting process for ACHD's jurisdiction.
 - ACHD contact information.

5.1.3 Planned 2022 Compliance Activities

ACHD conducts the Permit-required activities to limit stormwater pollution potential and has made necessary program updates to maintain compliance with the current Permit. Table 10 presents the work plan for 2022 SWMP activities related to Public Education and Outreach Activities.

Table 10. 2022 Public Education and Outreach on Stormwater Impacts Work Plan					
Task Description	Lead ACHD Department	Supporting ACHD Department	Time Frame		
Inform the public and seek involvement in the SWMP update	Environmental	Communications	12/1/2022		
Update the Phase I Stormwater Management Program document.	Environmental	Communications	9/30/2022		
Post SWMP to public website	Environmental	Information Technology	9/30/2022		
Coordinate with City of Boise staff to implement the education and outreach program by distributing current educational resources to target audiences.	Environmental	Communications	Ongoing		
Coordinate with City of Boise staff to update as needed current education and outreach materials to ensure priority topics and target audiences are addressed	Environmental	N/A	Ongoing		
Update the ACHD stormwater webpage annually	Environmental	Information Technology	Ongoing		

5.2 Illicit Discharge Detection and Elimination

To detect and eliminate illicit discharges into the MS4, ACHD must implement and enforce a program to the extent allowable under Idaho state law. The Illicit Discharge Detection and Elimination (IDDE) Program contains several SWMP elements detailed in Section 5.2.2. below.

5.2.1 Permit Requirements

No later than April 3, 2026, ACHD must update the existing illicit discharge management program as necessary to meet the following required program components (<u>MS4 Permit 3.2</u>):

- \checkmark Maintain and update the MS4 map and outfall inventory (3.2.2).
- ✓ Enforce an ordinance that effectively prohibits illicit discharges into the MS4 (3.2.3).
- Respond to complaints or reports of illicit discharges from the public and track actions taken (3.2.4).
- ✓ Conduct MS4 outfall screening inspections during dry weather (3.2.5).
- ✓ Follow-up to determine the source of a recurring illicit discharge identified as a result of complaints, or of the dry weather screening investigations within thirty (30) days (3.2.6).
- ✓ Take appropriate action to address the source of an ongoing illicit discharge (3.2.6).
- \checkmark Prevent and respond to spills to the MS4, as appropriate (3.2.7).
- ✓ Coordinate with other entities to educate employees and members of the public for the proper disposal of used oil and toxic materials (3.2.8).
- ✓ Ensure the appropriate Permittee staff is trained to conduct these activities (3.2.9).

5.2.2 Current Compliance Activities

ACHD currently conducts numerous IDDE compliance activities that include the following required components: MS4 Map and Outfall Inventory, Regulatory Mechanism, and Illicit Discharge Complaint Report and Response Program, Spill Response, and the Dry Weather Outfall Program as described in the following sections.

5.2.2.1 MS4 Map and Outfall Inventory

ACHD maintains and updates a GIS map and outfall inventory of the Phase I permit area MS4. This map and inventory are managed as follows:

- Update annually, the Phase I MS4 map to address new development, redevelopment, field verification, and maintenance activities.
- Maintain an inventory of identified MS4 outfalls including spatial location and general information regarding dimensions, shape, material, ownership, and receiving waters (Appendix D).
- Maintain an inventory of identified ongoing dry weather flows caused by irrigation return flows and/or groundwater seepage (Appendix D).

5.2.2.2 Regulatory Mechanism

Illicit discharges are prohibited via ACHD ordinance, as described in ACHD Policy <u>8015.2.1</u>. Illicit discharge to any ACHD-owned storm drains in Ada County is prohibited and a violation of this ordinance unless the discharge is exempted as an allowed non-stormwater discharge described in Section 2.4 of the Phase I NPDES permit (#IDS028185).

5.2.2.3 Illicit Discharge Complaint Report and Response Program

ACHD responds to illicit discharge complaints received through the stormwater pollution hotline, public reports via the ACHD website (<u>Tellus@achdidaho.org</u>), anonymous tips, and other government agency referrals. ACHD performs the following:

- Conduct site assessments and evaluate impact to the storm drain system, waterways, and soil.
- As appropriate, coordinate with responsible parties, environmental cleanup contractors, and local agencies such as police, fire department, State Communications, and Idaho Department of Environmental Quality for proper cleanup and disposal.
- Provide assistance and education on proper cleanup, disposal, and best management practices.
- Implement and enforce Resolution 2151, ACHD Policy for Right-of-Way Spill, Container, and Debris Response.
- Implement and maintain the 2021 ACHD Spill Response Plan (Spill Plan) to guide ACHD spill response in the public ROW.
- Document illicit discharge and spill response activities.
- Provide on-call staff for after hour illicit discharge and spill response.

For the timeframe October 1, 2021 to July 1, 2022, ACHD received 34 stormwater reportable complaints in the Phase I permit area. These complaints are summarized in Table 11. Appendix F includes a location map depicting where the illicit discharges occurred, a list of complaints received, and a summary of follow-up actions taken.

Table 11. Complaints Received by Pollutant Type and Category						
		Category of	Complaint			
Pollutant Type	Commercial	Construction	Residential	Industrial	2021-2022	
Concrete	0	3	0	0	3	
Petroleum	2	1	7	0	10	
Sediment	3	8	2	0	13	
Sewage	0	0	1	1	2	
Other*	6	0	0	0	6	
Total	11	12	10	1	34	

*Grey Water, Dairy Waste, Cooking Oil/Grease, Herbicide, and Leachate

5.2.2.4 Dry Weather Outfall Screening Program

ACHD implements the Dry Weather Outfall Screening (DWOS) Plan available in Appendix G. This plan describes the overall approach to dry weather outfall screening and provides comprehensive guidance for outfall investigation efforts, including prioritization of outfalls, data collection efforts, recordkeeping, evaluation, and assessment. Specifically, ACHD accomplishes the following actions to support screening efforts:

• Implement the Dry Weather Outfall Screening Program that involves visual dry weather inspections and sampling of dry weather flows.

- Conduct dry weather inspections that include site evaluation, flow estimation, discharge water quality analysis, and flow source tracing.
- Conduct visual dry weather inspections on a randomized portion of the entire outfall inventory to determine if the outfall has dry weather flow. A minimum of 20% of all outfalls in the Phase I area are inspected annually.
- Inspect and sample outfalls with known dry weather discharges during three distinct time periods (pre-irrigation, during irrigation, and post- irrigation) to better characterize flow duration and pollutant loads.
- Collect dry weather flow samples and screen for total suspended solids, total phosphorus, dissolved orthophosphate, total chlorine, total phenols, total copper, detergents as surfactants, and *E. coli*.

5.2.3 Planned 2022 Compliance Activities

ACHD conducts the Permit-required activities to limit stormwater pollution potential and has made necessary program updates to maintain compliance with the current stormwater permit. Table 12 includes the illicit discharge detection and elimination work plan for the 2022 SWMP.

Table 12. 2022 Illicit Discharge Detection and Elimination Work Plan					
Task Description	Lead ACHD Department	Supporting ACHD Department	Time Frame		
Continue to conduct dry weather inspection and follow-up screening of 20% of the Phase I outfall inventory	Environmental	N/A	Ongoing		
Continue to address right-of-way spills and illicit discharges to include proper cleanup, disposal, tracking, and reporting	Environmental	Maintenance	Ongoing		
Annual review and update of Spill Response Plan	Environmental	Maintenance	7/30/22		
Conduct Spill Response Plan Training for ACHD staff	Environmental	Maintenance	9/15/22		
Update DWOS Plan to incorporate new Permit references	Environmental	N/A	12/30/22		
Develop new table for annual report of investigation results and follow up actions for DWOS Program	Environmental	N/A	12/31/22		
Continue illicit discharge training for new employees	Human Resources	Environmental	ongoing		
Conduct biannual illicit discharge detection training	Environmental	Maintenance	9/15/22		
Complete GIS map update of Phase I MS4 for inclusion in SWMP	Environmental	GIS	9/30/2022		
Update Phase I Outfall Inventory for annual report	Environmental	N/A	9/30/22		
Update list of dry weather flows caused by irrigation and groundwater for inclusion in SWMP	Environmental	N/A	9/30/22		

5.3 Construction Site Stormwater Runoff Control

Through regulatory mechanism to the extent allowable under Idaho state law, ACHD must require erosion controls, sediment controls, and waste materials management controls to be used and maintained at construction projects from initial clearing through final stabilization (<u>MS4 Permit 3.3</u>). ACHD implements and enforces the Construction Site Discharge Control (CSDC) Program to fulfill Phase I Permit requirements and reduce the discharge of pollutants from public and private construction activity within ACHD's jurisdiction. The CSDC program regulates construction activities through the issuance of Temporary Highway Use Permits, construction contracts, activities

performed by ACHD's Maintenance Department, capital improvement projects, and acceptance of public roads from new subdivision development.

5.3.1 Permit Requirements

To control the discharge of stormwater and pollutants from land disturbance during the construction phase, ACHD must:

- ✓ Require appropriate erosion, sediment, and waste management requirements for construction site activity that results in land disturbance of one (1) acre or more (3.3.3).
- ✓ Establish installation and use guidelines for required erosion/sediment/waste management during all phases of construction site activity (3.3.3).
- ✓ At a minimum, review preconstruction site plans for construction sites that will result in land disturbance of one (1) or more acres, using a checklist or similar process to consider and address potential water quality impacts from the site activities (3.3.4).
- ✓ Inspect and enforce erosion, sediment, and waste management requirements on construction sites (3.3.5).
- \checkmark Establish an inspection prioritization plan (3.3.5).
- ✓ Establish an enforcement response policy (3.3.6).
- \checkmark Ensure that Permittee staff is trained to conduct these activities (3.3.7).

5.3.2 Current Compliance Activities

ACHD currently implements numerous activities to provide runoff control and stormwater pollution prevention from construction sites. Oversight of the CSDC Program is the responsibility of the Environmental Department which includes an Environmental Specialist that specializes in erosion and sediment control. The CSDC Program Manual was developed to include all aspects of the CSDC Program from governing ordinances and policies to plan review and approval, construction site inspection, permit violations and enforcement, and education and training. This manual is available in Appendix H. Activities performed include:

- Implementation activities required by Policy 8300 (Construction Discharge Control Program) and Policy 6000 (Permits and Inspection) including plan review, inspection support, permit tracking, record keeping, and enforcement.
- Implementation and oversight of prioritized construction site inspections and assists construction site operators in correcting problems and policy violations.
- Inspection and enforcement are also performed by Zone Inspectors and Subdivision Inspectors within their areas of responsibility. ACHD Project Inspectors are responsible for oversight and implementation of the Stormwater Pollution Prevention Plan (SWPPP) by contractors on ACHD projects.

5.3.3 Planned 2022 Compliance Activities

ACHD conducts the Permit-required activities to limit stormwater pollution potential and has made necessary program updates to maintain compliance with the current stormwater permit. Table 13 presents work plan for 2022 SWMP activities related to construction site stormwater runoff control activities.

Table 13. 2022 Construction Site Stormwater Runoff Control Work Plan			
Task Description	Lead ACHD Department	Supporting ACHD Department	Time Frame
Review erosion and sediment control and dewatering plans for ACHD projects and projects impacting the public right-of-way	Environmental	N/A	Ongoing
Perform prioritized inspection of construction sites and enforcement of control measures for permitted work	Environmental	Development Services	Ongoing
Assist construction site operators in correcting problems and policy violations	Environmental	N/A	Ongoing
Investigate, track, and resolve complaints originating from construction sites in a timely and consistent manner	Environmental	N/A	Ongoing
Review and modify tracking procedures as needed to meet Permit requirements	Environmental	Development Services Engineering Services	6/1/22
Provide training and assistance to inspection staff to implement 2022 CGP	Environmental	Engineering Services	3/1/22
Coordinate with other agencies to update BMP field guide and provide Spanish translation	Environmental	N/A	12/31/22
Update Escalating Response Policy	Environmental	Legal	9/30/22
Update procedure guidance to address construction site runoff violations.	Environmental	N/A	12/31/22

5.4 Post-Construction Stormwater Management, New Development and Redevelopment

Through a regulatory mechanism to the extent allowable under Idaho state law, ACHD must require the installation and long-term maintenance of permanent stormwater controls at new development and redevelopment project sites. This section describes activities ACHD conducts or will implement to fulfill Phase I Permit requirements for a post-construction stormwater management (PCSM) program (MS4 Permit 3.4).

5.4.1 Permit Requirements

To control the discharge of stormwater and pollutants from land disturbing activities and after construction is completed, ACHD must:

- ✓ Require the installation and long-term maintenance of permanent stormwater controls at new development and redevelopment project sites that result from land disturbance of 1 acre or more (3.4.2).
 - Permanent stormwater controls must be sufficient to retain onsite the runoff volume produced from a 24-hour, 95th percentile storm event; or sufficient to provide the level of pollutant removal greater than the pollutant removal expected by using onsite retention of runoff volume produced from a 24 hour, 95th percentile storm event.
 - Alternatively, stormwater treatment requirements must be required that can attain an equal or greater level of water quality benefits as onsite retention of stormwater discharges from new development and redevelopment sites.
 - Other alternatives may be allowed for projects to meet the onsite retention requirement at a
 particular project site based on technical infeasibility, and/or site constraints.

- ✓ Establish proper installation and use guidelines for permanent stormwater controls the Permittee may establish different types of controls for different types and/or sizes of site development activity (3.4.3).
- At a minimum, review and approve preconstruction plans for permanent stormwater controls at new development and redevelopment sites that result from land disturbance of one (1) or more acres (3.4.4).
- Periodically inspect "high priority" permanent stormwater controls for proper installation and operation, using an inspection prioritization system (3.4.5).
- \checkmark Maintain an inspection prioritization plan and enforcement response policy (3.4.5).
- ✓ Maintain a database inventory to track and manage the operational condition of permanent stormwater controls (3.4.6).
- \checkmark Ensure the appropriate Permittee staff is trained to conduct these activities (3.4.7).

5.4.2 Current Compliance Activities

ACHD's stormwater policy consists of Section 8000 Drainage and Stormwater Management and Section 8200 Stormwater Design Manual. Together these policies establish the standards for new stormwater facilities and retrofitting existing stormwater facilities. Policy updates adopted most recently included revised BMPs and Green Stormwater Infrastructure (GSI) BMPs. The policies include:

- A list of the approved BMPs
- Performance standards
- Design review submittal requirements
- Guidelines and checklists for creating Operations & Maintenance Plans
- Inspection checklists for landscape-based treatment facilities

5.4.2.1 PCSM Plan Review, Inspection, and Maintenance

The ACHD requires operators to install permanent stormwater facilities at new development and redevelopment sites. Project review and approval procedures, in part, are found in ACHD's Development Policy Manual (Section 7000). Plan review, inspection, and maintenance of projects reviewed and approved by Development & Technical Services (DTS) staff are summarized as follows:

- Resident Engineer must inspect and ensure that roadway facilities, including roadway drainage facilities, are constructed correctly; and to ensure that a set of "record drawings", which denote the final ACHD stormwater system, are delivered to ACHD.
- ACHD DTS staff review proposed subdivision and development plans to ensure compliance with ACHD policies and procedures. A review template is used that incorporates a plan review checklist of items that typically require comments, including a section on drainage. This template is drafted in a letter format so staff can send the checklist, complete with comments, to the applicant upon completion of the plan review.
- ACHD staff performs an inspection of the facilities before final approval of the constructed project. The inspection is documented and placed in the project file for future reference.
- Once new developments have been accepted by ACHD; following the warranty period, Maintenance staff perform ongoing maintenance and inspection of existing BMPs in the ACHD right-of-way.
- Stormwater basin and swale maintenance responsibilities are documented as conditions of approval in the required operation and maintenance manual for new subdivisions with public roadways that will be maintained by ACHD. See ACHD policy 8012.5.

- Homeowners' association basins are responsible for light maintenance that typically address aesthetic features such as landscaping, litter control and erosion control. ACHD provides heavy maintenance for private-owned stormwater basins that receive drainage from the right-of-way. Heavy maintenance addresses functional aspects such as sediment removal, rebuild, or replacement.
- Subsurface facilities e.g., seepage beds, storm drain inlets, pipes, and sand and grease traps, are maintained according to maintenance areas on a rotational basis.

5.4.2.2 ACHD Stormwater Facilities

Since adoption of ACHD Policy 8202.5 in 2015 and updates in 2017, all new and rebuilt ACHD stormwater basins are required to be vegetated and address Pollutants of Concern. Additionally, in 2016, ACHD Commission directed staff to begin retrofitting ACHD-owned stormwater basins. Currently, all ACHD stormwater facilities associated with roadways and intersections are built to address water quality and incorporate GSI where possible. The goal of these facilities is to establish native or naturalized vegetation with healthy soils that function to remove stormwater pollutants with added aesthetic and ecological benefits to the community. ACHD has implemented measures to increase the likelihood of successfully vegetated stormwater facilities that include the following:

- Environmental staff participate in an interdisciplinary project team of ACHD staff that review projects from conception to construction. Comments are submitted to an ACHD Project Manager for discussion with the project team and consultants.
- ACHD requires temporary irrigation for two to three growing seasons for establishing native/drought tolerant vegetation in ACHD-owned stormwater basins and swales.
- ACHD developed an Ada County Highway District Stormwater Management Basin Revegetation Guidance Manual and updated contract specifications related to plant material and soil amendments for use by design and contracting professionals.
- ACHD staff develop site specific Plant Establishment Plans for use by contractors during the warrantee period prior to ACHD accepting a vegetated stormwater facility. These plans provide maintenance guidance during the plant establishment phase of a GSI facility.
- Maintenance of new ACHD facilities by ACHD staff and contracted provider consist of an iterative stewardship approach that involves manual and mechanical weed removal, plant vegetation maintenance to maximize seed dispersal, erosion control, and trash and sediment removal. Maintenance and inspections are conducted once a month during early spring and twice monthly during the growing season. The plan establishment period for each project facility is typically three to four growing seasons.

5.4.2.3 Prioritization, Tracking, and Enforcement

ACHD conducts inspections on priority stormwater basins that receive right-of-way drainage and discharge directly to surface waterbodies. These inspections inform development of educational materials, inventory tracking, and maintenance, when necessary, as described below.

Prioritization

- Results of stormwater basin priority inspections are used to guide the development of education and outreach materials.
- Stormwater basin inspection follow-up actions are coordinated with the facility owner.
- ACHD will be reviewing the current inspection prioritization and determining strategies to develop an inspection prioritization and documentation process as required in Part 3.4.5. no later than April 3, 2026. Progress toward meeting this goal will be provided in annual work plan updates provided in Table 14.

Tracking

• Tracking of operation and maintenance of the permanent stormwater controls inventory is conducted using ArcGIS and work order processing software. ACHD regularly conducts a county-wide desktop analysis to update the stormwater basin inventory and attribute data. Quality assurance and quality control of the stormwater basin inventory will be an ongoing effort as new stormwater basins are built.

Enforcement

• Enforcement of permanent stormwater control upkeep includes verbal notice to the facility owner, written notice, legal notice, and finally billing the owner for maintenance action. An enforcement response policy will be developed and implemented as required in Part 3.3.6 no later than April 3, 2026. Progress toward meeting this goal will be provided in annual work plan updates provided in Table 14.

5.4.3 Planned 2022 Compliance Activities

ACHD conducts the Permit-required activities to limit stormwater pollution potential and has made program updates to maintain compliance with the current stormwater permit. Table 14 includes the work plan for 2022 SWMP activities related to post-construction stormwater management activities.

Table 14. 2022 Post-Construction Stormwater Management Work Plan				
Task Description	Lead ACHD Department	Supporting ACHD Department	Time Frame	
Prioritize, inspect, and conduct necessary follow-up on privately owned stormwater basins.	Environmental	Maintenance	9/30/2022	
Review current regulatory mechanisms for PCSM enforcement	Environmental	N/A	7/30/2022	
Draft an enforcement response policy for maintenance of permanent stormwater controls.	Environmental	Development Review Legal	12/31/2022	
Review DTS staff PCSM training needs	Environmental	Development Review	12/31/2022	
Begin to draft prioritization inspection process	Environmental	Development Review	8/30/2022	
Continue to require and review permanent stormwater control plans	Development Review	Environmental	Ongoing	
Continue to update and track the permanent stormwater control inventory.	Environmental	GIS	Ongoing	

5.5 Stormwater Infrastructure and Street Management

This section describes activities ACHD conducts or will implement to fulfill Phase I Permit requirements for stormwater infrastructure and street management (<u>MS4 Permit 3.5</u>).

5.5.1 Permit Requirements

To control the discharge of stormwater pollutants from ACHD activities, ACHD must:

- ✓ Inspect catch basins and inlets at least once every five years or develop an inspection prioritization plan (3.5.2).
- \checkmark Maintain or clean catch basins based on those inspections (3.5.2).
- ✓ If applicable, maintain 0&M Procedures for Streets, Roads, Highways and Parking Lots, including specific schedules for inspection and maintenance, and appropriate pollution prevention/good housekeeping actions (3.5.3).
- ✓ Inventory and manage Street/Road Maintenance Materials (3.5.4).
- ✓ Use best practices to reduce the discharge of pollutants to the MS4 associated with the Permittee's application and storage of pesticides, herbicides, and fertilizers (3.5.4).
- ✓ Implement a Street, Road, Highway and Parking Lot Sweeping Management Plan (3.5.5).
- ✓ Maintain 0&M Procedures for Other Municipal Areas and Activities to protect water quality
- ✓ Maintain inventory and/or map of all streets, roads, highways, and public parking lots owned, operated, or maintained by ACHD in the Permit Area and identify their selected sweeping frequency (3.5.5).
- ✓ Conduct O&M activities in a manner that reduces the discharge of pollutants through the MS4 to protect water quality. Review, and update as necessary, existing procedures for inspection and maintenance schedules to ensure pollution prevention and good housekeeping practices are conducted for listed activities (3.5.6).
- ✓ Develop site-specific Pollution Prevention Plans for Permittee-owned Facilities (3.5.8).
- \checkmark Work cooperatively with other entities to control litter on a regular basis (3.5.9).
- \checkmark Ensure the appropriate Permittee staff is trained to conduct these activities (3.5.10).

5.5.2 Current Compliance Activities

Operation and Maintenance are essential components of stormwater infrastructure and street management. Activities and programs tracked and evaluated within the Phase I permit area include:

- Street Sweeping (5.5.2.1)
- Storm Drain System Maintenance (5.5.2.2)
- Winter Maintenance (5.5.2.3)
- Pesticide, Herbicide, and Fertilizer Applications (5.5.2.4)
- Additional Pollution Prevention and Good Housekeeping for Municipal Operations (5.5.2.5)
- Operation and Maintenance include:
 - Fleet maintenance and vehicle washing operations
 - Building maintenance
 - Snow removal and snow disposal site operations and maintenance
 - Spill prevention and control for refueling facilities

In 2019, Environmental staff and consultants worked with Maintenance and Operations staff to update the ACHD Maintenance and Operations Stormwater Best Management Practices Manual. These BMPs, used in conjunction with specific activities ACHD performs, will enhance water quality and promote the reduction of pollutants entering the storm drain system.

ACHD currently operates two maintenance yards, three gravel pits, and four equipment and material storage areas within the Phase I Permit area. The location of these facilities is included in the MS4 Stormwater Infrastructure Map in Appendix C. The SWPPPs associated with these facilities are in Appendix I. During 2022-2023, ACHD will continue development of three new sites: a traffic materials shop and storage area at 3341 Franklin Road in Boise, Idaho and a maintenance yard at 4377 S. Apple Street, Boise, Idaho and 3764 Ustick Road in Meridian, Idaho. The future Ustick Maintenance Yard is located within the Phase II permit area.

5.5.2.1 Street Sweeping

ACHD utilized 28 sweepers: 9 mechanical sweepers,

ACHD works with Ada County residents and businesses to remove or eliminate pollutants in the environment through the Adopt-a-Highway and Commuteride programs.

In reporting year 2021-2022, Adopt-a-Highway volunteers successfully completed 71 roadside cleanup events, removing 7,040 pounds of debris.

In calendar year 2021, the Commuteride Program maintained an average of 77 commuter van routes and 484 participants resulting in 89,995 passenger trips, 2,781,340 total miles removed from roadways, and preventing 2,183 tons in CO₂ emissions across the Treasure Valley.

10 regenerative air sweepers, and 9 vacuum sweepers during the 2021-2022 permit year. The county is organized into nine sweeping zones to include residential sweeping routes, arterial/collector routes, and downtown routes. The nine sweeping zones are further subdivided into 228 maintenance areas to help the Maintenance and Operation staff track and communicate maintenance activities on a smaller scale. Mechanical sweepers are used primarily on residential streets, while vacuum sweepers are used on arterial/collector streets, residential streets, and downtown streets. ACHD staff sweeps the arterial/collector streets early in the morning and then moves to residential streets. All streets within a residential zone are completed before moving into the next zone. Downtown routes are swept at least twice a month and additional sweeping is done as needed. In the Phase I permit area, a total of 8,553 lane miles were swept between October 1, 2021 and July 1, 2022 adding to the countywide removal of an estimated 27,627 cubic yards of debris. Sweeping effectiveness is evaluated using written daily logs and digital tracking using a GPS based automatic vehicle location (AVL) service. The AVL data and reporting tools were used for the first time in 2021-2022 to summarize the progress of the Street Sweeping Program for this SWMP Document.

5.5.2.2 Storm Drain System Maintenance and Right-of-Way Cleaning

In the Phase I permit area, ACHD owns and operates a storm drain system currently composed of 224 miles of storm drain pipe, 8,728 storm drain inlets, 3,493 sand and grease traps (sediment tanks), and 38 detention and retention basins. ACHD is also responsible for providing heavy maintenance on 559 privately-owned stormwater basins. ACHD Maintenance staff performs right-of-way maintenance activities such as trash pickup, weed removal, and sidewalk cleaning with assistance from participants in the Sheriff Labor Detail Program (SLD). A summary of the drainage maintenance activities performed by ACHD crews and participants from the SLD Program during reporting year 2021-2022 (October 1, 2021-July 1, 2022) are provided in Tables 15 and 16, respectively.

Table 15. ACHD Drainage Maintenance Activities Summary October 1, 2021 – July 1, 2022		
Drainage Maintenance Activity	Quantity	
Storm Drain Inlets Inspected/Cleaned	1,385	
Manholes & Irrigation Boxes Inspected/Cleaned	650	
Sediment Tanks Cleaned	195	
Drains/Pipes Flushed (feet)	6,228	
Debris Removed (cubic yards)	269	
Drop Inlets Repaired or Installed*	20	
Storm Drain Pipes Installed (feet)*	0	
Irrigation Crossing Installed/Repairs (feet)*	970	
Sink Hole/Cave-In Repairs*	6	
Curb Replacement (feet)*	2,747	
Basins Repaired or Installed*	0	
Seepage Beds Repaired/Installed*	1	
Drainage Complaint Investigation*	3	

* Program activity include work conducted throughout Ada County

Table 16. SLD Program Activities Summary* October 1, 2021 – July 1, 2022						
Description	Debris (CY)	Bags (#)	Blocks (#)	Lane Miles	SLD Hours	ACHD Hours
Right-of-way Weed Control & Cleaning	439	214	33	36	2,084	1,375
Alley Cleaning	369	82	595	0	1,669	1,038
Basin Cleaning	264	55	109 ¹	0	1,039	1,134
Sidewalk Cleaning	313	175	264	113	2,066	1,242
Yard Work	37	257	217	0	875	661
TOTALS	1,422	783	1,518	149	7,733	5,450

*SLD Program activities include work conducted throughout Ada County

¹Number of basins cleaned

5.5.2.3 Winter Maintenance

Ada County Highway District maintenance staff is responsible for providing safe ACHD roadways for the traveling public. During winter maintenance, staff uses sand, salt, sand/salt mix, and magnesium chloride (MgCl) to address snow and ice conditions on ACHD roadways. Sand stored at the Adams and Cloverdale Maintenance yards is mixed with salt for storage purposes to prevent sand from freezing. The ratio of sand to salt used for winter maintenance varies based on weather conditions, grades, and traffic volume.

During 2021-2022, ACHD discontinued the practice of dyeing salt for winter maintenance applications due to the chemical makeup of the dye and the potential negative impact the dye may have on waterways. The ACHD has limited the use of previously dyed salt to rural areas of Ada County that do not have a direct connection to surface waters and groundwater.

A summary of snow and ice control materials applied to ACHD roads in reporting year (October 1, 2021– September 30, 2022) is included in Table 17. During this time, ACHD treated 15,955 lane miles of roadway and the National Weather Service at the Boise Airport recorded 22 inches of snow.

Table 17. Maintenance Materials Usage and Snowfall Total			
Deicing Material Applied* 2021-2022			
Sand/Salt Mix (tons)	3,002		
MgCl (gal)	481,659		
Salt (tons)	1,953		
Snowfall Total (inches) 22			

*Total materials usage includes all of Ada County

5.5.2.4 Pesticide, Herbicide and Fertilizer Application

The ACHD contracts with chemical applicators to address vegetation maintenance at ACHD facilities and the public right-of-way. The facilities vegetation maintenance contractor applies pesticide, herbicide, and fertilizer at the Adams Location (Administration building and Maintenance and Traffic Operations Yard) and one vegetated stormwater basin throughout the Phase I permit area. The rightof-way vegetation maintenance contractor applies herbicide to 1,088 miles of roadside throughout Ada County. The contract applicators record the type of material used, the location, and amount applied. Data collected from ACHD facilities in the Phase I permit area and county-wide roadside chemical applications during October 1, 2021– July 1, 2022 is summarized in Table 18.

Table 18. ACHD Facilities and Roadside Chemical Applications October 1, 2021 – July 1, 2022					
	Application Amount Active Ingredient (Ibs ⁶) Application Totals (Ibs ⁶)				
Type Location				Year	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Adams Location	Cloverdale Location	Vegetated Basins (1)	Roadsides (1,088 miles)	21-22
Organic fertilizer ³	285	25	200	-	510
Turf weed control ²	0	-	0	-	0
Tree/shrub, bed weed control ⁴	17	9	5	164	195
Pre-emergent herbicide ¹	1	0	0	162	163
Insecticide ⁵	1	2	1	-	4

¹Flumigard; ²Barricade, Merit; ³16-16-16, 19-0-6 w/Barricade, 21-0-4 w/ Merit, Anderson 16-16-16; ⁴Roundup Quick Pro, Credit 41 Extra; ⁵440 Superior Spray Oil, Merit 2F; ⁶Gallons to pounds conversion based on density of water (8lb/gal)

5.5.3 Planned 2022 Compliance Activities

ACHD conducts the Permit-required activities to limit stormwater pollution potential and has made necessary program updates to maintain compliance with the current stormwater permit. Table 19 includes the work plan for 2022 SWMP activities related to pollution prevention and good housekeeping.

Table 19. 2022 Pollution Prevention/Good Housekeeping Work Plan				
Task Description	Lead ACHD Department	Supporting ACHD Department	Time Frame	
Analyze and report street sweeping activities using automatic vehicle location software. Continue refinement of sweeping data	Environmental	GIS	Ongoing	
Continue to implement operation and maintenance programs and best management practices to reduce/prevent pollutant runoff from ACHD activities/operations	Maintenance	Environmental	Ongoing	
Continue to conduct annual pollution prevention and good housekeeping training for maintenance employees	Environmental	Human Resources	Ongoing	
Continue to implement street sweeping program	Maintenance	Environmental	Ongoing	
Continue to implement storm drain cleaning	Maintenance	Environmental	Ongoing	
Develop prioritization mapping options that identify areas that discharge to the MS4 or directly discharge to waterways	Environmental	Maintenance	12/31/22	
Evaluate Sweeping and Inlet and Catch Basin Cleaning programs to establish what is needed to revise frequency and target inspection to specific areas of the MS4	Environmental	Maintenance	12/31/22	
Continue to update and maintain the MS4 map	Environmental	GIS	Ongoing	

5.6 Industrial and Commercial Stormwater Discharge Management

This section describes activities ACHD conducts or will implement to fulfill Phase I Permit requirements (<u>MS4 Permit 3.6</u>) for pollution prevention and good housekeeping practices.

5.6.1 Permit Requirements

To reduce the discharge of pollutants from industrial and commercial operations, ACHD must:

- ✓ Conduct educational and/or enforcement efforts to reduce the discharge of pollutants from those industrial and commercial locations which are considered to be significant contributors of phosphorus, bacteria, temperature, and/or sediment to receiving waters (3.6).
- ✓ Maintain an inventory of industrial and commercial facility/activity within the Permit Area (3.6.2).
- ✓ Prioritize and inspect selected industrial and commercial facilities/activities which discharge to receiving waters or the MS4.

5.6.2 Current Compliance Activities

The industrial and commercial inventory and inspection tracking activities include:

- Coordination with the City of Boise or the City of Garden City as appropriate to maintain a list of
 commercial and industrial facilities, conduct site inspections, and provide educational resources
 as needed within their jurisdictions.
 - The City of Boise and the City of Garden City each maintain commercial and industrial facility inventories to track the operational uses and environmental compliance of businesses operating within their respective jurisdictions.

- Staff review new development and redevelopment applications and conduct field verification through daily operations to populate their industrial and commercial facility inventories.
- Facility inspection data are tracked through the commercial and industrial facility inventory.
- The updated commercial and industrial facility inventories are submitted electronically to ACHD annually.
- Evaluating and prioritizing the commercial and industrial facilities for inspection based on the following prioritization schedule:
 - Connection to the MS4
 - Environmental sensitive industries⁷
 - Compliance status
 - Watershed of interest
 - Most recent inspection greater than eight years.

ACHD's jurisdiction is limited to public right of way and does not include private property. To implement the commercial and industrial monitoring program, ACHD contracts with the City of Boise and the City of Garden City (The Cities) to track and maintain a comprehensive list of commercial and industrial facilities within their jurisdictions. ACHD applies a prioritization methodology to the facility inventories provided by The Cities to rate the individual properties for inspection. The Cities conducts the commercial and industrial facility inspections, provides educational materials, and issues corrective actions as appropriate on ACHD's behalf. The Cities develop inspection reports for ACHD to include site observations, maps, and photo documentation. This work cooperative will be formalized into updated Interagency Agreements with the respective cities beginning with the development of draft agreements in 2022.

5.6.3 Planned 2022 Compliance Activities

ACHD conducts the Permit-required activities to limit stormwater pollution potential and will continually optimize the industrial and commercial stormwater management program to maintain compliance with the current stormwater permit. Table 20 presents the work plan for 2022 SWMP activities related to industrial and commercial stormwater management.

Table 20. 2022 Industrial and Commercial Stormwater Management			
Task Description	Lead ACHD Department	Supporting ACHD Department	Time Frame
Coordinate with the City of Boise and City of Garden City to update and share the updated industrial and commercial facility inventory.	Environmental	N/A	10/1/22
Develop a draft interagency agreement between ACHD and the City of Boise and the City of Garden City for the Inspection, Monitoring and Enforcement of Industrial and Commercial High-Risk Runoff	Legal	Environmental	12/30/2022
Contract with relevant cities to assist ACHD with industrial and commercial stormwater management requirements	Environmental	N/A	Ongoing

⁷ <u>https://www.partneresi.com/sites/default/files/sba_sop_50_10_5j_naics_codes.pdf</u>

Table 20. 2022 Industrial and Commercial Stormwater Management			
Task Description	Lead ACHD Department	Supporting ACHD Department	Time Frame
Prioritize the industrial and commercial facility inventory for annual inspections	Environmental	N/A	Ongoing

Section 6 References

- Ada County. Code of Ordinances. (2021 December 21). Title 5, Ch. 2, Ord. No. 5-2-4-28 https://codelibrary.amlegal.com/codes/adacountyid/latest/adacounty_id/0-0-0-1423
- Ada County Highway District. (2013 May 1). Ada County Highway District Policy Manual. <u>http://www.achdidaho.org/AboutACHD/policyManual.aspx</u>

Ada County Highway District. (2021, April 15). Phase I Monitoring and Assessment Plan.

- California Stormwater Quality Association. (2015, February 15). A Strategic Approach to Planning for and Assessing the Effectiveness of Stormwater Programs (pdf). <u>https://www.casqa.org/resources/effectiveness-assessment/guidance-documents/strategic-approach</u>
- City of Boise. Code of Ordinances. (2019). Title 10, Ch.6, Ord. No.2 https://codelibrary.amlegal.com/codes/boiseid/latest/boise_id/0-0-0-13536
- City of Boise. Code of Ordinances. (2019). Title 9, Ch.14, Ord. No.2 https://codelibrary.amlegal.com/codes/boiseid/latest/boise_id/0-0-0-11723
- City of Garden City. Code of Ordinances. (2021 August 9). Title 4, Ch.14, Ord. No. 5 https://www.codepublishing.com/ID/GardenCity/#!/GardenCity04/GardenCity0414.html#4-14-5
- City of Garden City. Code of Ordinances. (2021 August 9). Title 4, Ch. 15, Ord. No.2 https://www.codepublishing.com/ID/GardenCity/#!/GardenCity04/GardenCity0415.html#4-15-2
- State of Idaho, Ada County. (November 2016). Ada County 2025 Comprehensive Plan (pdf). https://adacounty.id.gov/developmentservices/wp-content/uploads/sites/37/AdaCounty2025.pdf
- State of Idaho, Department of Environmental Quality. (2022). Idaho Administrative Code, *IDAPA* 58.01.02.140.12. <u>https://adminrules.idaho.gov/rules/current/58/580102.pdf</u>
- State of Idaho, Department of Environmental Quality. (October 2020). Idaho's 2018/2020 Integrated Report. https://www2.deq.idaho.gov/admin/LEIA/api/document/download/14890
- State of Idaho, Idaho Legislature. (2022). Idaho Code Title 40. https://legislature.idaho.gov/statutesrules/idstat/title40/
- United States Environmental Protection Agency, Region10. (2021, June 22). NPDES Stormwater Permit, Ada County Highway District MS4, #IDS028185 (pdf). <u>https://www.epa.gov/npdes-permits/npdes-stormwater-permit-adacounty-highway-district-ms4-idaho</u>

Appendix A: Operating Guidelines and Intergovernmental Agreements

AMENDED AND RESTATED OPERATING GUIDELINES

THESE AMENDED AND RESTATED OPERATING GUIDELINES ("Amended and Restated Guidelines") are adopted this ______ day of ______, 2022, by the CITY OF BOISE CITY, hereinafter called BOISE CITY; ADA COUNTY HIGHWAY DISTRICT, hereinafter called ACHD; ADA COUNTY DRAINAGE DISTRICT NO. 3, hereinafter called DD3; IDAHO TRANSPORTATION DEPARTMENT, DISTRICT 3, hereinafter called ITD; BOISE STATE UNIVERSITY, hereinafter called BSU; and the CITY OF GARDEN CITY, hereinafter called GARDEN CITY; collectively the "Permittees."

WHEREAS, the National Pollutant Discharge Elimination System, the provisions of the Clean Water Act, 33 U.S.C. § 151 et seq, as amended by the Water Quality Act of 1987, Public Law 100-4 ("Clean Water Act"), and the Rules Regulating the Idaho Pollutant Discharge Elimination System Program (IDAPA 58.01.25) ("Rules and Regulations") all govern the regulations for applications and permits for stormwater discharges; and

WHEREAS, these Rules and Regulations are designed to control pollutants associated with stormwater discharges through the use of the National Pollutant Discharge Elimination System ("NPDES"), which allows the lawful discharge of stormwater into the waters of the United States; and

WHEREAS, these Rules and Regulations are designed to require NPDES permits for discharges from Municipal Separate Storm Sewer Systems (MS4s) from a system-wide or jurisdiction-wide basis; and

WHEREAS, the Permittees received a NPDES Permit (Permit #IDS-02756-1) effective February 1, 2013, and administratively extended until October 1, 2021; and

WHEREAS, on July 1, 2021, the Idaho Department of Environmental Quality (IDEQ), with delegated authority from the U.S. Environmental Protection Agency ("EPA"), gained primacy and became responsible for issuing MS4 stormwater permits and assuring compliance with all permit requirements; and

WHEREAS, the Permittees received Idaho Pollutant Discharge Elimination System ("IPDES") Permit IDS027561 (the "Permit"), effective October 1, 2021;

WHEREAS, the Permit requires that the Permittees must maintain an intergovernmental agreement describing each organization's respective roles and responsibilities related to this permit;

WHEREAS, pursuant to the Permit, any previously signed intergovernmental agreement may be updated, as necessary, in accordance with this Permit. Any such agreement must be described in the Permittees' Stormwater Management Program ("SWMP") Document, and a copy of the agreement between the Permittees must be available to IDEQ upon request; and WHEREAS, the Permittees entered into that certain *Intergovernmental Agreement for Roles and Responsibilities Under the NPDES Permit* ("Agreement"), dated June 26, 2013, which generally outlined the process by which the Permittees shall fund certain activities in compliance with the Permit;

WHEREAS, the Permittees previously entered into those certain Operating Guidelines dated October 17, 2006, which governed the Permittees' activities under a previous intergovernmental agreement dated October 21, 2001, based on the previous NPDES permit originally effective November 29, 2000.

WHEREAS, the Permittees have updated the intergovernmental agreement based on the Permit effective October 1, 2021, and this Amended and Restated Intergovernmental Agreement was executed on ______, 2022; and

WHEREAS, the Permittees, as public agencies, all have varying procedures concerning the setting of those entities' budgets and the time frame for the approval of those budgets;

WHEREAS, the Permittees desire these Amended and Restated Guidelines (including certain budget procedures) to guide the Permittees through the activities in which all share in the cost and/or administration of the program and to coincide with the new amendments and revisions under the Amended and Restated Intergovernmental Agreement;

NOW, THEREFORE, the Permittees agree as follows:

Section 1. These Amended and Restated Guidelines hereby repeal, replace, and supersede any previous guidelines, including those 2006 guidelines as described herein.

Section 2. The Permittees concur with the following process for:

A. The annual budget of costs to be shared by the Permittees pursuant to the Permit and the Amended and Restated Intergovernmental Agreement; and

B. The approval of activities and expenses.

Section 3. <u>Schedule and Process</u>:

Each January of each year of the Permit, the lead Permittee entity for the activities to be shared by all of the Permittees, shall present at a scheduled Permittee meeting, a proposed budget outlining the costs for the upcoming year as well as providing a comparison for similar activities within the previous year.

The Permittees shall consider such budget, provide comment, and the budget shall be approved at the Permittee meeting held in April of each year, upon motion and approval by a majority of the Permittees present.

Section 4. <u>Program Administration and Management:</u>

These Amended and Restated Guidelines identify four (4) categories for which the Permittees have agreed to apportion costs for those activities, including Program Administration and Management. By adoption of these Amended and Restated Guidelines, the Permittees have determined that the Program Administration and Management category should include those activities for which the Permittees are apportioning costs for certain planning and Permit compliance not related to any individual Permittee compliance activity. Such activities include the Permit reapplication process and required Permit document preparation.

Permittees also agree to consider other subcategories for which apportionment of costs would be appropriate under the Permit and to process budget requests and approvals. Any additional subcategories shall require an amendment to these Amended and Restated Guidelines.

Section 5. <u>Budget Revisions</u>:

Throughout the Permit year, revisions to the approved budget to reallocate funds among categories and classifications or to reduce the approved budget may be considered by the Permittees. Such reduction or reallocation shall be reviewed and approved by the Permittees' representatives at a duly noticed Permittee meeting. No overall increase in the budget or additional funds shall be authorized unless approved by the Permittees, upon motion and approval by a majority of the Permittees present, and each Permittee has budget authority for such revisions.

Section 6. <u>Permittee Budget Approval</u>:

Nothing herein shall affect the process or authority of each Permittee to obtain from its governing body the necessary approval for the budget as required by each Permittee's governing laws, regulations, or policy and each Permittee's own activities for which it is responsible under the Permit.

Section 7. <u>Operating Guidelines</u>:

Generally, the Permittee meetings shall be managed in such a manner to achieve the objectives of the Permit and the NPDES program. For those items previously approved by way of the budget, the lead Permittee shall provide sufficient notice of such expenditure prior to incurring the obligation. Provided, however, that the Permittees may dispense of this guideline by action taken at a regularly scheduled Permittee meeting. Approval of expenses and approval of certain programs shall occur at a regularly scheduled Permittee meeting, upon motion and approval by a majority of the Permittees present.

Permittee meetings will be conducted on an informal basis facilitated by the ACHD representative. The ACHD representative shall also be responsible for taking and distributing minutes, providing an agenda, and, to the greatest extent possible, forwarding information to the Permittees for consideration at the meeting. Any action to be taken shall be accomplished by motion and vote. To the greatest extent possible, Roberts Rules of Order shall govern the voting process.

Section 8. <u>Effect</u>:

These Amended and Restated Guidelines have been adopted by the Permittees at the Permittee meeting dated ______, 2022. Nothing herein shall be deemed to infringe upon any Permittee's legal authority concerning the expenditure of public funds.

Section 9. <u>Amendment</u>:

These Amended and Restated Guidelines may be amended in writing, upon at least ten (10) days written notice of such amendment to each Permittee provided, however, said notice may be deemed waived by Permittee's written consent. Any amendment shall be approved by majority vote of the Permittees present at the meeting called for such purpose. Updated versions of these Amended and Restated Guidelines shall be included in the Amended and Restated Intergovernmental Agreement as an updated addendum to that document.

ADA COUNTY HIGHWAY DISTRICT

By: _____

Its Permittee NPDES Representative

CITY OF BOISE CITY

CITY OF GARDEN CITY

BOISE STATE UNIVERSITY

By: _____

Its Permittee NPDES Representative IDAHO TRANSPORTATION DEPARTMENT, DISTRICT #3

ADA COUNTY DRAINAGE DISTRICT No. 3

AMENDED AND RESTATED INTERGOVERNMENTAL AGREEMENT FOR ROLES AND RESPONSIBILITIES UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT (NPDES Permit #IDS-027561)

THIS AMENDED AND RESTATED INTERGOVERNMENTAL AGREEMENT ("Amended and Restated Agreement") is entered into this _____ day of ______, 2022, by and among the Ada County Highway District ("ACHD"), the city of Boise City ("Boise City"), city of Garden City ("Garden City"), Boise State University ("Boise State"), the Idaho Transportation Department, District #3 ("ITD"), and Ada County Drainage District No. 3 ("DD3"), individually a "Permittee" and collectively the "Permittees."

I. RECITALS

WHEREAS, this Amended and Restated Agreement is made for the purpose of complying with the National Pollutant Discharge Elimination System, the provisions of the Clean Water Act, 33 U.S.C. § 151 et seq, as amended by the Water Quality Act of 1987, Public Law 100-4 ("Clean Water Act"), and the Rules Regulating the Idaho Pollutant Discharge Elimination System Program (IDAPA 58.01.25) ("Rules and Regulations"); and

WHEREAS, the Rules and Regulations are designed to control pollutants associated with stormwater discharges through the use of the National Pollutant Discharge Elimination System ("NPDES") Municipal Separate Storm Sewer System (MS4) permits which allows the lawful discharge of stormwater into the waters of the United States; and

WHEREAS, the Rules and Regulations are designed to require NPDES permits for discharges from MS4s on a system-wide or jurisdiction wide basis; and

WHEREAS, the Permittees received NPDES Permit #IDS027561, effective February 1, 2013, and administratively extended until October 1, 2021; and

WHEREAS, on July 1, 2021, the Idaho Department of Environmental Quality ("IDEQ"), with delegated authority from the U.S. Environmental Protection Agency ("EPA"), took over primacy for the NPDES MS4 permits in Idaho, and became responsible for the issuing of permits and assuring compliance with all permit requirements; and

WHEREAS, the Permittees received National Pollutant Discharge Elimination System ("NPDES") Permit IDS027561 (the "Permit"), effective October 1, 2021; and

WHEREAS, the Permit requires that the Permittees must maintain an intergovernmental agreement describing each organization's respective roles and responsibilities related to this permit; and

WHEREAS, on June 18, 2013, the Permittees entered into an Intergovernmental Agreement for Roles and Responsibilities under the NPDES Municipal Stormwater Permit outlining roles and responsibilities of the Permittees under the Permit; and

WHEREAS, pursuant to the Permit any previously signed intergovernmental agreement may be updated, as necessary, in accordance with the Permit. Any such agreement must be described in the Permittees' Stormwater Management Program ("SWMP") Document and a copy of the agreement between the Permittees must be available to IDEQ upon request; and

WHEREAS, the Permittees have updated the intergovernmental agreement based on the Permit effective October 1, 2021. This Amended and Restated Agreement shall replace and supersede all previous intergovernmental agreements between the Permittees.

NOW, THEREFORE, the foregoing sets forth the agreement by and among the named Permittees.

II. AGREEMENT

1. PURPOSE OF AMENDED AND RESTATED AGREEMENT

The purpose of this Amended and Restated Agreement is to detail the duties, roles, and responsibilities of the Permittees with respect to compliance with the Rules and Regulations and the requirements set forth in Section 2.5.2, Joint Responsibility and Joint Agreements of the Permit. Each Permittee is individually responsible for Permit compliance related to portions of the MS4 owned or operated solely by that Permittee, or where the Permit requires a specific Permittee to take an action. Each Permittee is jointly responsible for Permit compliance as follows:

a. related to portions of the MS4 where operational or stormwater management control measures implementation authority has been transferred to one Permittee or another in accordance with this Amended and Restated Agreement between the Permittees; and

b. related to portions of the MS4 where Permittees jointly own or operate a portion of the MS4; and

c. related to the submission of reports or other documents required by Parts 3, 5, and 6 of the Permit; and

d. where the Permit requires the Permittees to take an action and a specific Permittee is not named; and

e. other areas as deemed necessary by the Permittees.

2. GENERAL PROVISIONS

a. ACHD, Boise City, Garden City, Boise State, ITD and DD3 are Permittees in the Permit as provided in 40 CFR 122.26.

b. Each Permittee will be responsible for complying with any and all Permit conditions relating to discharges from those parts of the MS4 that it operates and maintains.

c. The Permittees will utilize available monitoring and enforcement mechanisms, in full cooperation with other Permittees, to control the contribution of pollutants from one MS4 to another.

d. Each Permittee to this Amended and Restated Agreement shall assign at least one representative to the Permittee group.

3. STORM WATER MANAGEMENT PROGRAM ROLES AND RESPONSIBILITIES

The roles and responsibilities of each Permittee are as established in the Permit and this Amended and Restated Agreement.

4. **APPORTIONMENT OF COSTS**

A. Program Administration and Management

The Stormwater Management Program Control Measures shall be administered by ACHD as the lead agency. Program administration and management consists primarily of:

1. Preparing the agenda, minutes, and other documents related to the quarterly meetings and special meetings of the Permittees; and

2. Compiling and coordinating material to and from the Permittees for the filing of the annual report and Permit reapplication, as necessary, with IDEQ; and

3. Coordinating the various activities among the Permittees under the Permit.

The Permittees shall reimburse ACHD or the Permittee providing services described in this subsection 4.A. for their share of the program administration costs in the following amounts:

ACHD:	65.3% of the total program administration costs
Boise City:	15.3% of the total program administration costs
Garden City:	7.7% of the total program administration costs
Boise State:	3.9% of the total program administration costs
ITD:	3.9% of the total program administration costs
DD3:	3.9% of the total program administration costs

Program administration shall also include expenses incurred by any Permittee in the drafting, preparation, and completion of certain agreements or other documents specifically related to the collective Permittees' activities required by the Permit, by way of example, but not by way of limitation, this Amended and Restated Agreement. Such expenses shall be shared as stated in this Subsection 4.A. and processed through ACHD as set forth herein. Such expenses shall not include any activity related to any Permittee's own compliance requirements under the Permit.

B. Stormwater Monitoring and Evaluation Program

Monitoring and evaluation required by the Permit shall be conducted by ACHD or its contractor as the lead agency. The monitoring and evaluation program ("Stormwater Monitoring and Evaluation Program") consists primarily of:

1. For the first year of the Permit, preparing an updated Stormwater Outfall Monitoring Plan as part of the first annual report required by Part 6.4.2 of the Permit. The requirements, set forth in Part 6.2.1-6.2.7, for the Stormwater Outfall Monitoring Plan are described in the Permit, and include the monitoring protocol, sampling, testing, reporting, and other activity through a consultant arrangement between ACHD and its selected consultant.

2. Implementing the Stormwater Monitoring and Evaluation Program as approved and adopted by the Permittees.

3. Temperature monitoring in stormwater discharges from the MS4 to the Boise River including assessment units.

4. Wet weather stormwater outfall monitoring according to the Storm Water Outfall Monitoring Plan.

5. Instituting the Americana Subwatershed Monitoring Plan and data reporting requirements.

6. Effectiveness Evaluation of Structural, Non-Structural, and/or Green Stormwater Infrastructure Controls pursuant to Part 6.2.3 of the Permit.

The Permittees shall reimburse ACHD for their share of the Stormwater Monitoring and Evaluation Program costs in the following amounts:

ACHD: 65.3% of the total Stormwater Monitoring and Evaluation Program Cost
Boise City: 15.3% of the total Stormwater Monitoring and Evaluation Program Cost
Garden City: 7.7% of the total Stormwater Monitoring and Evaluation Program Cost
Boise State: 3.9% of the total Stormwater Monitoring and Evaluation Program Cost
ITD: 3.9% of the total Stormwater Monitoring and Evaluation Program Cost
3.9% of the total Stormwater Monitoring and Evaluation Program Cost
3.9% of the total Stormwater Monitoring and Evaluation Program Cost
3.9% of the total Stormwater Monitoring and Evaluation Program Cost

C. Public Education, Outreach, and Involvement Program

Boise City shall be the lead agency for the Public Education, Outreach, and Involvement Program pursuant to this Amended and Restated Agreement. The Public Education, Outreach, and Involvement Program includes the development of an education outreach program as required by the Permit. The Public Education, Outreach, and Involvement Program consists primarily of:

1. Conducting public outreach, education, and public involvement as

described in the NPDES permit; and

2. Assessing the understanding of the relevant messages and adoption of appropriate behaviors by target audiences related to the Public Education, Outreach, and Involvement Program; and

3. Tracking and maintaining records of their education, outreach, and public involvement activities, including a descriptive summary of activities in the annual report; and

4. Once per year, training to local audiences on the requirements for construction operators pertaining to the required construction site controls imposed by the Permittees and training to local audiences on the requirements of permanent stormwater management controls imposed by the Permittees; and

5. Maintaining and updating the Permittees' Partners for Clean Water website found at: <u>https://www.partnersforcleanwater.org/</u>.

The Permittees shall reimburse Boise City for their share of the Public Education, Outreach, and Involvement Program costs in the following amounts:

Boise City:	65.3% of the total Program Cost
Garden City:	15.3% of the total Program Cost
ACHD:	7.7% of the total Program Cost
Boise State:	3.9 % of the total Program Cost
ITD:	3.9 % of the total Program Cost
DD3:	3.9 % of the total Program Cost

D. IPDES Stormwater Fee

Boise City is charged IPDES permit fees to support implementation of IPDES program initiatives at the Lander Street Water Renewal Facility and the West Boise Water Renewal Facility. Boise City has estimated the proportionate cost of this IPDES permit fee attributable to stormwater is 1.28% of the total IPDES permit fee. The Permittees have initially agreed to share this cost equally at 17% per Permittee. However, this allocation is subject to change by the Permittees and may be allocated similarly to the other costs discussed in this Section II.4. of the Amended and Restated Agreement. Should the Permittees unanimously agree on a different allocation of these IPDES permit fees, the Permittees shall agree to such amendment in writing.

E. Timely Payments

All amounts due and owing for the costs outlined in this Section II.4. shall be paid within forty-five (45) days of invoice date by each respective Permittee.

F. Annual Review

The allocated percentages of the Permittees' charge shall be reviewed upon an annual

basis and if necessary modified.

G. Operating Guidelines and Annual Budget

The Permittees have previously adopted a set of Operating Guidelines ("Guidelines") in July 2014. The Operating Guidelines have since been amended to reflect updates in process and procedure. A copy of the Amended and Restated Operating Guidelines are attached hereto as Addendum No. 1. The Guidelines address the process by which the annual budget is prepared, reviewed, and approved by the Permittees. In addition, the Guidelines also address the manner in which the Permittee meetings are conducted, and action is taken by the Permittees. The Guidelines may be amended as set forth therein and will be included in this Amended and Restated Agreement as a new addendum.

5. TERMINATION

Any Permittee under this Amended and Restated Agreement shall have the right to withdraw and terminate its responsibilities under this Amended and Restated Agreement by serving written notice upon all Permittees in the time and manner described herein. Such written notice shall be served upon all Permittees no later than the January meeting described in the Operating Guidelines, which meeting provides for the consideration of the budget for the following Permit Year. The written notice shall describe whether the withdrawal is in total for all activities set forth in this Amended and Restated Agreement or whether the withdrawal is limited to certain activities described in this Amended and Restated Agreement. The Permittee seeking withdrawal shall provide the specific reasons for withdrawal and provide proof that such withdrawal has been formally approved by the Permittee's governing body. If the withdrawal is not a total withdrawal, the Permittee shall remain responsible for its share of the allocated costs. In addition, the withdrawing Permittee shall provide the results of any activities or programs it acted as the lead agency on, including the preparation of any plans, reports, results, or record keeping, for inclusion in the Permittees' annual report. Such withdrawal shall be deemed effective the year following the service of the written notice upon the other Permittees.

Notwithstanding the right of a Permittee to withdraw from this Amended and Restated Agreement as described above, any responsibilities set out in the Permit with regard to the withdrawing Permittee shall not be affected by Permittee's withdrawal from this Amended and Restated Agreement.

Should any Permittee to this Amended and Restated Agreement seek to obtain a ruling from IDEQ that said Permittee is not an operator of an MS4 or that it is not subject to the Permit, such Permittee shall provide written notice to the other Permittees simultaneously with the filing of such request to IDEQ. The Permittee seeking such ruling shall provide the other Permittees with all documents filed with IDEQ and shall also provide the other Permittees of the decision or determination of IDEQ. Should the Permittee seeking withdrawal appeal the decision or determination of IDEQ or an appeal is filed by any other interested entity, the Permittee seeking such ruling shall provide the other Permittees with the documents related to said appeal and the decision or determination of the appellate body. Upon a final decision or determination of IDEQ or appellate body finding the Permittee is not required to participate in the Permit, the Permittee

shall be allowed to withdraw from this Amended and Restated Agreement effective the following year after such final decision or determination of IDEQ or an appellate body. The Permittee seeking such ruling shall be responsible for all costs set forth in this Amended and Restated Agreement prior to final withdrawal. Nothing herein shall prevent any other Permittee from participating in the IDEQ or appellate process concerning the request by the Permittee seeking the determination or decision from IDEQ.

In the event of a withdrawal by a Permittee or a final decision or determination by IDEQ or an appellate body, such Permittee's costs as set forth in this Amended and Restated Agreement shall be reallocated among the other Permittees as may be mutually agreed by those other Permittees.

6. MODIFICATION IN WRITING

This Amended and Restated Agreement may be modified or amended in writing and effective when executed by all Permittees.

7. ATTORNEY FEES

Should any Permittee find it necessary to employ an attorney for representation in any action seeking enforcement of any of the provisions of this Amended and Restated Agreement, or to protect its interest in any matter arising under this Amended and Restated Agreement, or to recover damages for the breach of this Amended and Restated Agreement, or to resolve any disagreement in interpretation of this Amended and Restated Agreement, the unsuccessful Permittee(s), in any final judgment entered therein, agrees to reimburse the prevailing party or parties for all reasonable costs, charges, and expenses, including attorneys' fees expended or incurred by the prevailing party or parties in connection therewith and in connection with any appeal, and the same may be included in such judgment.

8. NOTICES AND CONTACTS

Any and all notices required to be given by any of the Permittees hereto shall be in writing and deemed delivered when either: (i) delivered personally, or (ii) sent by fax to the other parties at the fax telephone number as set forth, or (iii) deposited in the United States Mail, certified, return receipt requested, postage prepaid, addressed to the other Permittees at the address as set forth, or such other fax telephone number or mailing address as may be provided by written notice of such change given to the others in the same manner as above provided.

For the purpose of providing contact information under this Amended and Restated Agreement and to provide notice as required, the following are the contacts and addresses of each representative designated by each Permittee: Ada County Highway District: Stormwater Quality Supervisor Ada County Highway District 318 E. 37th Street Garden City, ID 83714 Phone: 208-387-6255 Fax: 208-387-6391 Email: mlowe@achdidaho.org

City of Garden City: Environmental Manager Manager City of Garden City 201 E. 50th Street Garden City, ID 83714 Phone: 208-472-2900 Fax: 208-472-2998 Email: kwallis@gardencity.idaho.org

Idaho Transportation Department, District #3: Environmental Planner, Senior 8150 Chinden Boulevard Boise, ID 83714 Phone: 208-334-8300 Fax: 208-334-8917 Email: greg.vitley@itd.idaho.gov City of Boise: Water Quality Manager City of Boise P.O. Box 500 Boise, ID 83701-0500 Phone: 208-608-7178 Fax: 208-433-5650 Email: kharris@cityofboise.org

Boise State University: Environmental Health Compliance

Boise State University 1910 University Drive Boise, ID 83725 Phone: 208-426-3906

Email: ehs@boisestate.edu

Ada County Drainage District #3: Counsel for Drainage District #3 Elam & Burke P.O. Box 1539 Boise, ID 83701 Phone: 208-343-5454 Fax: 208-384-5844 Email: rpa@elamburke.com

9. ENTIRE AGREEMENT

Except as provided otherwise herein, this instrument and any attachments or addendums hereto constitute the entire agreement among the Permittees concerning the subject matter hereof.

(signatures on following page)

IN WITNESS WHEREOF, the Permittees hereto have caused this Amended and Restated Agreement to be duly executed as of the day and year first above written.

	By:
	President, ACHD Commission
Attest: ACHD Director	
	CITY OF BOISE CITY
	By: Lauren McLean, Mayor
Attest: City Clerk	
	CITY OF GARDEN CITY
	By: John Evans, Mayor
Attest: City Clerk	BOISE STATE UNIVERSITY
	By:
	IDAHO TRANSPORTATION DEPARTMENT, DISTRICT #3
	By:, District Administrator

ADA COUNTY DRAINAGE DISTRICT No. 3

		By:			
		Steve Sweet, Chair			
State of Idaho)				
County of Ada)ss)				
	state of Ida	ho, personally appeared, known or identified to	o me to be the President a	, a Notary and and Director of	
Ada county Highway County Highway Dis		ho executed this instrume ted the same.	nt, and acknowledged to	me that Ada	
			Notary Public for Idaho Commission expires:		
State of Idaho))ss				
County of Ada)				
On this day of Public in and for the	state of Ida	_, 2022, before me, ho, personally appeared _ or identified to me to be t	and the Mavor and City Clerk		
Boise who executed same.		nent, and acknowledged to			

Notary Public for Idaho Commission expires: _____

State of Idaho)
)ss
County of Ada)

On this ____ day of _____, 2022, before me, _____, a Notary Public in and for the state of Idaho, personally appeared _____ and , known or identified to me to be the Mayor and City Clerk of Garden City who executed this instrument, and acknowledged to me that Garden City

executed the same.

Notary Public for Idaho Commission expires:

State of Idaho))ss County of Ada)

On this _____ day of ______, 2022, before me, ____ , a Notary Public in and for the state of Idaho, personally appeared , known or identified to me to be the Vice President, University Affairs, of Boise State University, who executed this instrument, and acknowledged to me that Boise State University executed the same.

State of Idaho

)ss

Notary Public for Idaho Commission expires:

County of Ada

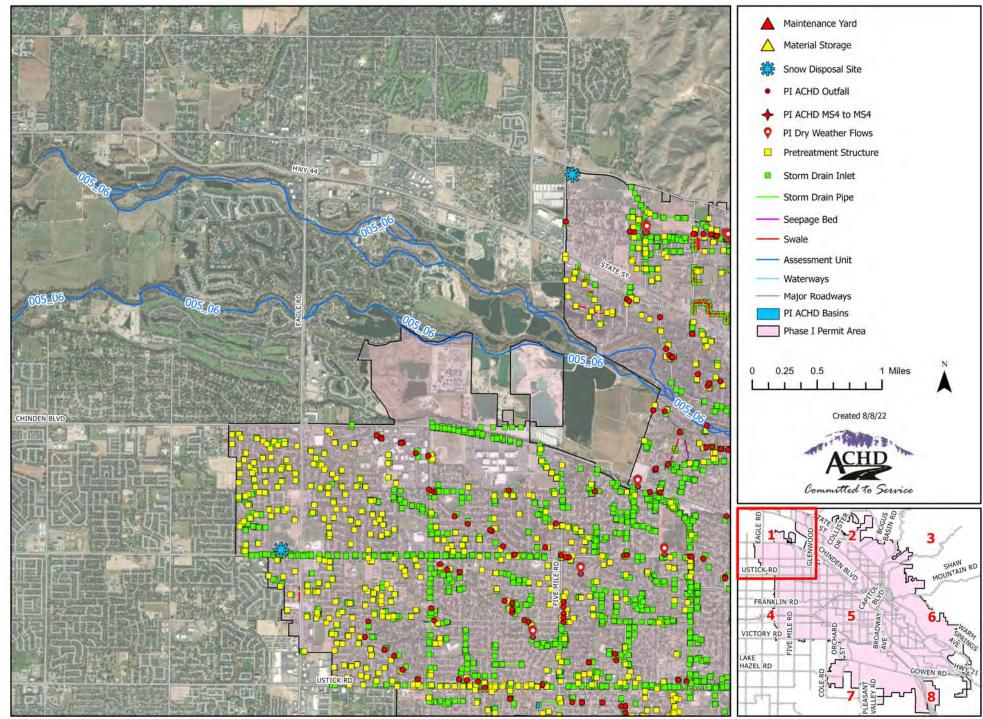
On this _____day of ______, 2022, before me, ______, a Notary Public in and for the state of Idaho, personally appeared ______ known or identified to me to be the ______, of Idaho Department of Transportation, who executed this instrument, and acknowledged to me that Idaho Department of Transportation executed the same.

> Notary Public for Idaho Commission expires:

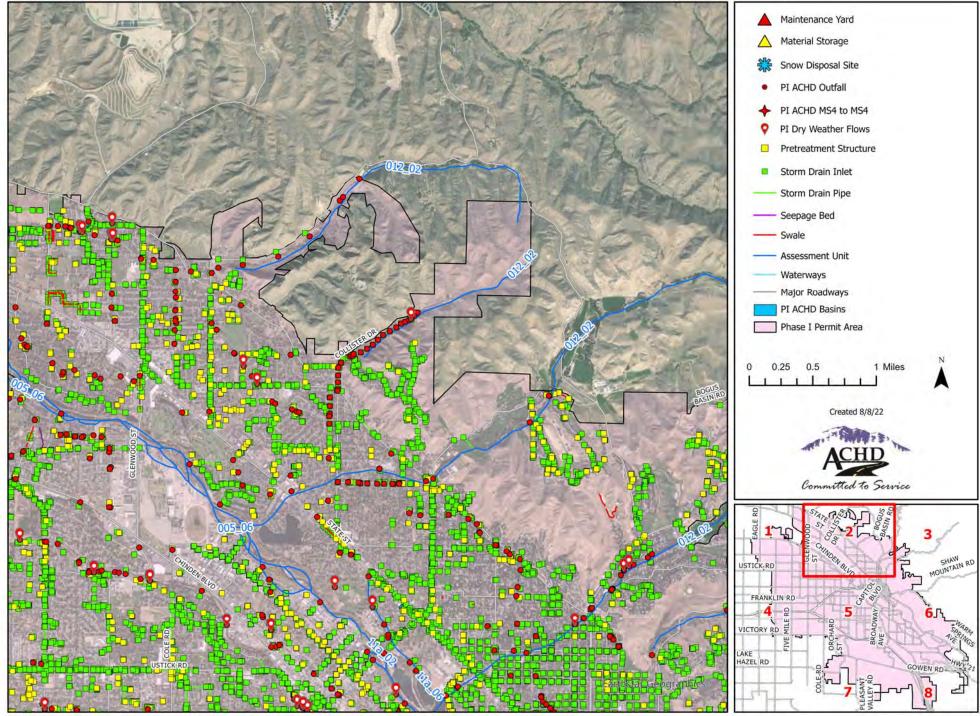
State of Idaho))ss County of Ada)

On this ______day of ______, 2022, before me _______, a Notary Public in and for the state of Idaho, personally appeared Steve Sweet, known or identified to me to be the Chair of Ada County Drainage District # 3, who executed this instrument, and acknowledged to me that Ada County Drainage District #3 executed the same.

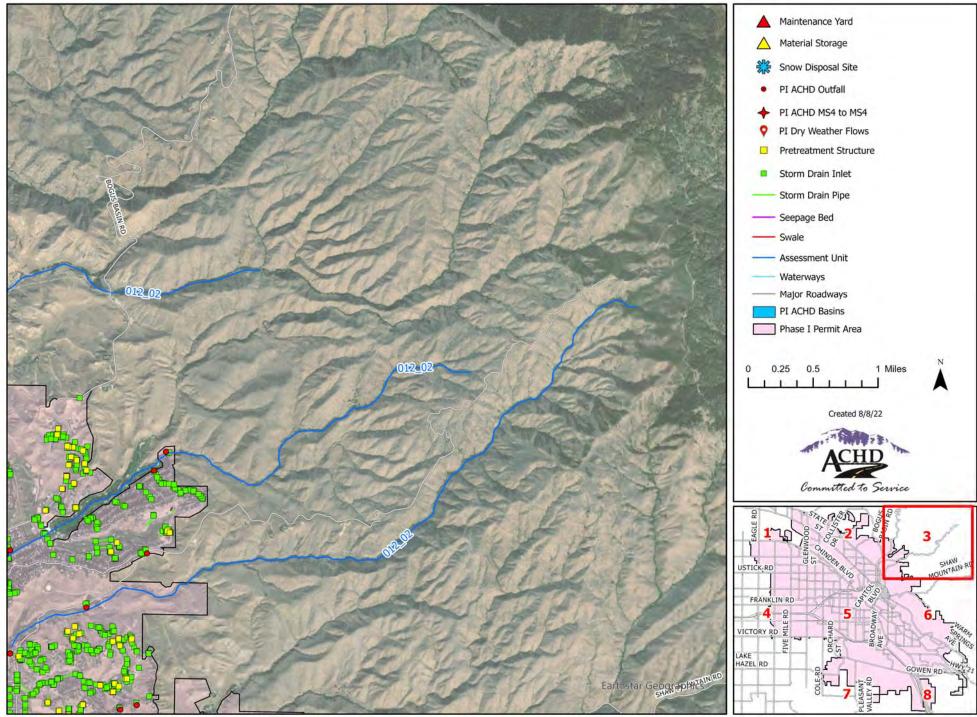
Notary Public for Idaho Commission expires:

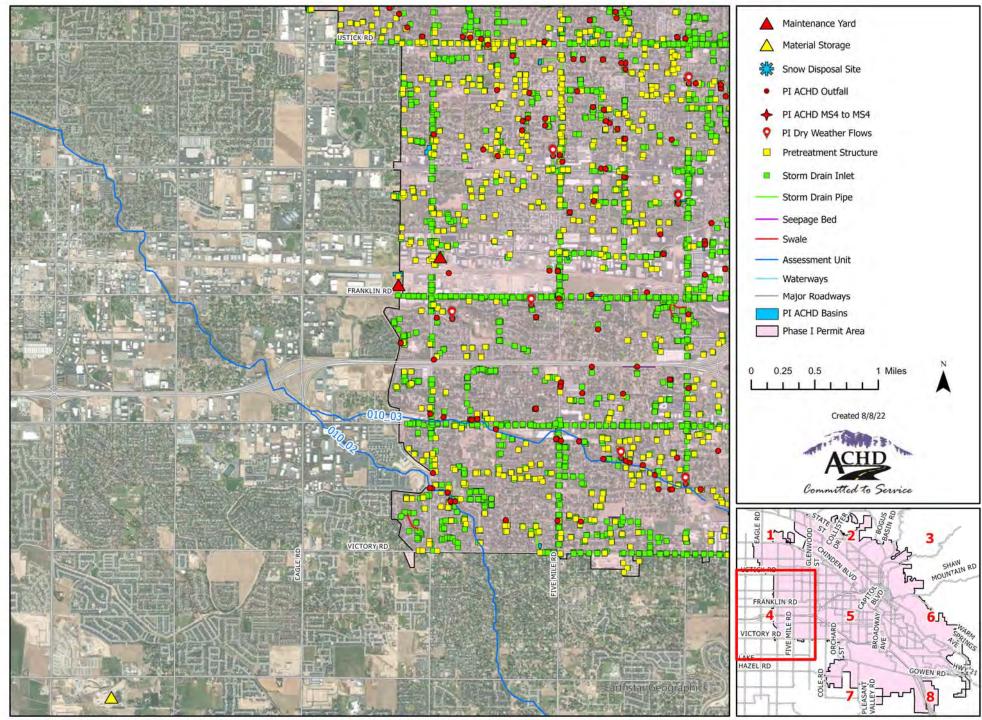

Appendix B: Phase I Receiving Waters and Outfall Ownership

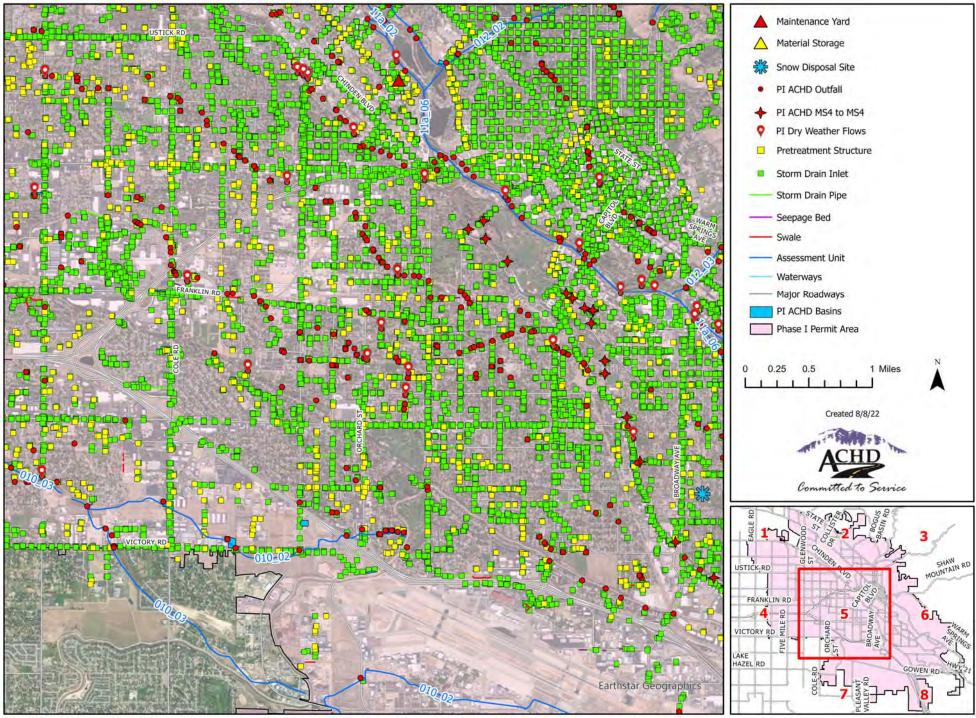
Phase I Permit Area Receiving Waters and Outfall Ownership WY2022

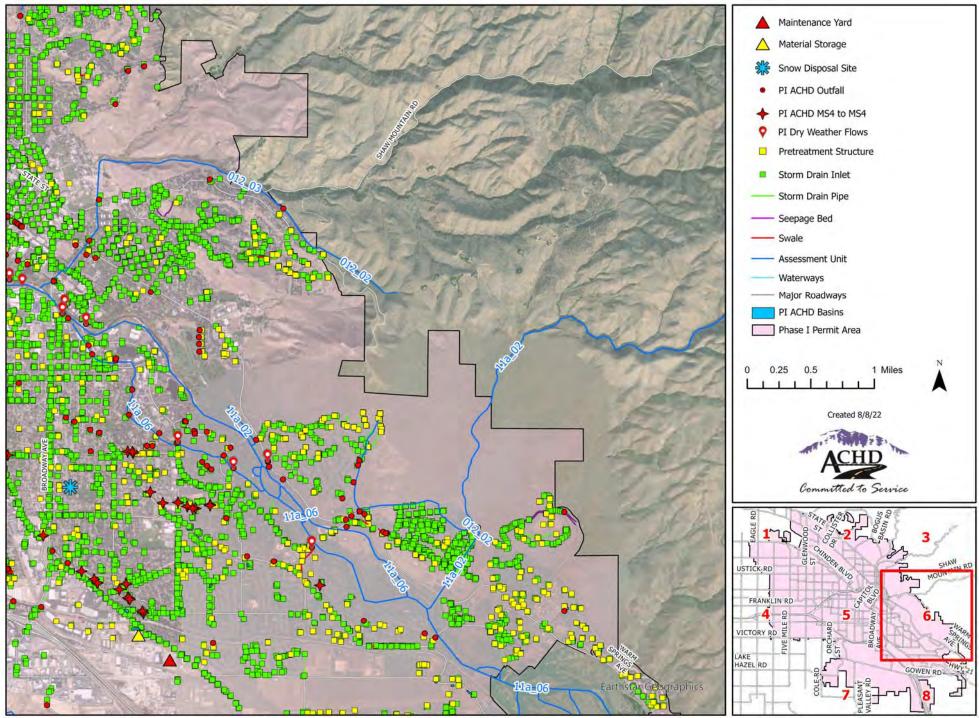

Receiving Water	ACHD Outfall	Non-ACHD Outfall	Outfall Total
Ash Lateral	2	0	2
Bennett Lateral	2	0	2
Boise City Canal	55	2	57
Boise City Canal-drain of	0	4	4
Boise River	40	24	64
Boise Valley Canal	3	4	7
Bubb Canal	7	3	10
Chaffin Drain	1	1	2
Cloverdale Lateral	1	2	3
Cottonwood Creek	3	5	8
Cottonwood Creek-Trib of	2	0	2
Crane Creek	22	2	24
Crane Gulch	2	1	3
Davis Drain	29	17	46
Drain A	0	2	2
Drain B	0	6	6
Drain D	0	3	3
Drain E	0	2	2
Dry Creek Canal	9	14	23
Eaggers Lateral	1	0	1
Eagle Drain	47	11	58
Eagle Drain-lateral of	3	0	3
Eggers Lateral	1	0	1
Eightmile Creek	6	0	6
Electric Light Lateral	3	2	5
Elmore Drain	12	2	14
Eureka Canal	0	8	8
Farmers Lateral	15	8	23
Farmers Union Canal	12	6	18
Finch Lateral	3	0	3
Fitz Lateral	1	0	1
Fivemile Creek	33	19	52
Fivemile Creek - Intermittent	4	0	4
Fivemile Creek-Trib. to	8	3	11
Gallagher Canal	1	0	1
Gruber Lateral	1	0	1
Helm Lateral	1	1	2
Hulls Gulch	8	2	10
Hulls Gulch-Lateral	1	0	1
Huntington Lateral	2	0	2
Hyatt Lateral	1	0	1

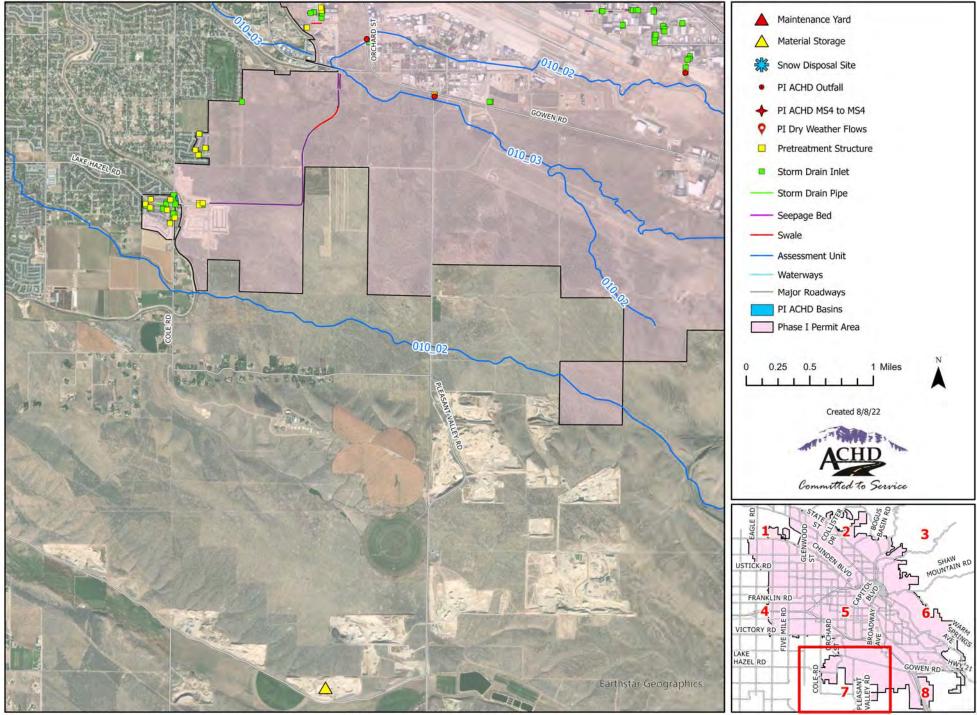
Receiving Water	ACHD Outfall	Non-ACHD Outfall	Outfall Total
Julia Davis Pond	3	10	13
Karnes Lateral	11	4	15
Lake Elmore	1	1	2
Lake Heron	1	3	4
Lake Heron Creek-north fork	0	4	4
Lake Heron Creek-south fork	1	2	3
Lake Heron-lateral of	1	2	3
Lateral 49	1	0	1
Logger Creek	12	15	27
Lowell Drain	1	0	1
McMillan #2 Lateral	2	0	2
McMillan Lateral	7	0	7
Milk Lateral	5	0	5
New York Canal	9	2	11
North Slough	70	15	85
Penitentiary Canal	5	0	5
Penninger Lateral	3	0	3
Pierce Creek	6	0	6
Pierce Gulch	1	0	1
Polecat Gulch	31	0	31
Powell Lateral	1	0	1
Ridenbaugh Canal	79	22	101
Ridenbaugh Ditch	10	4	14
Rust Lateral	4	1	5
Sargent Drain	9	0	9
Seaman Gulch	1	0	1
Settlers Canal	37	9	46
Shavrer Lateral	2	1	3
Snider Lateral	1	0	1
South Slough	16	30	46
Stewart Gulch	8	2	10
Threemile Creek	7	2	9
Threemile Lateral	7	1	8
Thurman Drain	1	0	1
Thurman Mill Canal	17	14	31
Thurman Mill Canal-Lateral	4	0	4
Tuttle Lateral	1	0	1
Unnamed	114	17	131
Walling Creek	1	0	1
Warm Springs Canal	18	13	31
Wilson Fruit Lateral	1	0	1
Zinger Lateral	14	0	14
Total 82	866	328	1194

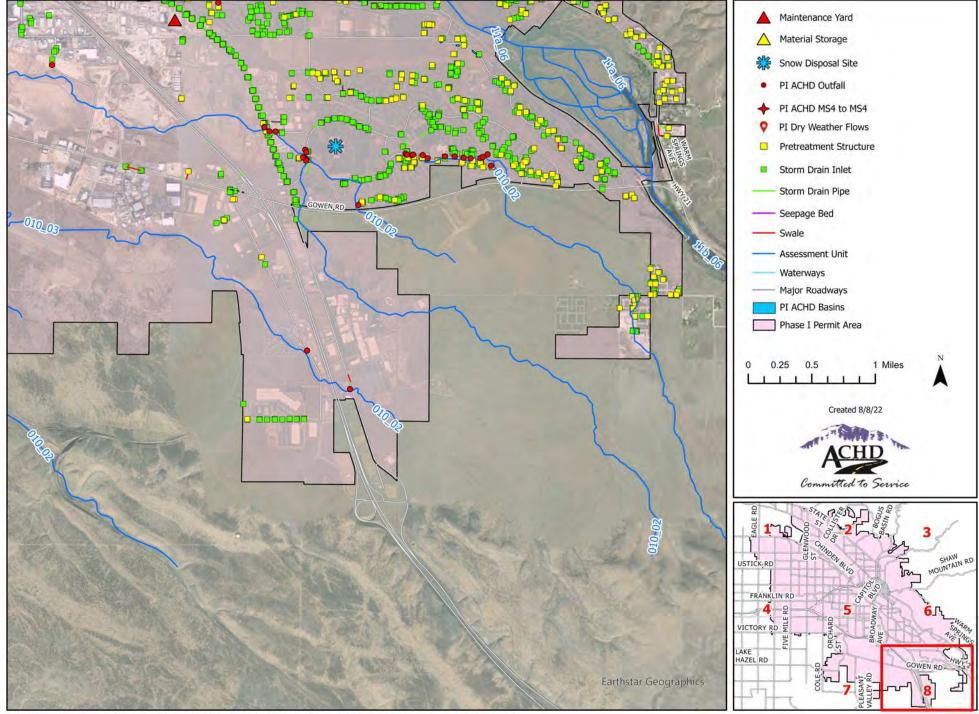

Appendix C: MS4 Stormwater Infrastructure Maps


This Map is a representation of features on the ground and is not survey-grade accurate.


This Map is a representation of features on the ground and is not survey-grade accurate.


This Map is a representation of features on the ground and is not survey-grade accurate.

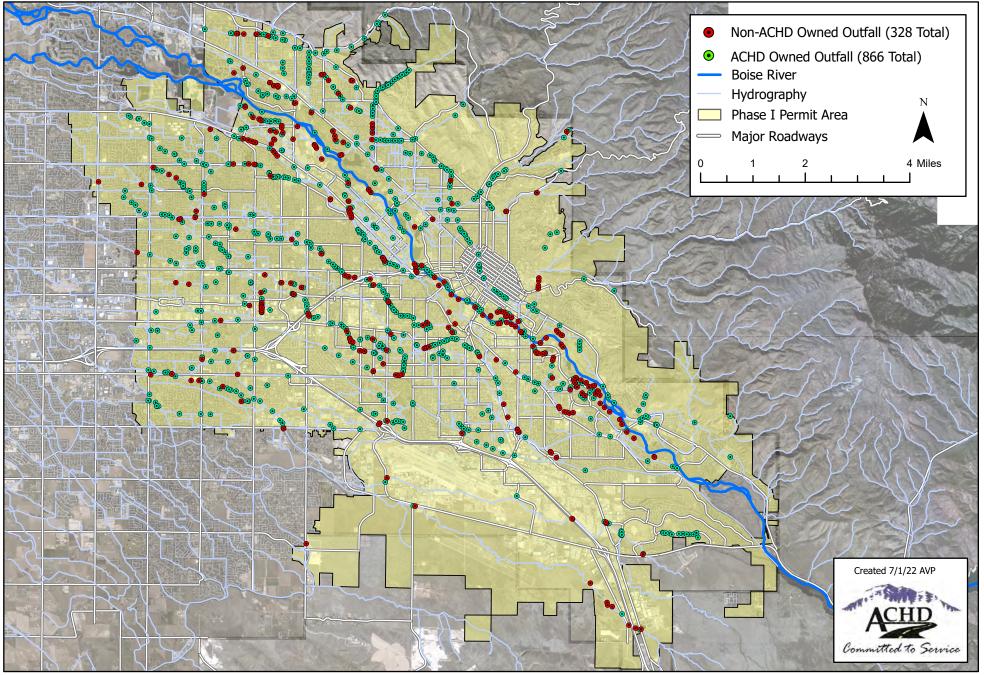

This Map is a representation of features on the ground and is not survey-grade accurate.


This Map is a representation of features on the ground and is not survey-grade accurate.

This Map is a representation of features on the ground and is not survey-grade accurate.

This Map is a representation of features on the ground and is not survey-grade accurate.

This Map is a representation of features on the ground and is not survey-grade accurate.


Table 1. 2022 Integrated Report Assessment Unit and Use Impairments

Receiving Water Body	Assessment Unit	Location	Use Impairment [*]	Assessment Unit Status Report
Boise River	ID17050114SW005_06	Boise River - Veterans Memorial Parkway to Star Bridge	Temperature	Link
	ID17050114SW011a_06	Boise River - Diversion Dam to Veterans Memorial Parkway	Temperature	Link
Fivemile Creek	ID17050114SW010_03	Fivemile Creek - 3rd order	Chlorpyrifos	Link
Tenmile Creek	ID17050114SW008_03	Tenmile Creek - 3rd order below Blacks Creek Reservioir	Chlorpyrifos	Link
Stewart Gulch, Cottonwood, and Crane Creeks	ID17050114SW012_02	Stewart Gulch, Cottonwood and Crane Creeks - 2nd order	Combined Biota/Habitat Bioassessments	Link
Cottonwood Creek	ID17050114SW012_03	Cottonwood Creek - 3rd order (Fivemile Creek to Boise River)	Combined Biota/Habitat Bioassessments	Link

*Use impairments are determined by the Idaho Department of Environmental Quality and have been reported in the Idaho 2022 Integrated Report.

Appendix D: Phase I Outfall Inventory, Map, and Dry Weather Irrigation and Groundwater Flows

Phase I Outfall Inventory October 1, 2021 - July 1, 2022

#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE	PIPE TYPE	LATITUDE	LONGITUDE
				DIAMETER			
1	2n2e01_001	Private	Fivemile Creek	12	PVC CMP	43.532954	-116.16541
2	2n2e06_001 2n2e12 001	Private Private	New York Canal Fivemile Creek	0	Concrete Ditch	43.543632 43.527801	-116.273911 -116.159262
4	2n2e12_001 2n2e12_002	Private	Fivemile Creek	36	Open Concrete Slot	43.526661	-116.157253
5	2n2e12 003	Private	Fivemile Creek	6	PVC	43.52711	-116.159054
6	2n3e06_001	ACHD	Fivemile Creek	24	RCP	43.541163	-116.145624
7	2n3e06_002	Private	Fivemile Creek	12	PVC	43.322814	-116.844449
8	2n3e07_001	Private	Fivemile Creek	12	CMP	43.52074	-116.14838
9	2n3e07_003	ACHD	Fivemile Creek	10	CMP	43.52466	-116.153504
10 11	2n3e07_004 2n3e07_005	Private Private	Fivemile Creek Fivemile Creek	36 10	CMP ADS	43.520459 43.521553	-116.146254 -116.150884
11	2n3e07_005	ACHD, Private	Fivemile Creek	10	CMP	43.520282	-116.146716
13	3n1e01 001	ACHD	North Slough	12	CMP	43.629443	-116.293011
14		ACHD	North Slough	12	PVC	43.629154	-116.289212
15	3n1e01_004	ACHD	North Slough	10	PVC	43.628009	-116.288173
16	3n1e01_005	ACHD	Fitz Lateral	12	RCP	43.627214	-116.274478
17	3n1e01_006	ACHD	North Slough	12	CMP	43.628044	-116.284306
18	3n1e01_007	ACHD	North Slough	10	CMP	43.628041	-116.284129
19 20	3n1e01_008 3n1e01 009	ACHD Private	North Slough Karnes Lateral	10 15	ADS	43.62812 43.627914	-116.285846 -116.280152
20	3n1e01_009 3n1e01_010	ACHD	North Slough	24	RCP	43.629421	-116.294095
22	3n1e01 011	ACHD	North Slough	6	PVC	43.628071	-116.285832
23	3n1e01_012	ACHD	North Slough	12	PVC	43.626928	-116.278471
24	3n1e01_015	ACHD	Eggers Lateral	12	RCP	43.628918	-116.289175
25	3n1e01_016	ACHD, Irrigation	Eaggers Lateral	12	PVC	43.626803	-116.278482
26	3n1e01_017	ACHD	Unnamed	12	CMP	43.629466	-116.277957
27	3n1e01_018	ACHD	Unnamed	12	PVC	43.62944	-116.277993
28 29	3n1e02_001 3n1e02_002	ACHD ACHD	North Slough North Slough	12	CMP CMP	43.632194 43.632125	-116.312362 -116.307832
30	3n1e02_002	ACHD	North Slough	12	CMP	43.631707	-116.30484
31	3n1e02_004	ACHD	North Slough	12	PVC	43.631755	-116.30433
32		ACHD	North Slough	12	RCP	43.619636	-116.307224
33	3n1e02_006	Irrigation	North Slough	0	open ditch	43.630625	-116.301532
34	3n1e02_008	ACHD	South Slough	24	CMP	43.619647	-116.307924
35	3n1e02_009	ACHD	North Slough	12	CMP	43.632136	-116.310906
36 37	3n1e02_010 3n1e02 011	ACHD ACHD	Milk Lateral South Slough	12	PVC CMP	43.621233 43.620426	-116.31454 -116.314123
37	3n1e02_011 3n1e02_012	ACHD	North Slough	10	PVC	43.630827	-116.304226
39	3n1e02_012	ACHD	North Slough	12	PVC	43.629796	-116.294401
40	3n1e02_014	ACHD	North Slough	12	CMP	43.632078	-116.310905
41	3n1e02_031	Irrigation	Settlers Canal	12	CMP	43.63378	-116.317067
42	3n1e02_032	ACHD	Sargent Drain	10	PVC	43.623063	-116.304321
43	3n1e02_033	ACHD	Sargent Drain	12	PVC	43.623072	-116.304115
44 45	3n1e02_034	ACHD	Unnamed	12	CMP CMP	43.623016	-116.296793
45	3n1e02_035 3n1e02_036	ACHD ACHD	Sargent Drain Sargent Drain	12	CMP	43.624847 43.6251	-116.306638 -116.307237
40	3n1e02_030	ACHD	Unnamed	0	S/G trap	43.626376	-116.307562
48	3n1e02_038	ACHD	Sargent Drain	12	CMP	43.626657	-116.309244
49		ACHD, Irrigation	Sargent Drain	12	PVC	43.628468	-116.311765
50	3n1e02_040	ACHD	Sargent Drain	12	PVC	43.624178	-116.305435
51	3n1e03_001	ACHD	North Slough	12	PVC	43.633697	-116.325983
52	3n1e03_002	Irrigation	North Slough	12	CMP	43.633252	-116.323236
53 54	3n1e03_003 3n1e03 004	Irrigation Irrigation	North Slough North Slough	12 30	RCP CMP	43.633229 43.633296	-116.323039 -116.32281
55	3n1e03_004 3n1e03_007	ACHD	Milk Lateral	10	PVC	43.625193	-116.32281
56	3n1e03_008	ACHD	Milk Lateral	10	CMP	43.624515	-116.316755
57	3n1e03_009	ACHD	Milk Lateral	15	CMP	43.625317	-116.319503
58	3n1e03_010	ACHD	Settlers Canal	18	CMP	43.625019	-116.320295
59	3n1e03_011	ACHD	South Slough	8	PVC	43.620955	-116.324265
60	3n1e03_012	ACHD	South Slough	12	CMP	43.623412	-116.334284
61	3n1e03_013 3n1e03 014	ACHD	South Slough Settlers Canal	8	RCP CMP	43.621524	-116.326115
62 63	3n1e03_014 3n1e03_015	ACHD ACHD	Settlers Canal	12	СМР	43.623959 43.628237	-116.320388 -116.3193
64	3n1e03_015	ACHD	Milk Lateral	12	PVC	43.62854	-116.324364
65	3n1e03_017	ACHD	South Slough	36	RCP	43.621049	-116.315621
66		ACHD, Private	Sargent Drain	12	RCP	43.632505	-116.32194
67	3n1e03_019	ACHD	Sargent Drain	12	RCP	43.632467	-116.321939
68	3n1e04_001	Irrigation	South Slough	18	PVC	43.623973	-116.339084
69	3n1e10_001	Private	Cloverdale Lateral	12	CMP	43.615289	-116.319308

70 Selet0.003 Protect Concredic lateral 6 PVC 44.007981 115.3199 71 3hel10.004 ACHD Grader lateral 18 CVP 44.007981 115.3199 72 3hel10.004 ACHD Grader lateral 18 AVP 43.00796 115.3144 74 Shel10.007 ACHD Setters Canal 18 PVC 44.00794 115.1444 74 Shel10.007 ACHD Setters Canal 18 PVC 44.00794 115.1507 75 Shel11.002 ACHD South Storgh 12 K/P 44.00544 115.5097 78 Shel11.002 ACHD Concridia Lateral 12 K/P 44.01647 115.5084 79 Shel11.002 ACHD Concridia Lateral 12 K/P 44.01647 115.5084 79 Shel11.002 ACHD Relevang/ Canal 18 K/P 44.01647 115.5084 79 Shel11.002 ACHD Relevang/ Canal 18 K/P 44.01647 115.5084 115.5086	#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
72 3 Intel 0.00 ACHO Setter Local 6 CMP 43.07787 115.320 73 3 Intel 0.06 ACHO Setter Caral 8 ADS 43.07787 115.320 74 3 Intel 0.07 ACHO Setter Caral 8 ADS 43.07787 115.3126 75 3 Intel 0.07 ACHO Setter Caral 3 APC 43.07787 115.3126 76 3 Intel 0.07 ACHO Setter Caral 24 PVC 43.07787 115.3126 78 3 Intel 1.001 ACHO Setter Caral 24 PVC 43.07787 115.3297 79 3 Intel 1.001 ACHO Control Samphone 12 RVP 43.01872 115.3297 80 3 Intel 1.007 ACHO Roterbased Caral 13 RVC 43.01872 115.3298 81 3 Intel 1.007 ACHO Find Lateral 15 SVP 43.015737 115.3298 81 3 Intel 1.007 ACHO Find Lateral	70	3n1e10 002	Private	Cloverdale Lateral		PVC	43.615693	-116.324262
72 Ance A		-						-116.315947
P2 Antel0_007 ACND Settlers Canal P4 PVC 41.807924 -1115.1144 P3 Sule10_006 ACND Refers Canal 24 PVC 43.607924 -1115.1144 P3 Sule11_001 ACND Refers Farmin 12 RCP 43.60893 -1115.908 P3 Sule11_001 ACND South Sough 24 RCP 43.60893 -1115.908 P3 Sule11_001 ACND South Sough 24 RCP 43.60893 -1115.908 P4 Sule11_008 ACND Coverdate Larent 12 PVC 43.60897 -1112.901 P3 Sule11_019 ACND Frech Lateral 13 PVC 43.61893 -1112.901 P3 Sule11_011 ACND Frech Lateral 13 PVC 43.61893 -115.202 P3 Sule11_011 ACND Frech Lateral 12 PVC 43.61862 -115.202 P3 Sule12_010 ACND Sule12_012 <t< td=""><td></td><td></td><td></td><td></td><td>18</td><td>CMP</td><td></td><td>-116.332032</td></t<>					18	CMP		-116.332032
75 Subcli 000 ACHO Setters Canal 24 PVC 44.807927 -118.3144 77 3-1611_001 ACHO Ridenbaugh Canal 1.2 RCP 43.60584 -118.3045 78 3-1611_003 ACHO South Stough 1.2 RCP 43.60893 -118.3042 78 3-1611_003 ACHO South Stough 1.2 RCP 43.60863 -118.3042 78 3-1611_003 ACHO Coher diale Literal 1.2 CCP 43.60253 -118.2043 81 3-1611_003 ACHO Fold Hamage Canal 1.8 RCP 43.60253 -118.2043 82 3-1611_003 ACHO Finch Largeral 1.3 CVC 43.61514 -112.2045 83 3-1611_013 ACHO Finch Largeral 1.2 PVC 43.61514 -112.6263 84 3-1611_013 ACHO South Stough 1.2 PVC 43.61462 -116.3107 83 3-1611_013 ACHO Unnamed 1.2 PVC 43.61461 -116.3107 83 3	73	3n1e10_006	ACHD	Settlers Canal	8	ADS	43.607906	-116.314438
76 Shirti1_001 ACHD Reference 12 RC2 44.80546 115.3050 78 Shirti1_003 ACHD South Sough 12 RC2 44.18079 115.3080 78 Shirti1_003 ACHD South Sough 12 RC2 44.18079 115.3085 80 Shirti1_003 ACHD Courth Sough 24 RC7 43.8186 116.3081 81 Shirti1_003 ACHD Robrauch Achd 118 RC7 43.8186 116.3081 81 Shirti1_003 ACHD Robrauch Achd 113 PVC 43.85507 110.2297 85 Shirti1_010 ACHD Frech Larrer 12 PVC 43.85538 111.3297 85 Shirti1_011 ACHD South Sough 12 PVC 43.85538 111.3297 86 Shirti1_014 ACHD Unnamed 12 PVC 43.64527 115.3972 87 Shirti1_014 ACHD Unnamed 12 <td< td=""><td>74</td><td>3n1e10_007</td><td>ACHD</td><td>Settlers Canal</td><td>18</td><td>PVC</td><td>43.607924</td><td>-116.314398</td></td<>	74	3n1e10_007	ACHD	Settlers Canal	18	PVC	43.607924	-116.314398
77 sniell_003 ACHO Sourt Stugh 12 RCP 43.60893 -116.2002 78 sniell_004 ACHO Sourt Stugh 24 RCP 43.61866 416.3095 78 sniell_005 ACHO Cowr Stugh 24 RCP 43.61866 416.3095 83 sniell_005 ACHO Clowr Stugh 12 CVP 43.60528 116.3093 83 sniell_005 ACHO Finchitteral 15 SWP 43.61583 -116.2051 84 sniell_005 ACHO Finchitteral 15 SWP 43.61583 -116.2052 86 sniell_010 ACHO Finchitteral 15 SWP 43.61583 -116.2050 87 sniell_013 ACHO Unmemed 12 PVC 43.61583 -116.2051 88 sniell_013 ACHO Unmemed 12 PVC 43.61581 -116.2052 98 sniell_020 Private Sourt Stugh 15 CM				Settlers Canal			43.607927	-116.314468
78 antell_004 ACHD South Slough 12 RCP 43.81879 -118.2042 80 antell_005 ACHD Cloverade Lateral 12 CMP 43.8186 -118.20393 81 antell_007 ACHD RikerBaugh Cmail 18 RCP 43.01251 -118.20345 81 antell_007 ACHD RikerBaugh Cmail 18 RCP 43.00507 111.20345 81 antell_008 Private Chaffin Grain 12 RVP 43.01531 111.80357 83 antell_011 ACHD Front Lateral 12 RVP 43.01635 -113.012 83 antell_012 ACHD Thom Lateral 12 RVP 43.016351 -113.027 83 antell_014 ACHD South Sough 10 RVP 43.01571 -113.2076 93 antell_024 ACHD South Sough 10 CMP 43.01571 -118.2076 94 antell_03 ACHD South Sough				, i i i i i i i i i i i i i i i i i i i				-116.300505
79 nieli 005 ACHO South Bough 24 RCP 44.8.1886 -116.2005 80 Inicial 005 ACHO Roberbaugh Canal 12 CAP 43.60228 -116.2005 81 Inicial 008 Private Chaffin Drain 12 PVC 43.60527 -116.2005 82 Inicial 008 Private Chaffin Drain 12 PVC 43.61573 -116.2005 84 Inicial 010 ACHO Frinch Literal 15 PVC 43.61571 -116.2005 85 Inicial 012 ACHO Frinch Literal 12 PVC 43.61568 -116.3007 86 Inicial 014 ACHO Untarmed 12 PVC 43.61501 -116.2005 98 Inicial 024 ACHO Untarmed 12 PVC 43.61501 -116.2005 98 Inicial 024 ACHO South Sough 0 Operand 43.61501 -116.2005 98 Inicial 016 ACHO South Sough								-116.29809
80 n1=11_007 ACHD Clowrdae Lateral 12 CAP 43.61231 -11.623642 81 3n1=11_007 ACHD Ridenbaugh Canal 12 PVC 43.60307 -11.623642 82 3n1=11_009 ACHD Finch Lateral 15 SMP 43.613531 -11.62365 84 3n1=11_010 ACHD Finch Lateral 12 CMP 43.61367 -11.62367 85 3n1=11_011 ACHD Finch Lateral 12 CMP 43.61865 -11.53042 87 3n1=11_013 Lingston Riderbaugh Canal 22 PVC 43.61862 -11.63042 87 3n1=11_014 ACHD Unmarmed 12 PVC 43.61861 -11.62766 93 3n1=12_001 ACHD South Stough 0 open ritch 43.61461 -116.2766 93 3n1=12_004 ACHD South Stough 12 CMP 43.61461 -116.2766 93 3n1=12_004 ACHD South Stough<		-		-				
Bit Nichl D07 ACHD Ridembagh Canal 18 RCP 43.60228 411.03927 82 Snich D08 Private Chaffin Drim 12 PVC 43.60328 115.2356 84 Snich D01 ACHD Finch Lateral 15 PVC 43.61343 115.2356 85 Snich D01 ACHD Finch Lateral 12 PVC 43.61357 115.2356 85 Snich D02 ACHD Fonch Lateral 12 PVC 43.61357 115.2356 85 Snich D02 ACHD Unnamed 12 PVC 43.61427 116.2376 85 Snich D14 ACHD Unnamed 12 PVC 43.61427 116.23764 92 Snich D03 ACHD South Sough 10 OMP 43.61427 116.23764 93 Snich D03 ACHD South Sough 10 OMP 43.61427 116.23764 94 Snich D03 ACHD South Sough 10 OMP								
Bit Shifeti Open ACHD Finch Lateral 12 PVC 43.60990 110.2920 Bit Shifeti Oth Finch Lateral 15 SMF 43.61994 -110.2926 Bit Shifeti Oth Finch Lateral 15 PVC 43.61994 -110.2927 Shifeti Oth Shifeti Oth Shifeti -110.2927 -111.6111 ACHD Shifeti -110.2927 -111.62101 -110.2927 -111.62101 -110.2927 -111.62101 -110.2927 -111.62101 -110.2927 -111.62101 -110.2927 -111.62101 <								
88 Intell 00 ACHD Finch Lateral 15 SMP 43,61598 116,2957 85 Snitell 011 ACHD Finch Lateral 12 CMP 43,615737 116,2957 85 Snitell 013 ACHD Finch Lateral 12 CMP 43,615737 116,2957 85 Snitell 013 Irrigation Ridenbaugh Canal 24 RCP 43,65038 -116,3007 85 Snitell 013 ACHD Umamed 12 PVC 43,651931 -116,2005 90 Snitell 013 ACHD Umamed 12 PVC 43,651931 -116,2005 91 Snitell 003 ACHD South Stugh 0 openditA 43,6153 -116,2005 92 Snitell 004 ACHD South Stugh 12 CMP 43,61547 -116,2295 93 Snitell 005 ACHD South Stugh 12 CMP 43,61547 -116,2295 94 Snitell 006 ACHD South Stugh 12 CMP 43,61547 -116,2295 95 Snitell 006 Privi								
84 3htell 010 ACHO Finch Lateral 15 PVC 43.615371 116.2956 85 3htell 011 ACHO South Sough 12 PVC 43.615974 116.3957 97 3htell 013 ACHO South Sough 12 PVC 43.61492 116.3070 98 3htell 013 ACHO Unnamed 12 PVC 43.61492 116.3070 99 3htell 014 ACHO Unnamed 12 PVC 43.61493 116.2000 90 3htell 002 ACHO South Sough 0 open ditch 43.6147 116.27664 91 3htell 2002 ACHO South Sough 12 CMP 43.6147 116.27667 93 3htell 2006 ACHO South Sough 12 RCP 43.61497 116.2996 94 3htell 2006 ACHO South Sough 12 RCP 43.61437 116.2997 95 3htell 2006 ACHO South Sough 12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
86 3n.te11_012 ACHD South Sough 12 PVC 43.84895 -116.3020 87 3n.te11_013 ACHD Unnamed 12 PVC 43.846530 -116.3070 98 3n.te11_015 ACHD Unnamed 12 PVC 43.84593 -116.3070 90 3n.te12_002 ACHD South Sough 15 CMP 43.614617 -116.2763 91 3n.te12_003 ACHD South Sough 16 CMP 43.61474 -116.2763 92 3n.te12_006 ACHD South Sough 12 CMP 43.61588 -116.2893 96 3n.te12_006 ACHD South Sough 12 CMP 43.61882 -116.2993 97 3n.te12_008 ACHD Bidenbaugh Canal 12 CMP 43.61841 -116.2993 98 3n.te12_001 Private South Sough 12 RCP 43.608059 -116.2915 99 3n.te12_012 Private South Sough								-116.295766
and etti 013 Irrigation Ridenbaugh Canal 24 RP 43.05080 -116.3007 88 3nieli 014 ACHD Umanned 12 PVC 43.014642 -116.3107 99 3nieli 015 ACHD South Slough 0 open chick 43.01467 -116.2766 91 3nieli 2001 ACHD South Slough 0 open chick 43.0147 -116.2766 92 3nieli 2003 ACHD South Slough 12 CMP 43.01547 -116.2766 93 3nieli 2005 ACHD South Slough 12 CMP 43.01587 -116.2705 94 3nieli 2005 ACHD South Slough 12 CMP 43.01582 -116.2905 96 3niel 2010 Private South Slough 12 CMP 43.0142 -116.2905 97 3niel 2010 Private South Slough 12 Private 30.0112.2017 Private South Slough 12 Private 30.0293 -116.2915 <td>85</td> <td></td> <td></td> <td></td> <td>12</td> <td>CMP</td> <td></td> <td>-116.29568</td>	85				12	CMP		-116.29568
88 3nie11 014 ACHD Unramed 12 PVC 43.614642 -116.3002 90 3nie12 001 ACHD South Sough 15 CMP 43.61453 -116.3002 91 3nie12 001 ACHD South Sough 16 CMP 43.61452 -116.2763 91 3nie12 003 ACHD South Sough 16 CMP 43.61474 -116.2763 93 3nie12 006 ACHD South Sough 12 CMP 43.61588 -116.2793 94 3nie12 006 ACHD South Sough 12 CMP 43.61424 -116.2903 95 3nie12 008 ACHD Ridenbaugh Canal 12 CMP 43.61431 -116.2904 96 3nie12 010 Private South Sough 24 CMP 43.61315 -116.2914 97 3nie12 011 Private South Sough 24 CMP 43.603231 -116.2915 108 3nie12 011 Private South Sough 24<	86	3n1e11_012	ACHD	South Slough	12	PVC	43.618695	-116.30429
B9 3nietil 2015 ACHD Umanned 12 PVC 43.6162 116.3002 90 3nietil 2001 Private South Slough 0 open dich 43.61647 -116.2766 91 3nietil 2003 ACHD South Slough 12 CMP 43.61647 -116.2766 91 3nietil 2004 ACHD South Slough 12 CMP 43.61588 -116.27963 94 3nietil 2005 ACHD South Slough 10 RCP 43.61588 -116.29905 96 3nietil 2008 Private South Slough 12 RCP 43.61820 -116.2903 97 3nietil 2010 Private South Slough 12 RCP 43.61931 -116.2914 98 3nietil 2011 Private South Slough 24 RCP 43.61932 -116.2914 101 3nietil 2013 ACHD South Slough 8 PVC 43.60933 -116.2915 102 3nietil 2013 ACHD Sou	87	3n1e11_013	Irrigation	Ridenbaugh Canal	24	RCP	43.605308	-116.307072
90 3ntel2_001 ACHD South Stough 15 CMP 43.6142 -116.2766 91 3ntel2_003 ACHD South Stough 16 CMP 43.61547 -116.2786 92 3ntel2_004 ACHD South Stough 12 CMP 43.61588 -116.2786 93 3ntel2_006 ACHD South Stough 12 CMP 43.61588 -116.2801 94 3ntel2_006 ACHD Ridenbaugh Canal 12 CMP 43.61342 -116.2904 96 3ntel2_006 ACHD, Ridenbaugh Canal 12 PVC 43.61342 -116.2904 97 3ntel2_010 Private, Inginton South Stough 12 RCP 43.603315 -116.2915 100 3ntel2_011 Private South Stough 12 RCP 43.603316 -116.2915 101 3ntel2_014 Private South Stough 8 PVC 43.608734 -116.2915 102 3ntel2_014 Private South Stough	88	3n1e11_014	ACHD	Unnamed	12	PVC	43.614642	-116.312795
91 31d=12 02 Private South Sough 0 open dich 43.61461 -116.2703 92 31d=12 004 ACHD South Slough 12 CMP 43.61568 -116.2705 94 3n1e12 006 Private South Slough 12 RCP 43.61862 -116.2801 95 3n1e12 006 ACHD Robinsongh 10 RCP 43.6184 -116.2805 96 3n1e12 006 ACHD Rdbinsongh 12 PVC 43.61484 -116.2904 97 3n1e12 009 ACHD Robinsongh 12 PVC 43.61437 -116.2904 98 3n1e12 010 Private South Slough 24 CMP 43.60393 -116.2914 100 3n1e12 O11 Private South Slough 12 CMP 43.60805 -116.2915 101 3n1e12 O11 Private South Slough 8 PVC 43.6086	89	3n1e11_015	ACHD	Unnamed	12	PVC	43.615931	-116.309023
92 3ne122 Oth ACHD South Sough 16 CMP 43.61547 -116.27903 93 3nie12 Obs ACHD South Slough 12 CMP 43.615887 -116.27933 94 3nie12, Obs ACHD South Slough 10 RCP 43.618025 -116.2933 96 3nie12, Obs ACHD Ridenbagh Canal 12 CMP 43.61812 -116.29343 98 3nie12, Obs ACHD Ratinad South Slough 12 PVC 43.61315 -116.29147 99 3nie12, O11 Private South Slough 12 RCP 43.60373 -116.29147 100 3nie12, O12 Private South Slough 14 RCP 43.603743 -116.29157 101 3nie12, O14 Private South Slough 8 PVC 43.608744 -116.29157 102 3nie12, O15 Private South Slough 8 PVC 43.608846 -1116.29152 103	90	3n1e12_001	ACHD	South Slough		CMP	43.61452	-116.275677
93 31e12 Other ACHD South Sough 12 CMP 43.615688 -116.27957 94 31e12.005 ACHD South Sough 10 RCP 43.61587 -116.2401 95 31e12.006 Private South Sough 12 CMP 43.61342 -116.2401 96 31e12.008 ACHD, Rairoad South Sough 12 PVC 43.61342 -116.2401 98 31e12.011 Private South Sough 12 PVC 43.61341 -116.2914 101 3ntel 2.011 Private South Sough 24 CMP 43.60305 -116.29154 102 3ntel 2.014 Private South Sough 24 RCP 43.603765 -116.29155 103 3ntel 2.015 Private South Sough 8 PVC 43.60366 -116.29155 104 3ntel 2.017 Private South Sough 8 PVC 43.60366 -116.29155 105 3ntel 2.014 Private <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>•</td> <td></td> <td>-116.276343</td>				*		•		-116.276343
94 31:12:005 ACHD Sorth Stough 12 RCP 43:615887 -11:6:2812 95 31:612:006 ACHD Ridenbaugh Canal 12 CMP 43:61342 -11:6:2803 96 31:612:008 ACHD Ridenbaugh Canal 12 CMP 43:61342 -11:6:2803 97 31:612:010 Private, Irrigation South Slough 12 RVP 43:613115 -11:6:2814 98 31:612:011 Private South Slough 24 CMP 43:60303 -11:6:2915 100 31:612:012 Private South Slough 24 CMP 43:603731 -11:6:2915 101 31:612:015 Private South Slough 8 PVC 43:608734 -11:6:2915 103 31:612:015 Private South Slough 8 PVC 43:608744 -11:6:2914 104 31:612:017 Private South Slough 8 PVC 43:608948 -11:6:2915 105 31:612:017 Priv				0				
95 3ntel2 006 Private South Slough 10 RCP 43.618025 -116.2935 96 3ntel2 009 ACHD, Ralroad South Slough 12 PVC 43.618025 -116.2914 97 3ntel2 009 ACHD, Ralroad South Slough 12 PVC 43.61812 -116.2914 98 3ntel2 010 Private, ringation South Slough 24 CMP 43.609303 -116.2914 100 3ntel2 012 Private South Slough 24 RCP 43.60059 -116.29154 101 3ntel2 014 Private South Slough 8 PVC 43.60874 -116.29155 103 3ntel2 015 Private South Slough 8 PVC 43.6086 -116.29155 103 3ntel2 016 Private South Slough 8 PVC 43.60896 -116.29155 106 3ntel2 019 Private South Slough 8				•				
96 31n122.008 ACHD Ridenbaugh Canal 12 CMP 43.61342 -116.29145 97 3n1e12.010 Private, irrigation South Slough 12 RVC 43.613145 -116.29147 98 3n1e12.011 Private South Slough 12 RCP 43.60303 -116.29147 100 3n1e12.012 Private South Slough 12 RCP 43.60309 -116.29157 101 3n1e12.014 Private South Slough 24 RCP 43.60374 -116.29157 103 3n1e12.015 Private South Slough 8 PVC 43.60874 -116.29157 105 3n1e12.016 Private South Slough 8 PVC 43.608948 -116.29157 106 3n1e12.018 Private South Slough 8 PVC 43.608948 -116.29157 107 3n1e12.019 Private South Slough 8 PVC 43.612678 -116.29154 108 3n1e12.020 Pr				0				
97 3n1e12 0090 ACHD. Railroad South Slough 12 PVC 43.61141 -116.29144 98 3n1e12 011 Private, Irrigation South Slough 24 CMP 43.60303 -116.29147 100 3n1e12 012 Private South Slough 24 RCP 43.603059 -116.29147 101 3n1e12 014 Private South Slough 24 RCP 43.607713 -116.29147 102 3n1e12 015 Private South Slough 8 PVC 43.607865 -116.29157 103 an1e12 016 Private South Slough 8 PVC 43.608948 -116.29157 104 an1e12 018 Private South Slough 8 PVC 43.609295 -116.29158 107 an1e12 021 ACHD Ridenbaugh Canal 12 RCP 43.61278 -116.29142 103 an1e12 022 ACHD Ridenbaugh Canal				*				
98 3n1c12_010 Private, Irrigation South Slough 18 RCP 43.009303 -116.2914 99 3n1c12_011 Private South Slough 24 CMP 43.608059 -116.2915 101 3n1c12_013 ACHD South Slough 12 RCP 43.60795 -116.2915 102 3n1c12_015 Private South Slough 12 CMP 43.60795 -116.2915 103 3n1c12_015 Private South Slough 8 PVC 43.60894 -116.2915 106 3n1c12_017 Private South Slough 8 PVC 43.608948 -116.2915 107 3n1c12_017 Private South Slough 8 PVC 43.608948 -116.2915 108 3n1c12_020 Private South Slough 8 PVC 43.608948 -116.2915 109 3n1c12_021 ACHD Ridenbaugh Canal 12 RCP 43.61274 -116.2906 1013 3n1c12_022 ACHD		-		0				
99 3ntel2_011 Private South Slough 24 CMP 43.613115 116.2917 100 3ntel2_012 Private South Slough 12 RCP 43.60059 -116.29154 101 antel2_013 ACHD South Slough 24 RCP 43.607713 -116.29155 103 antel2_014 Private South Slough 8 PVC 43.60786 -116.29155 104 antel2_016 Private South Slough 8 PVC 43.60936 -116.29157 106 antel2_017 Private South Slough 8 PVC 43.60926 -116.29157 106 antel2_019 Private South Slough 8 PVC 43.60926 -116.29157 107 antel2_021 ACHD Ridenbaugh Canal 12 RCP 43.61276 -116.27944 110 antel2_022 ACHD Ridenbaugh Canal 12 RCP 43.61276 -116.27944 1111 antel2_027 ACHD				•				
100 3n1e12_012 Private South Slough 12 RCP 45.80059 116.29154 101 3n1e12_013 ACHD South Slough 24 RCP 43.60756 -116.29155 102 3n1e12_015 Private South Slough 8 PVC 43.60765 -116.29155 103 3n1e12_017 Private South Slough 8 PVC 43.60864 -116.29155 106 3n1e12_017 Private South Slough 8 PVC 43.6098945 -116.29155 107 3n1e12_019 Private South Slough 8 PVC 43.609896 -116.29155 108 3n1e12_020 Private South Slough 8 PVC 43.61084 -116.29145 109 3n1e12_021 ACHD Ridenbaugh Canal 12 RCP 43.610245 -116.2935 110 3n1e12_022 ACHD Ridenbaugh Canal 12 RCP 43.61274 -116.27344 1109 3n1e12_024 ACHD			-	· · · · ·				
101 3n1e12_013 ACHO South Slough 24 RCP 48.607713 116.29144 102 3n1e12_014 Private South Slough 12 CMP 43.607955 -116.29155 103 3n1e12_015 Private South Slough 8 PVC 43.608744 -116.29155 104 3n1e12_017 Private South Slough 8 PVC 43.608964 -116.29155 106 an1e12_019 Private South Slough 8 PVC 43.609964 -116.29154 107 3n1e12_020 Private South Slough 8 PVC 43.601244 -116.29154 108 an1e12_021 ACHD Ridenbaugh Canal 12 RCP 43.61274 -116.27944 110 an1e12_023 ACHD Ridenbaugh Canal 12 RCP 43.61274 -116.27944 1113 an1e12_027 ACHD Ridenbaugh Canal 12 RCP 43.611118 -116.27942 113 an1e12_027 ACHD				•				-116.291543
102 3n1e12_014 Private South Slough 12 CMP 43.607965				· · · · ·	24	RCP		-116.291462
104 3n1e12_016 Private South Slough 8 PVC 43.6086 -116.2915 105 3n1e12_017 Private South Slough 8 PVC 43.609348 -116.2915 107 3n1e12_019 Private South Slough 8 PVC 43.60925 -116.2915 108 3n1e12_021 ACHD Ridenbaugh Canal 8 PVC 43.61285 -116.2915 109 3n1e12_021 ACHD Ridenbaugh Canal 12 RCP 43.61285 -116.29392 110 3n1e12_022 ACHD Ridenbaugh Canal 12 RCP 43.61285 -116.27393 112 3n1e12_024 ACHD Ridenbaugh Canal 12 RCP 43.612724 -116.27393 113 3n1e12_025 ACHD Ridenbaugh Canal 12 RCP 43.612724 -116.27394 114 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.60931 -116.27494 115 3n1e12_030 ACHD	102	3n1e12_014	Private	South Slough	12	CMP	43.607965	-116.291559
105 3n1e12_017 Private South Slough 8 PVC 43.609348 -116.2915 106 3n1e12_019 Private South Slough 8 PVC 43.609366 -116.29157 107 3n1e12_020 Private South Slough 8 PVC 43.610184 -116.29157 108 3n1e12_020 Private South Slough 8 PVC 43.610184 -116.29154 109 3n1e12_022 ACHD Ridenbaugh Canal 12 RCP 43.61278 -116.27934 110 3n1e12_023 ACHD Ridenbaugh Canal 12 RCP 43.61274 -116.27934 112 3n1e12_025 ACHD Ridenbaugh Canal 12 RCP 43.61118 -116.27492 113 3n1e12_027 Private South Slough 12 RCP 43.61274 -116.27492 114 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.609359 -116.27492 115 3n1e12_031 Private<	103	3n1e12_015	Private	South Slough	8	PVC	43.608734	-116.291542
106 3n1e12_013 Private South Slough 8 PVC 43.609096 -116.2153 107 3n1e12_020 Private South Slough 8 PVC 43.60134 -116.29145 109 3n1e12_021 ACHD Ridenbaugh Canal 8 PVC 43.61285 -116.27944 109 3n1e12_022 ACHD Ridenbaugh Canal 12 RCP 43.61274 -116.27943 111 3n1e12_023 ACHD Ridenbaugh Canal 12 RCP 43.61274 -116.27934 112 3n1e12_024 ACHD Ridenbaugh Canal 18 RCP 43.61118 -116.27939 114 3n1e12_027 Private South Slough 12 RCP 43.61118 -116.27424 115 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.609395 -116.27424 116 3n1e12_030 ACHD Ridenbaugh Canal 12 PVC 43.609395 -116.27424 117 3n1e12_031 Private	104	3n1e12_016	Private	South Slough	8	PVC	43.6086	-116.291529
107 3n1e12_019 Private South Slough 8 PVC 43.609295 -116.29154 108 3n1e12_021 ACHD Ridenbaugh Canal 8 PVC 43.61285 -116.27932 110 3n1e12_022 ACHD Ridenbaugh Canal 12 RCP 43.61285 -116.27934 111 3n1e12_023 ACHD Ridenbaugh Canal 12 RCP 43.61274 -116.27934 112 3n1e12_024 ACHD Ridenbaugh Canal 12 RCP 43.612724 -116.27940 113 3n1e12_025 ACHD Ridenbaugh Canal 12 RCP 43.61586 -116.27940 114 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.60931 -116.27424 115 3n1e12_029 ACHD Ridenbaugh Canal 12 PVC 43.60931 -116.27432 116 3n1e12_029 ACHD Ridenbaugh Canal 12 PVC 43.600937 -116.27434 118 3n1e12_031 Pri				*				-116.29152
108 3n1e12_020 Private South Slough 8 PVC 43.610184 -116.29145 109 3n1e12_022 ACHD Ridenbaugh Canal 12 RCP 43.61285 -116.27934 111 3n1e12_023 ACHD Ridenbaugh Canal 12 RCP 43.61274 -116.27934 112 3n1e12_024 ACHD Ridenbaugh Canal 12 RCP 43.61252 -116.27940 113 3n1e12_025 ACHD Ridenbaugh Canal 15 RCP 43.61252 -116.27940 114 3n1e12_027 Private South Slough 12 RCP 43.61558 -116.27942 115 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.609911 -116.27424 116 3n1e12_029 ACHD Ridenbaugh Canal 12 PVC 43.6009377 -116.27424 117 3n1e12_031 Private South Slough 8 PVC 43.600258 -116.29144 120 3n1e12_033 Pri				~				-116.291536
109 3n1e12_021 ACHD Ridenbaugh Canal 8 PVC 43.61285 -116.27982 110 3n1e12_022 ACHD Ridenbaugh Canal 12 RCP 43.612678 -116.27942 111 3n1e12_024 ACHD Ridenbaugh Canal 12 RCP 43.612724 -116.27943 112 3n1e12_025 ACHD Ridenbaugh Canal 18 RCP 43.61118 -116.27934 113 3n1e12_027 Private South Slough 12 RCP 43.61118 -116.27932 114 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.609911 -116.27422 116 3n1e12_029 ACHD Ridenbaugh Canal 12 PVC 43.600937 -116.27422 118 3n1e12_031 Private South Slough 8 PVC 43.610065 -116.2944 119 3n1e12_032 Private South Slough 8 PVC 43.610065 -116.2944 120 3n1e12_033 Priva								-116.291547
110 3n1e12_022 ACHD Ridenbaugh Canal 12 RCP 43.612678 -116.27944 111 3n1e12_023 ACHD Ridenbaugh Canal 12 RCP 43.612724 -116.27904 112 3n1e12_024 ACHD Ridenbaugh Canal 18 RCP 43.61252 -116.27904 113 3n1e12_025 ACHD Ridenbaugh Canal 15 RCP 43.61118 -116.27904 114 3n1e12_027 Private South Slough 12 RCP 43.615886 -116.27424 116 3n1e12_029 ACHD Ridenbaugh Canal 12 PVC 43.609395 -116.27424 117 3n1e12_030 ACHD Ridenbaugh Canal 12 PVC 43.600395 -116.27424 119 3n1e12_031 Private South Slough 12 PVC 43.600395 -116.27444 119 3n1e12_032 Private South Slough 8 PVC 43.60065 -116.29144 120 3n1e12_033 P		-		*				
111 3n1e12_023 ACHD Ridenbaugh Canal 12 RCP 43.612724 -116.27936 112 3n1e12_024 ACHD Ridenbaugh Canal 18 RCP 43.61272 -116.27936 113 3n1e12_025 ACHD Ridenbaugh Canal 15 RCP 43.61118 -116.27936 114 3n1e12_027 Private South Slough 12 RCP 43.615886 -116.27426 115 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.609395 -116.27424 116 3n1e12_030 ACHD Ridenbaugh Canal 12 PVC 43.609395 -116.27424 118 3n1e12_031 Private South Slough 8 PVC 43.61065 -116.27444 120 3n1e12_033 Private South Slough 8 PVC 43.61065 -116.27444 121 3n1e12_034 Private South Slough 8 PVC 43.61065 -116.27444 122 3n1e12_035 Privat		_						
112 3n1e12_024 ACHD Ridenbaugh Canal 18 RCP 43.61252 -116.27904 113 3n1e12_025 ACHD Ridenbaugh Canal 15 RCP 43.61118 -116.27904 114 3n1e12_027 Private South Slough 12 RCP 43.615886 -116.27426 115 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.609991 -116.27426 116 3n1e12_030 ACHD Ridenbaugh Canal 12 PVC 43.609395 -116.27426 118 3n1e12_031 Private South Slough 12 PVC 43.610265 -116.27426 120 3n1e12_032 Private South Slough 8 PVC 43.610265 -116.29144 120 3n1e12_033 Private South Slough 8 PVC 43.609174 -116.29144 121 3n1e12_034 Private South Slough 8 PVC 43.609174 -116.29144 123 3n1e12_036 Priv				*				
113 3n1e12_025 ACHD Ridenbaugh Canal 15 RCP 43.611118 -116.27492 114 3n1e12_027 Private South Slough 12 RCP 43.615886 -116.23792 115 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.609911 -116.27426 116 3n1e12_029 ACHD Ridenbaugh Canal 12 PVC 43.609917 -116.27426 117 3n1e12_030 ACHD Ridenbaugh Canal 12 PVC 43.610283 -116.27424 118 3n1e12_031 Private South Slough 8 PVC 43.610283 -116.29144 120 3n1e12_032 Private South Slough 8 PVC 43.609258 -116.29144 121 3n1e12_034 Private South Slough 8 PVC 43.609174 -116.29144 122 3n1e12_035 Private South Slough 8 PVC 43.609144 -116.29144 123 3n1e12_036 Pri								
114 3n1e12_027 Private South Slough 12 RCP 43.615886 -116.28392 115 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.609315 -116.27424 116 3n1e12_029 ACHD Ridenbaugh Canal 12 PVC 43.609395 -116.27424 117 3n1e12_030 ACHD Ridenbaugh Canal 12 PVC 43.609395 -116.27414 118 3n1e12_031 Private South Slough 12 PVC 43.610283 -116.29144 119 3n1e12_032 Private South Slough 8 PVC 43.609276 -116.29144 123 3n1e12_034 Private South Slough 8 PVC 43.609174 -116.29144 123 3n1e12_035 Private South Slough 8 PVC 43.608944 -116.29143 124 3n1e12_037 Private South Slough 8 PVC 43.608944 -116.29142 125 3n1e12_038 Priv								
115 3n1e12_028 ACHD Ridenbaugh Canal 12 PVC 43.609911 -116.27426 116 3n1e12_029 ACHD Ridenbaugh Canal 12 PVC 43.609395 -116.27424 117 3n1e12_030 ACHD Ridenbaugh Canal 12 PVC 43.607977 -116.27424 118 3n1e12_031 Private South Slough 12 PVC 43.61028 -116.29141 120 3n1e12_032 Private South Slough 8 PVC 43.610265 -116.29144 120 3n1e12_033 Private South Slough 8 PVC 43.609258 -116.29144 121 3n1e12_034 Private South Slough 8 PVC 43.60924 -116.29142 122 3n1e12_036 Private South Slough 8 PVC 43.60894 -116.29142 123 3n1e12_037 Private South Slough 8 PVC 43.60884 -116.29142 125 3n1e12_040 Private </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
116 3n1e12_029 ACHD Ridenbaugh Canal 12 PVC 43.609395 -116.27424 117 3n1e12_030 ACHD Ridenbaugh Canal 12 RCP 43.607977 -116.27412 118 3n1e12_031 Private South Slough 12 PVC 43.610283 -116.27442 119 3n1e12_032 Private South Slough 8 PVC 43.610065 -116.29144 120 3n1e12_033 Private South Slough 8 PVC 43.609258 -116.29144 121 3n1e12_034 Private South Slough 8 PVC 43.609174 -116.29144 122 3n1e12_036 Private South Slough 8 PVC 43.609824 -116.29143 124 3n1e12_037 Private South Slough 8 PVC 43.60886 -116.29144 125 3n1e12_038 Private South Slough 8 PVC 43.60885 -116.29143 126 3n1e12_040 Private </td <td></td> <td>-</td> <td></td> <td>· · · · ·</td> <td></td> <td></td> <td></td> <td>-116.274268</td>		-		· · · · ·				-116.274268
117 3n1e12_030 ACHD Ridenbaugh Canal 12 RCP 43.607977 -116.27419 118 3n1e12_031 Private South Slough 12 PVC 43.610283 -116.29144 119 3n1e12_032 Private South Slough 8 PVC 43.600258 -116.29144 120 3n1e12_034 Private South Slough 8 PVC 43.609258 -116.29144 121 3n1e12_034 Private South Slough 8 PVC 43.609144 -116.29144 122 3n1e12_035 Private South Slough 8 PVC 43.608924 -116.29144 123 3n1e12_037 Private South Slough 8 PVC 43.608904 -116.29143 124 3n1e12_037 Private South Slough 8 PVC 43.608859 -116.29144 125 3n1e12_039 Private South Slough 12 CMP 43.608262 -116.29143 126 3n1e12_040 Private<					12			-116.274243
118 3n1e12_031 Private South Slough 12 PVC 43.610283 -116.29144 119 3n1e12_032 Private South Slough 8 PVC 43.610055 -116.29144 120 3n1e12_033 Private South Slough 8 PVC 43.609258 -116.29144 121 3n1e12_034 Private South Slough 8 PVC 43.609174 -116.29144 122 3n1e12_035 Private South Slough 8 PVC 43.609174 -116.29143 123 3n1e12_036 Private South Slough 8 PVC 43.608924 -116.29143 124 3n1e12_037 Private South Slough 8 PVC 43.608804 -116.29144 126 3n1e12_039 Private South Slough 8 PVC 43.60859 -116.29144 127 3n1e12_040 Private South Slough 8 PVC 43.608262 -116.29142 128 3n1e12_042 Private								-116.274198
120 3n1e12_033 Private South Slough 8 PVC 43.609258 -116.2914 121 3n1e12_034 Private South Slough 8 PVC 43.609174 -116.29144 122 3n1e12_035 Private South Slough 8 PVC 43.609174 -116.29143 123 3n1e12_036 Private South Slough 8 PVC 43.608924 -116.29132 124 3n1e12_037 Private South Slough 8 PVC 43.608904 -116.29142 125 3n1e12_038 Private South Slough 12 CMP 43.6088 -116.29142 126 3n1e12_039 Private South Slough 12 CMP 43.608262 -116.29143 128 3n1e12_040 Private South Slough 12 CMP 43.608262 -116.29143 128 3n1e12_041 Private South Slough 8 PVC 43.609394 -116.29152 130 3n1e12_043 Private								-116.291448
1213n1e12_034PrivateSouth Slough8PVC43.609174-116.291441223n1e12_035PrivateSouth Slough8PVC43.609144-116.291431233n1e12_036PrivateSouth Slough8PVC43.608924-116.291331243n1e12_037PrivateSouth Slough8PVC43.608904-116.291331253n1e12_038PrivateSouth Slough12CMP43.6088-116.291431263n1e12_039PrivateSouth Slough8PVC43.608559-116.291431273n1e12_040PrivateSouth Slough12CMP43.608262-116.291431283n1e12_041PrivateSouth Slough8PVC43.608559-116.291521303n1e12_042PrivateSouth Slough8PVC43.609394-116.291521313n1e12_043PrivateSouth Slough8PVC43.609594-116.291521323n1e12_044PrivateSouth Slough8PVC43.609594-116.291521333n1e12_045PrivateSouth Slough8PVC43.610014-116.291521343n1e12_047PrivateRidenbaugh Canal8RCP43.612779-116.291521353n1e12_048PrivateRidenbaugh Canal12CMP43.612779-116.291521363n1e12_049IrrigationSouth Slough8RCP43.612779-116.2	119	3n1e12_032	Private		8	PVC	43.610065	-116.291412
122 3n1e12_035 Private South Slough 8 PVC 43.609144 -116.29143 123 3n1e12_036 Private South Slough 8 PVC 43.608924 -116.29132 124 3n1e12_037 Private South Slough 8 PVC 43.608904 -116.29132 125 3n1e12_038 Private South Slough 12 CMP 43.6088 -116.29142 126 3n1e12_039 Private South Slough 8 PVC 43.6088 -116.29142 127 3n1e12_040 Private South Slough 8 PVC 43.608262 -116.29143 128 3n1e12_041 Private South Slough 8 PVC 43.609394 -116.29152 129 3n1e12_042 Private South Slough 8 PVC 43.609439 -116.29152 130 3n1e12_043 Private South Slough 8 PVC 43.609594 -116.29152 131 3n1e12_044 Private		3n1e12_033	Private	0			43.609258	-116.29142
123 3n1e12_036 Private South Slough 8 PVC 43.608924 -116.29132 124 3n1e12_037 Private South Slough 8 PVC 43.608904 -116.29132 125 3n1e12_038 Private South Slough 12 CMP 43.6088 -116.29142 126 3n1e12_039 Private South Slough 8 PVC 43.6088 -116.29144 127 3n1e12_040 Private South Slough 8 PVC 43.608262 -116.29144 128 3n1e12_040 Private South Slough 8 PVC 43.608262 -116.29143 129 3n1e12_042 Private South Slough 8 PVC 43.609439 -116.29152 130 3n1e12_043 Private South Slough 8 PVC 43.609594 -116.29152 131 3n1e12_044 Private South Slough 8 PVC 43.609516 -116.29152 132 3n1e12_045 Private			Private					-116.291443
124 3n1e12_037 Private South Slough 8 PVC 43.608904 -116.29138 125 3n1e12_038 Private South Slough 12 CMP 43.6088 -116.29142 126 3n1e12_039 Private South Slough 8 PVC 43.608559 -116.29144 127 3n1e12_040 Private South Slough 12 CMP 43.608262 -116.29144 128 3n1e12_041 Private South Slough 8 PVC 43.608462 -116.29143 128 3n1e12_042 Private South Slough 8 PVC 43.609439 -116.29152 130 3n1e12_042 Private South Slough 8 PVC 43.609594 -116.29154 131 3n1e12_044 Private South Slough 8 PVC 43.609816 -116.29152 132 3n1e12_045 Private South Slough 8 PVC 43.61016 -116.29152 133 3n1e12_045 Private				*				-116.291436
125 3n1e12_038 Private South Slough 12 CMP 43.6088 -116.29142 126 3n1e12_039 Private South Slough 8 PVC 43.608559 -116.29144 127 3n1e12_040 Private South Slough 12 CMP 43.608262 -116.29143 128 3n1e12_041 Private South Slough 8 PVC 43.609362 -116.29152 129 3n1e12_042 Private South Slough 8 PVC 43.60939 -116.29152 130 3n1e12_043 Private South Slough 8 PVC 43.609816 -116.29152 131 3n1e12_044 Private South Slough 8 PVC 43.609816 -116.29152 132 3n1e12_045 Private South Slough 8 PVC 43.609816 -116.29152 133 3n1e12_046 Private South Slough 8 RCP 43.610217 -116.29152 134 3n1e12_047 Private				*				-116.291325
126 3n1e12_039 Private South Slough 8 PVC 43.608559 -116.29144 127 3n1e12_040 Private South Slough 12 CMP 43.608262 -116.29143 128 3n1e12_041 Private South Slough 8 PVC 43.609362 -116.29152 129 3n1e12_042 Private South Slough 8 PVC 43.609439 -116.29152 130 3n1e12_043 Private South Slough 8 PVC 43.609594 -116.29152 131 3n1e12_044 Private South Slough 8 PVC 43.609816 -116.29152 132 3n1e12_044 Private South Slough 8 PVC 43.609816 -116.29152 133 3n1e12_045 Private South Slough 8 PVC 43.61014 -116.29152 133 3n1e12_046 Private Ridenbaugh Canal 8 RCP 43.612779 -116.27944 134 3n1e12_047 Private<		-		0				-116.291386
127 3n1e12_040 Private South Slough 12 CMP 43.608262 -116.29143 128 3n1e12_041 Private South Slough 8 PVC 43.607758 -116.29152 129 3n1e12_042 Private South Slough 8 PVC 43.609439 -116.29152 130 3n1e12_043 Private South Slough 8 PVC 43.609594 -116.29152 131 3n1e12_044 Private South Slough 8 PVC 43.609816 -116.29152 132 3n1e12_044 Private South Slough 8 PVC 43.609816 -116.29152 133 3n1e12_045 Private South Slough 8 PVC 43.610014 -116.29152 133 3n1e12_046 Private Ridenbaugh Canal 8 RCP 43.610714 -116.29152 134 3n1e12_047 Private Ridenbaugh Canal 12 PVC 43.612779 -116.2754 135 3n1e12_047 Pri		—		*				-116.291426
128 3n1e12_041 Private South Slough 8 PVC 43.607758 -116.29152 129 3n1e12_042 Private South Slough 8 PVC 43.609439 -116.29152 130 3n1e12_043 Private South Slough 8 PVC 43.609594 -116.29152 131 3n1e12_044 Private South Slough 8 PVC 43.609816 -116.29154 132 3n1e12_045 Private South Slough 8 PVC 43.610014 -116.29155 133 3n1e12_046 Private Ridenbaugh Canal 8 RCP 43.610014 -116.29152 133 3n1e12_046 Private Ridenbaugh Canal 12 PVC 43.612779 -116.27942 134 3n1e12_047 Private Ridenbaugh Canal 12 PVC 43.612714 -116.27942 135 3n1e12_048 Private Ridenbaugh Canal 12 CMP 43.612714 -116.27932 136 3n1e12_049				-				
129 3n1e12_042 Private South Slough 8 PVC 43.609439 -116.29152 130 3n1e12_043 Private South Slough 8 PVC 43.609594 -116.29152 131 3n1e12_044 Private South Slough 8 PVC 43.609594 -116.29152 132 3n1e12_045 Private South Slough 8 PVC 43.610014 -116.29152 133 3n1e12_046 Private Ridenbaugh Canal 8 RCP 43.612779 -116.27954 134 3n1e12_047 Private Ridenbaugh Canal 12 PVC 43.612663 -116.27944 135 3n1e12_048 Private Ridenbaugh Canal 12 CMP 43.612714 -116.27930 136 3n1e12_049 Irrigation South Slough 12 CMP 43.365682 -116.16495 137 3n1e12_050 ACHD South Slough 6 RCP 43.363981 -116.17291								
130 3n1e12_043 Private South Slough 8 PVC 43.609594 -116.29154 131 3n1e12_044 Private South Slough 8 PVC 43.609594 -116.29154 132 3n1e12_045 Private South Slough 8 PVC 43.610014 -116.29152 133 3n1e12_046 Private Ridenbaugh Canal 8 RCP 43.612779 -116.27954 134 3n1e12_047 Private Ridenbaugh Canal 12 PVC 43.612663 -116.2794 135 3n1e12_048 Private Ridenbaugh Canal 12 CMP 43.612714 -116.27930 136 3n1e12_049 Irrigation South Slough 12 CMP 43.65682 -116.16495 137 3n1e12_050 ACHD South Slough 6 RCP 43.363981 -116.17291								
131 3n1e12_044 Private South Slough 8 PVC 43.609816 -116.2915 132 3n1e12_045 Private South Slough 8 PVC 43.610014 -116.29152 133 3n1e12_046 Private Ridenbaugh Canal 8 RCP 43.610214 -116.29152 134 3n1e12_047 Private Ridenbaugh Canal 12 PVC 43.612663 -116.2794 135 3n1e12_048 Private Ridenbaugh Canal 12 CMP 43.612714 -116.27930 136 3n1e12_049 Irrigation South Slough 12 CMP 43.65682 -116.16495 137 3n1e12_050 ACHD South Slough 6 RCP 43.363981 -116.17291				9				
132 3n1e12_045 Private South Slough 8 PVC 43.610014 -116.29152 133 3n1e12_046 Private Ridenbaugh Canal 8 RCP 43.610279 -116.27954 134 3n1e12_047 Private Ridenbaugh Canal 12 PVC 43.612663 -116.2794 135 3n1e12_048 Private Ridenbaugh Canal 12 CMP 43.612714 -116.27930 136 3n1e12_049 Irrigation South Slough 12 CMP 43.365682 -116.16495 137 3n1e12_050 ACHD South Slough 6 RCP 43.363981 -116.17291				*				
133 3n1e12_046 Private Ridenbaugh Canal 8 RCP 43.612779 -116.27954 134 3n1e12_047 Private Ridenbaugh Canal 12 PVC 43.612663 -116.2794 135 3n1e12_048 Private Ridenbaugh Canal 12 CMP 43.612714 -116.27930 136 3n1e12_049 Irrigation South Slough 12 CMP 43.65682 -116.16495 137 3n1e12_050 ACHD South Slough 6 RCP 43.363981 -116.17291				*				-116.291528
134 3n1e12_047 Private Ridenbaugh Canal 12 PVC 43.612663 -116.2794 135 3n1e12_048 Private Ridenbaugh Canal 12 CMP 43.612714 -116.27930 136 3n1e12_049 Irrigation South Slough 12 CMP 43.365682 -116.16495 137 3n1e12_050 ACHD South Slough 6 RCP 43.363981 -116.17291				*				-116.279544
135 3n1e12_048 Private Ridenbaugh Canal 12 CMP 43.612714 -116.27930 136 3n1e12_049 Irrigation South Slough 12 CMP 43.365682 -116.16495 137 3n1e12_050 ACHD South Slough 6 RCP 43.363981 -116.17291				*				-116.27943
136 3n1e12_049 Irrigation South Slough 12 CMP 43.365682 -116.16495 137 3n1e12_050 ACHD South Slough 6 RCP 43.363981 -116.17291				-				-116.279306
				*				-116.164951
138 3n1e12_051 ACHD Unnamed 12 PVC 43.608289 -116.28826	137	3n1e12_050	ACHD	South Slough	6	RCP	43.363981	-116.172917
	138	3n1e12_051	ACHD	Unnamed	12	PVC	43.608289	-116.288269

#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
139	3n1e13_002	ACHD	Farmers Lateral	12	CMP	43.603016	-116.293979
140	3n1e13_003	ACHD	Unnamed	12	PVC	43.594593	-116.293921
141	3n1e14_001	ACHD	Unnamed	15	CMP	43.596998	-116.301944
142	3n1e14_002	Irrigation	Unnamed	21	RCP	43.596991	-116.302176
143	3n1e14_005	ACHD	Huntington Lateral	12	CMP	43.593936	-116.310805
144	3n1e14_006	ACHD	Wilson Fruit Lateral	15	CMP	43.597	-116.309135
145 146	3n1e14_007 3n1e14 008	ACHD ACHD	Unnamed	10	CMP	43.601224	-116.308224
146	3n1e14_008 3n1e14_009	Whitney Fire District	Huntington Lateral Farmers Lateral	12	PVC	43.593911 43.590398	-116.304217 -116.300483
147	3n1e14_000	Private	Unnamed	12	CMP	43.35403	-116.185072
149	3n1e14_010	ACHD	Unnamed	12	PVC	43.35404	-116.185072
150	3n1e14 012	ACHD	Unnamed	12	CMP	43.594986	-116.314111
151	3n1e14 013	ACHD	Unnamed	0	Drop Inlet	43.354247	-116.185068
152		ACHD	Unnamed	0	Drop Inlet	43.595547	-116.296705
153	3n1e14_015	ACHD	Unnamed	0	Drop Inlet	43.595567	-116.296834
154	3n1e15_001	ACHD, Irrigation	Ridenbaugh Canal	12	CMP	43.603942	-116.318706
155	3n1e15_003	Irrigation	Fivemile Creek	18	RCP	43.590379	-116.325521
156	3n1e15_004	ACHD	Fivemile Creek	18	RCP	43.590816	-116.328195
157	3n1e15_005	ACHD	Fivemile Creek	12	CMP	43.591083	-116.332417
158	3n1e15_008	ACHD	Ridenbaugh Canal	16	CMP	43.602428	-116.331167
159	3n1e15_009	ACHD	Ridenbaugh Canal	12	RCP	43.604722	-116.314419
160	3n1e15_011	ACHD	Snider Lateral	24	RCP	43.597652	-116.333978
161	3n1e15_012	ACHD	Ridenbaugh Canal	15	CMP	43.602435	-116.333586
162	3n1e15_013	ACHD	Fivemile Creek	12	HDPE	43.352695	-116.194074
163	3n1e15_014	ACHD	Fivemile Creek	12	HDPE	43.352752	-116.193817
164	3n1e15_015	Irrigation	Fivemile Creek	15	PVC	43.590391	-116.32552
165	3n1e15_016	ACHD	Unnamed	0	Drop Inlet	43.592084	-116.318035
166	3n1e15_017	ACHD	Unnamed	0	Drop Inlet	43.592144	-116.317929
167	3n1e15_018	ACHD	Unnamed	12	CMP	43.602573	-116.317969
168 169	3n1e15_019 3n1e15 020	Irrigation	Fivemile Creek Ridenbaugh Canal	12 0	PVC Open Ditch	43.590442 43.60232	-116.325547 -116.331132
109	3n1e15_020 3n1e16_003	ACHD, Irrigation ACHD	Ridenbaugh Canal	12	PVC	43.599271	-116.339224
170	3n1e16 013	ACHD	Fivemile Creek	24	PVC	43.591442	-116.334502
171	3n1e21 010	ACHD	Eightmile Creek	24	CMP	43.582972	-116.334509
172	3n1e22 001	ACHD	Fivemile Creek	24	PVC	43.588699	-116.314528
174	3n1e22_002	ACHD	Fivemile Creek	15	PVC	43.588646	-116.314659
175	3n1e22 003	Private	Fivemile Creek	30	RCP	43.588628	-116.318178
176		Irrigation	Ridenbaugh Canal	18	RCP	43.590223	-116.333447
177	3n1e22 005	Irrigation	Fivemile Creek	12	CMP	43.588639	-116.315191
178	3n1e22_006	ACHD	Eightmile Creek	12	PVC	43.581392	-116.331157
179	3n1e22_007	ACHD	Eightmile Creek	15	PVC	43.581496	-116.331259
180	3n1e22_008	ACHD	Eightmile Creek	12	PVC	43.582489	-116.33168
181	3n1e22_009	ACHD	Eightmile Creek	12	PVC	43.582947	-116.334128
182	3n1e22_010	ACHD	Ridenbaugh Canal	12	RCP	43.584704	-116.334011
183	3n1e22_011	ACHD	Fivemile Creek	14	PVC	43.589752	-116.324176
184	3n1e22_012	ACHD	Eightmile Creek	12	PVC	43.581477	-116.330502
185	3n1e22_013	ACHD	Unnamed	24	PVC	43.579345	-116.314405
186	3n1e22_014	ACHD	Unnamed	24	CMP	43.579376	-116.322529
187	3n1e23_001	ACHD	Fivemile Creek	15	PVC	43.588445	-116.311104
188	3n1e23_002	Private	Fivemile Creek	12	CMP	43.587012	-116.306102
189	3n1e23_003	ACHD	Fivemile Creek	12	PVC RCP	43.586418	-116.307283 -116.294261
190	3n1e23_004	ACHD	Fivemile Creek	36	PVC	43.583658	
191 192	3n1e23_005 3n1e23 006	ACHD ACHD	Farmers Lateral Fivemile Creek	12 12	RCP	43.586632 43.583006	-116.295604 -116.296361
192	3n1e23_006	ACHD	Fivemile Creek	12	RCP	43.583006	-116.296361
193	3n1e23_007 3n1e23_008	Irrigation	Fivemile Creek	12	ADS	43.582956	-116.299002
194	3n1e23_008	ACHD	Fivemile Creek	10	HDPE	43.584643	-116.299001
196	3n1e23 010	ACHD	Fivemile Creek	10	RCP	43.585759	-116.300995
197	3n1e23_010	ACHD	Fivemile Creek	12	RCP	43.586052	-116.303081
198	3n1e23_012	ACHD	Fivemile Creek	12	RCP	43.586219	-116.3037
199	3n1e23_013	ACHD	Fivemile Creek	12	CMP	43.58654	-116.304529
200	3n1e23_014	ACHD	Fivemile Creek	12	HDPE	43.583026	-116.298523
201	3n1e23_015	ACHD	Unnamed	36	PVC	43.579285	-116.310755
202		ACHD	Fivemile Creek	12	CMP	43.588456	-116.313941
203	3n1e24_001	ACHD	Threemile Creek	24	RCP	43.580884	-116.275158
204	3n1e24_002	ACHD	Fivemile Creek	18	PVC	43.575753	-116.282844
205	3n1e24_003	ACHD	Fivemile Creek	12	PVC	43.575755	-116.282934
206 207	3n1e24_004	ACHD	Fivemile Creek	12	PVC	43.575594	-116.282905

#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
208	3n1e24_006	ACHD	Fivemile Creek	12	CMP	43.576993	-116.283236
209	3n1e24_007	ACHD	Fivemile Creek	24	CMP	43.577748	-116.28422
210	3n1e24_008	ACHD	Fivemile Creek	0	Open Ditch	43.580285	-116.287117
211	3n1e24_009	ACHD, Irrigation	Unnamed	0	Open Ditch	43.587442	-116.289168
212	3n1e24_010	ACHD	Farmers Lateral	12	PVC	43.583041	-116.291894
213	3n1e24_011	ACHD	Penninger Lateral	12	RCP	43.59012	-116.281232
214	3n2e02_001	ACHD	Unnamed	12	CMP	43.625948	-116.183577
215	3n2e02_002	ACHD	Unnamed	12	CMP	43.629759	-116.181601
216	3n2e02_003	ACHD	Unnamed	12	CMP	43.630274	-116.179077
217 218	3n2e03_001 3n2e03_002	ACHD ACHD	Boise City Canal Boise City Canal	12 10	CMP CMP	43.62822 43.627307	-116.213226 -116.212157
218	3n2e03_002 3n2e03_007	ACHD	Boise City Canal	6	RCP	43.621019	-116.208697
210	3n2e03_008	ACHD	Boise City Canal	4	PVC	43.619429	-116.208457
220	3n2e03_009	ACHD	Boise City Canal	12	CMP	43.620389	-116.208596
222	3n2e03_015	ACHD	Boise City Canal	8	CMP	43.621235	-116.208818
223	3n2e03 016	ACHD	Boise City Canal	12	RCP	43.624076	-116.208876
224	3n2e03 017	ACHD	Boise City Canal	12	RCP	43.623974	-116.208874
225	3n2e04 001	ACHD	Unnamed	18	RCP	43.619001	-116.232353
226		Private	Unnamed	12	RCP	43.619182	-116.232484
227	3n2e04_003	ITD	Unnamed	12	RCP	43.61935	-116.232672
228		ACHD, Private	Unnamed	10	СМР	43.620162	-116.232909
229	3n2e04_007	Private	Unnamed	18	Open Concrete Slot	43.620685	-116.232904
230	3n2e04_008	ACHD	Boise River	10	RCP	43.620334	-116.231082
231	3n2e04_009	ACHD	Boise River	30	CMP	43.619709	-116.228496
232	3n2e04_010	ACHD	Boise River	36	RCP	43.620449	-116.229804
233	3n2e04_011	ACHD, ITD	Boise River	18	RCP	43.619047	-116.22758
234	3n2e04_012	Private	Boise River	18	RCP	43.620886	-116.230584
235	3n2e04_013	ACHD	Boise City Canal	12	CMP	43.630304	-116.215301
236	3n2e04_014	ACHD, ITD	Unnamed	42	RCP	43.618961	-116.232389
237	3n2e04_015	ACHD	Lowell Drain	15	CMP	43.633519	-116.217026
238	3n2e04_016	ACHD	Crane Creek	36	СМР	43.631227	-116.231048
239	3n2e04_017	ACHD	Boise City Canal	6	RCP	43.629361	-116.214057
240	3n2e04_018	ACHD	Boise City Canal	6	RCP	43.629723	-116.214426
241	3n2e04_019	ACHD	Boise City Canal	12	PVC	43.629827	-116.214571
242	3n2e04_020	ACHD	Boise City Canal	6	RCP	43.630578	-116.215781
243 244	3n2e04_021	ACHD ACHD	Boise City Canal	6	RCP RCP	43.631108	-116.216054
244	3n2e04_022 3n2e04 023	ITD	Boise City Canal Crane Creek	18	СМР	43.631241 43.631559	-116.216065 -116.233323
245	3n2e04_023	ACHD	Crane Creek	18	RCP	43.632257	-116.229174
240	3n2e04_024	Private	Boise River	6	RCP	43.37167	-116.135994
248	3n2e04_027	ACHD	Crane Creek	15	PVC	43.632205	-116.229234
249	3n2e04_028	ACHD	Unnamed	12	PVC	43.633544	-116.220862
250	3n2e04 029	ACHD	Boise River	12	PVC	43.620661	-116.231888
251	3n2e05 001	ACHD	Davis Drain	24	SMP	43.62309	-116.245492
252	3n2e05 002	ACHD, Irrigation	Settlers Canal	16	CMP	43.624858	-116.24765
253	3n2e05_006	ACHD, Private	Thurman Mill Canal	0	Drop Inlet	43.631217	-116.247823
254	3n2e05_008	ACHD	Settlers Canal	12	CMP	43.62793	-116.252567
255		ACHD, Private	Davis Drain	12	CMP	43.627052	-116.250396
256	3n2e05_010	ACHD, Private	Davis Drain	12	CMP	43.625751	-116.248304
257	3n2e05_011	ACHD	Boise River	18	PVC	43.631328	-116.238889
258	3n2e05_012	ACHD	Thurman Mill Canal	0	open ditch	43.628441	-116.241564
259	3n2e05_013	ACHD	Settlers Canal	16	PVC	43.621688	-116.244544
260	3n2e05_014	ACHD, ITD	Davis Drain	12	PVC	43.621391	-116.242502
261	3n2e05_015	ACHD	Davis Drain	12	ADS	43.619599	-116.237613
262	3n2e05_017	ACHD, Private	Davis Drain	12	PVC	43.620727	-116.239858
263	3n2e05_018	ACHD, Private	Davis Drain	12	PVC	43.621137	-116.241176
264	3n2e05_019	ACHD	Davis Drain	15	RCP	43.621657	-116.24392
265	3n2e05_020	Private	Davis Drain	4	PVC	43.622551	-116.245023
266	3n2e05_021	Private	Davis Drain	4	PVC	43.622769	-116.2452
267	3n2e05_022	Private	Davis Drain	4	PVC	43.622368	-116.244875
268	3n2e05_023	ACHD	Davis Drain Roise River	12	PVC	43.622972	-116.2454
269	3n2e05_024	ACHD	Boise River	18	CMP	43.630338	-116.237409
270	3n2e05_025	ACHD	Thurman Mill Canal Davis Drain	12 24	RCP RCP	43.631976	-116.249013
271 272	3n2e05_027 3n2e05_028	ACHD ACHD	Thurman Mill Canal	12	RCP	43.629319 43.633594	-116.252786 -116.251833
272	3n2e05_028 3n2e05_030	ACHD ACHD, Private	Davis Drain	12	PVC	43.372291	-116.144364
273	3n2e05_030	Private	Davis Drain	4	PVC PVC	43.622895	-116.245321
274	3n2e05_032	Private	Davis Drain	4	PVC	43.622841	-116.245267
275	3n2e05_033	Private	Davis Drain	12	PVC	43.622794	-116.245218
2,5	52005_034		Davis Didili				110.270210

#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
277	3n2e05_035	Private	Davis Drain	4	PVC	43.622528	-116.24501
278	3n2e05_036	Private	Davis Drain	4	PVC	43.622491	-116.244983
279	3n2e05_037	Private	Davis Drain	4	PVC	43.622446	-116.244945
280	3n2e05_038	Private	Davis Drain	8	CMP	43.622032	-116.244638
281 282	3n2e05_039 3n2e05_040	ACHD ACHD	Davis Drain Thurman Mill Canal	10 12	CMP CMP	43.62574 43.631294	-116.248261 -116.248022
283	3n2e05_040	ACHD	Thurman Mill Canal	12	CMP	43.631266	-116.248067
284	3n2e05 042	ACHD	Davis Drain	12	PVC	43.62811	-116.252168
285	3n2e05_043	ACHD	Davis Drain	12	PVC	43.624494	-116.246817
286	3n2e06_001	ACHD	North Slough	12	CMP	43.627157	-116.273281
287	3n2e06_002	ACHD	North Slough	12	CMP	43.626826	-116.272617
288	3n2e06_003	ACHD	Ash Lateral	0	open ditch	43.625533	-116.269439
289	3n2e06_006 3n2e06_007	ACHD	North Slough	<u>12</u> 4	CMP PVC	43.623973	-116.26868
290 291	3n2e06_007 3n2e06_008	Private ACHD	North Slough North Slough	18	CMP	43.623979 43.621827	-116.268923 -116.266038
292	3n2e06_009	ACHD	Davis Drain	30	RCP	43.630707	-116.254993
293	3n2e06 010	ACHD, ITD	Davis Drain	30	RCP	43.630576	-116.254735
294		ACHD	Davis Drain	24	RCP	43.629828	-116.254616
295	3n2e06_012	ACHD	North Slough	36	RCP	43.620489	-116.263517
296	3n2e06_013	ACHD	North Slough	12	PVC	43.620413	-116.263605
297	3n2e06_014	ACHD	North Slough	0	Drop Inlet	43.620416	-116.263522
298	3n2e06_015	ACHD	North Slough	12	RCP	43.619966	-116.262662
299 300	3n2e06_016	ACHD	North Slough	24 0	RCP open ditch	43.619301	-116.261124
300	3n2e06_017 3n2e06 019	ACHD ACHD	North Slough Davis Drain	24	RCP	43.621107 43.629699	-116.264436 -116.253481
301	3n2e06_019	ACHD	Davis Drain	12	RCP	43.629833	-116.25362
303	3n2e06 021	ACHD	Davis Drain	12	RCP	43.630286	-116.254381
304		ACHD	Ash Lateral	12	CMP	43.624451	-116.268696
305	3n2e06_023	ACHD	North Slough	0	Drop Inlet	43.625615	-116.272914
306	3n2e07_001	ACHD	North Slough	8	CMP	43.619021	-116.261046
307	3n2e07_002	Private	North Slough	0	open ditch	43.618036	-116.259838
308	3n2e07_003	Private	North Slough	12	CMP	43.617373	-116.256207
309 310	3n2e07_004 3n2e07_005	Private ACHD	North Slough North Slough	12	CMP PVC	43.617629 43.617612	-116.258278 -116.258745
310	3n2e07_005	ACHD	Ridenbaugh Canal	0	open ditch	43.606483	-116.269997
312	3n2e07_009	ACHD, Railroad	Ridenbaugh Canal	24	CMP	43.606069	-116.271601
313	3n2e07_010	ACHD	Ridenbaugh Canal	12	CMP	43.606206	-116.27164
314	3n2e07_011	Private	Ridenbaugh Canal	0	open ditch	43.606689	-116.273355
315	3n2e07_012	ITD	Ridenbaugh Canal	36	RCP	43.607407	-116.273721
316	3n2e07_013	ACHD	Ridenbaugh Canal	10	CMP	43.607081	-116.273507
317	3n2e07_014	ACHD	Ridenbaugh Canal	10	CMP	43.607126	-116.273664
318 319	3n2e07_015 3n2e07 016	ACHD ACHD	Ridenbaugh Canal North Slough	8	PVC CMP	43.60681 43.617705	-116.273416 -116.258735
319	3n2e07_010 3n2e07_019	ACHD	Ridenbaugh Canal	12	CMP	43.604728	-116.264476
321	3n2e07_010	ACHD	North Slough	30	CMP	43.617478	-116.25602
322		ACHD	Ridenbaugh Canal	18	PVC	43.607272	-116.273742
323	3n2e08_001	ACHD, Private	North Slough	12	CMP	43.611664	-116.24406
324	3n2e08_003	Private	North Slough	12	PVC	43.617048	-116.2502
325	3n2e08_004	ACHD	North Slough	24	CMP	43.617186	-116.251388
326	3n2e08_005	ACHD, Private	North Slough	12	CMP	43.364846	-116.14421
327	3n2e08_007	ACHD, Private	North Slough	12	CMP Drop Inlat	43.611219	-116.243554
328 329	3n2e08_008 3n2e08_009	ACHD, Private ACHD	North Slough North Slough	0 12	Drop Inlet PVC	43.611 43.608438	-116.243288 -116.240931
329	3n2e08_009 3n2e08_010	ACHD ACHD, Private	North Slough	4	PVC	43.608438	-116.240931
331	3n2e08_011	ACHD	North Slough	8	RCP	43.609736	-116.242289
332	3n2e08_012	ACHD	North Slough	10	CMP	43.609856	-116.242399
333	3n2e08_013	ACHD	North Slough	12	CMP	43.607925	-116.240104
334	3n2e08_014	ACHD	North Slough	15	CMP	43.606925	-116.237396
335	3n2e08_015	ACHD	North Slough	8	RCP	43.606904	-116.235543
336	3n2e08_016	ACHD	North Slough	6	CMP PVC	43.606822	-116.235151
337 338	3n2e08_017 3n2e08_018	ACHD ACHD	North Slough North Slough	12 12	PVC	43.607081 43.606967	-116.238706 -116.238243
339	3n2e08_019	ACHD, Private	Settlers Canal	24	RCP	43.617969	-116.234202
340	3n2e08_020	ACHD	North Slough	10	CMP	43.615409	-116.249092
341	3n2e08_021	Private	North Slough	0	Drop Inlet	43.610684	-116.243063
342	3n2e08_022	Private	North Slough	0	Drop Inlet	43.61079	-116.243143
343	3n2e08_023	ACHD, Private	North Slough	24	CMP	43.611663	-116.243942
344	3n2e08_024	ACHD	North Slough	12	CMP	43.606277	-116.233544
345	3n2e08_025	ACHD	North Slough	12	RCP	43.615283	-116.246623

				PIPE			
#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
346	3n2e08_026	ACHD, Private	North Slough	10	CMP	43.615434	-116.249855
347 348	3n2e08_027 3n2e08_028	Private ACHD	North Slough North Slough	10 12	CMP	43.615424 43.613531	-116.248842 -116.245086
348	3n2e08_028	ACHD ACHD, Private	Tuttle Lateral	12	RCP	43.613531	-116.245086
350	3n2e08_030	ACHD	North Slough	12	PVC	43.608584	-116.241194
351		ACHD	North Slough	0	Drop Inlet	43.608384	-116.240877
352	3n2e08_032	Private	North Slough	0	Drop Inlet	43.610589	-116.243056
353	3n2e08_033	ACHD	North Slough	12	CMP	43.606925	-116.238533
354	3n2e08_034	ACHD	Unnamed	12 0	CMP	43.612525	-116.243614
355 356	3n2e09_007 3n2e09_014	Private ACHD	Drain E North Slough	6	open ditch RCP	43.607957 43.604663	-116.220052 -116.227917
357	3n2e09_014	ACHD	North Slough	12	PVC	43.605137	-116.228683
358		Private	North Slough	0	Drop Inlet	43.604946	-116.228325
359	3n2e09_022	ACHD, ITD	Boise River	12	RCP	43.618267	-116.226634
360	3n2e09_023	Private	Boise River	12	PVC	43.616337	-116.221944
361	3n2e09_024	ACHD	Boise River	48	RCP	43.61601	-116.221631
362 363	3n2e09_025 3n2e09 026	ACHD ACHD, Private	Boise River Boise River	42	RCP RCP	43.615984 43.615616	-116.221614 -116.221193
364	3n2e09_020	ACHD	Boise River	10	CMP	43.614434	-116.220098
365	3n2e09_028	ACHD	Boise River	24	RCP	43.613563	-116.219033
366	3n2e09_031	Drainage District 3	Boise River	0	open ditch	43.611599	-116.216459
367	3n2e09_032	Boise City	Boise River	6	CMP	43.612849	-116.219225
368	3n2e09_033	Boise City	Settlers Canal	0	open ditch	43.615301	-116.22336
369	3n2e09_034	Boise City	Boise River Drain E	24	CMP PVC	43.617608	-116.225579
370 371	3n2e09_035 3n2e09_037	Boise City ACHD	Unnamed	12	PVC	43.365586 43.604371	-116.119755 -116.233319
372	3n2e09_038	ACHD	Unnamed	12	PVC	43.604372	-116.23157
373		Private	Unnamed	12	PVC	43.60436	-116.229927
374	3n2e10_001	ACHD, Private	Boise City Canal	10	PVC	43.617375	-116.206856
375	3n2e10_002	ACHD	Boise City Canal	15	PVC	43.617759	-116.206567
376	3n2e10_003	ACHD	Boise City Canal	15 12	RCP RCP	43.613731	-116.201803
377 378	3n2e10_004 3n2e10 007	ACHD ACHD	Boise City Canal Boise City Canal	0	Drop Inlet	43.614282 43.611991	-116.202887 -116.198408
379	3n2e10_008	ACHD	Boise City Canal	0	Drop Inlet	43.612439	-116.199258
380		ITD	Julia Davis Pond	30	CMP	43.607369	-116.197912
381	3n2e10_010	ACHD	Julia Davis Pond	12	CMP	43.608006	-116.198771
382	3n2e10_011	ACHD	Julia Davis Pond	12	PVC	43.608673	-116.200669
383	3n2e10_012 3n2e10 013	ACHD Deise City	Boise River	30 3	CMP PVC	43.605854	-116.200068
384 385	3n2e10_013 3n2e10_014	Boise City ITD, Private	Julia Davis Pond Julia Davis Pond	24	CMP	43.60653 43.606708	-116.196332 -116.196177
386	3n2e10_015	Boise City	Julia Davis Pond	8	PVC	43.608281	-116.200184
387	3n2e10_016	Boise City	Julia Davis Pond	12	PVC	43.607048	-116.204135
388	3n2e10_017	Boise City	Julia Davis Pond	12	PVC	43.606805	-116.204219
389	3n2e10_018	ACHD	Boise River	24	RCP	43.60877	-116.207704
390 391	3n2e10_019 3n2e10_020	ACHD, Private ACHD	Boise River Boise River	12 15	RCP CMP	43.611214 43.610896	-116.212838 -116.213122
391	3n2e10_020	Boise City	Boise River	3	PVC	43.609439	-116.210167
393	3n2e10 022	ACHD	Boise River	72	SMP	43.610018	-116.209936
394	3n2e10_023	ACHD, Boise City	Boise River	15	RCP	43.6095	-116.209037
395	3n2e10_024	ACHD	Boise River	12	RCP	43.608964	-116.20919
396	3n2e10_025	ACHD	Boise River	14	PVC	43.60828	-116.20836
397	3n2e10_030 3n2e10_031	Boise State University ACHD. BSU	Boise River Boise River	12	PVC RCP	43.607236 43.605027	-116.207142 -116.203384
398 399	3n2e10_031 3n2e10_032	ACHD, BSU Boise State University	Boise River	36 15	ADS	43.605027	-116.203384 -116.200531
400	3n2e10_032	Boise City	Julia Davis Pond	8	SMP	43.608074	-116.201554
401	3n2e10_034	Boise State University	Boise River	12	RCP	43.605192	-116.198043
402	3n2e10_035	Boise State University	Boise River	24	SMP	43.604708	-116.196153
403	3n2e10_037	ACHD	Boise City Canal	15	PVC	43.617288	-116.206897
404	3n2e10_038 3n2e10 039	ACHD ACHD	Boise City Canal	0	Drop Inlet	43.612281	-116.198945 -116.198731
405 406	3n2e10_039 3n2e10_040	Boise City	Boise City Canal Julia Davis Pond	8	Drop Inlet CMP	43.612168 43.606896	-116.198731
400	3n2e10_040	Boise City	Julia Davis Pond	8	CMP	43.606949	-116.198362
408	3n2e10_042	ACHD	Boise City Canal	6	RCP	43.613008	-116.200436
409	3n2e10_043	ACHD	Boise City Canal	6	SMP	43.613143	-116.200511
410	3n2e10_044	Boise City	Julia Davis Pond	6	PVC	43.608125	-116.19926
411	3n2e10_045	ACHD ACHD	Boise City Canal	0	Drop Inlet	43.611911	-116.198177
412 413	3n2e10_046 3n2e10 047	ACHD, Private ITD	Boise River Cottonwood Creek	10	SMP PVC	43.611332 43.361991	-116.213146 -116.113708
413	3n2e10_047 3n2e10_048	ACHD, IR	Julia Davis Pond	24	RCP	43.607667	-116.197204
				= •			

143 Bolzel 264 Bolze State University Bolze Tyr, Caral 150 HOP 412.002172 116.20117 143 Bolzi 1, O21 ACHD Bolze Tyr, Caral 124 BCP 43.0582 116.136972 143 Bolzi 1, O21 ACHD Bolze Tyr, Caral 24 Bolz 116.13602 116.13602 143 Bolzi 1, O21 ACHD Bolze Tyr, Caral 24 State 116.13602 116.13602 143 Bolzi 1, O21 ACHD Bolze Tyr, Caral 24 State 315.352 116.13157 143 Bolzi 1, O11 Bolze City Cattenwood Creek 12 DPC 43.35542 116.11357 143 Bolzi 1, O11 Bolze City Cattenwood Creek 12 DPC 43.35542 116.11357 143 Bolzi 1, O11 Bolze City Cattenwood Creek 12 DPC 43.1131 116.1157105 143 Bolzi 1, O11 Bolze City Cattenwood Creek 12 DPC 43.1131 116.1157105	#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
141 302-11 002 ACHD Bolic Cly Catal 24 PCF 45.54778 115.13803 143 302-11 003 Bolic Cly Catal 24 SMP 45.64778 115.13803 143 302-11 005 ACHD Bolic Cly Catal 24 SMP 45.64784 115.13803 143 302-11 005 ACHD Bolic Cly Catal 24 SMP 45.6444 115.11583 143 302-11 Bolic Cly Catalword Cresk 12 PKC 45.35782 -115.11533 142 302-11 Bolic Cly Catalword Cresk 12 CMP 43.35253 -115.11533 143 302-12 Coticsword Cresk Titio I 12 CMP 43.553731 -116.163733 143 302-12 Coticsword Cresk Titio I 12 CMP 43.553731 -116.163733 143 302-13 Coticsword Cresk Titio I 12 CMP 43.558755 -116.137054 143 302-12 Coticsword Cresk T	415	3n2e10_049	Boise State University	Boise River		HDPE	43.60492372	-116.2013173
143 Boltz (1) G61 Roine City Centerwood Creek 18 Order 453.0581.05 143 Britz (1) G61 ACHD Boltz (1) Coral 15 K/P 45.05847.1 115.17791. 143 Britz (1) G7 ACHD Centuwood Creek 12 PrC 43.3527.2 116.11157. 143 Britz (1) G8 ACHD Centuwood Creek 12 PrC 43.3567.2 116.11157. 143 Britz (1) G8 ACHD Centuwood Creek 14 GrG 43.3567.2 116.11157. 143 Britz (1) G8 Britz (1) G8 GrG 43.3567.2 116.11157.2 143 Britz (1) G8 Britz (1) G8 GrG 43.5677.4 116.1157.2 143 Britz (1) G8 ACHD Centurowood Creek-Trito of 12 MrF 43.5677.4 116.15701.2 143 Britz (1) G8 ACHD Britz (1) Graft 12 MrF 43.5677.4 116.1702.4 143 Britz (1) G8 ACHD Britz (1) Graft 12 <td< td=""><td>416</td><td>3n2e11_001</td><td>ACHD</td><td>Boise City Canal</td><td>10</td><td>RCP</td><td>43.60982</td><td>-116.189727</td></td<>	416	3n2e11_001	ACHD	Boise City Canal	10	RCP	43.60982	-116.189727
143 30/241.005 ACH0 Bolic Cty Canil 24 SHP 43.00141 11.51.18720 203 30241.005 ACH0 Cottowood Creek 12 PVC 43.30241 115.11352 213 30241.005 ACH0 Cottowood Creek 12 PVC 43.30242 115.11352 213 30241.005 ACH0, Bote City Cottowood Creek 12 CUP 43.30538 115.11352 213 30242.005 ACH0, Bote City Cottowood Creek 43 43.30538 115.11352 213 30242.005 ACH0 Cottowood Creek-Fito d 13 FOP 43.51338 115.11351 213 30243.001 Prote Lake Heron 12 CMP 43.500747 115.170351 213 30243.001 ACH0 Bote City Canil 12 PVC 43.50074 115.170351 313 30241.005 ACH0 Bote City Canil 12 PVC 43.50074 115.170351 313 30241.005 ACH0 <t< td=""><td>417</td><td>3n2e11_002</td><td>ACHD</td><td>Boise City Canal</td><td>24</td><td>RCP</td><td>43.608833</td><td>-116.187649</td></t<>	417	3n2e11_002	ACHD	Boise City Canal	24	RCP	43.608833	-116.187649
420 30/21_005 AC+D Bone Cry Canil 15 #C7 45.01404 -115.11577 421 30/21_007 AC+D Cottonwood Creek 12 PVC 43.36724 -115.11572 423 33 7211_008 AC+D Cottonwood Creek 12 PVC 43.36724 -115.11532 424 30.721_008 AC+D Extonwood Creek 12 CMP 43.37328 -115.11532 424 30.721_008 AC+D Cottonwood Creek 13 ACP 43.37388 -115.11736 423 30.721_008 AC+D Cottonwood Creek 13 ACP 43.51311 -115.11736 423 30.721_008 AC+D Cottonwood Creek 13 ACP 43.51311 -115.11736 423 30.721_008 AC+D Cottonwood Creek 12 ACP 43.564131 -115.1767 423 30.721_008 AC+D Downool Creek 12 ACP 43.56743 -116.17068 433 30.721_008 AC+D			,					
122 3/221_00 ACHD Cottonwood Creek 12 PPC 43.5074 -1151137 223 3/221_00 ACHD Cottonwood Creek 12 PPC 43.30542 -116.11375 243 3/221_00 Bote City Cottonwood Creek 42 CMP 43.30542 -116.11975 245 3/221_01 Bote City Cottonwood Creek 48 CMP 43.51831 -116.11975 245 3/221_01 Bote City Cottonwood Creek 48 CMP 43.51831 -116.11975 242 3/221_01 ACHD Lake teron 12 CMP 43.599774 -116.17085 33 3/221_00 ACHD Bate Erron 12 CMP 43.599774 -116.17085 33 3/221_00 ACHD Bate Erron 12 CMP 43.599774 -116.17085 33 3/221_00 ACHD Bate Erron 12 CMP 43.59974 -116.17141 33 3/221_00 ACHD Bate Cry Gran<				1				
422 abcl1.008 ACID Contonwood Creek 12 PVC 43.3000 416.11328 423 3bcl1.00 Bolise City Cottonwood Creek 12 CMP 43.30558 411.11275 424 3bcl1.01 Bolise City Cottonwood Creek 42 CMP 43.30558 411.11275 425 3bcl1.01 Bolise City Cottonwood Creek 42 CMP 43.51612 411.515215 428 3bcl1.2051 ACHD Cottonwood Creek 12 CMP 43.51612 411.515215 428 3bcl1.2051 ACHD Cottonwood Creek Findo 13 CMP 43.51612 116.17007 431 3bcl1.2054 ACHD Balte City Canal 12 PVC 43.599545 116.170179 433 3bcl1.2056 ACHD Balte City Canal 12 PVC 43.599042 116.17244 433 3bcl1.2076 ACHD Umaned 0 Drug Inde 43.599042 116.17244 433 3bcl1.207				,				
122 3.2261.000 ACHD. Bolac City. Contenwood Creek 84 CMP 43.36558.4 11.61.107785. 425 3.2011.011 Bolac City. Contenwood Creek 48 ACP 43.37388.4 11.61.13975. 425 3.2011.014 Bolac City. Contenwood Creek 48 ACP 43.37388.4 11.61.13975. 427 3.2012.004 ACHD Contenwood Creek Trib of 12 CMP 43.51673.1 11.61.61673.0 428 3.2012.005 ACHD Bolac City Contenwood Creek Trib of 12 CMP 43.51673.1 11.61.1673.0 433 3.2012.006 ACHD Bolac City Conten 12 CMP 43.51678.1 11.61.1703.0 433 3.2013.006 ACHD Bolac City Conten 12 CMP 43.59878.4 11.61.1703.0 434 3.2013.006 ACHD Bolac City Conten 12 CMP 43.59878.4 11.61.1703.0 435 3.2013.006 ACHD Longer Creek 12 CMP 43.59878.4 11.61.1773		—						
142 3h2c11_010 Bose City Cottowwood Creek 12 CMP 43363586 116119755 125 3h2c11_014 Bose City Cottowwood Creek 24 CMP 43518822 116118755 125 3h2c12_004 ACHD Cottowwood Creek 24 CMP 43518822 11615750 123 3h2c12_004 ACHD Cattowood Creek 15 CMP 4351071 116157672 123 3h2c13_001 Prinate Lake Heron 12 CMP 4351071 11615721 124 3h2c13_001 Prinate Lake Heron 12 CMP 4358074 11617018 123 3h2c13_005 ACHD Bose City Conall 12 PPC 4358078 11617744 435 3h2c14_003 ACHD Lunger Creek 12 CMP 43598078 11617744 435 3h2c14_003 ACHD Lunger Creek 13 RCP 43598976 11617744 435 3h2c14_003 ACHD Lunge								
142 3:2:011 Disc Cry. Conterwood Creek 48 RCP 43:3:3:3:8 116:11925 142 3:0:2:12_0:6 ACHD Cottorwood Creek 12 RCP 43:16:18:17:105 142 3:0:2:12_0:5 ACHD Cottorwood Creek-Trib of 12 RCP 43:13:13 116:15:72:05 143 3:0:2:13_0:01 ACHD Lake Heron 12 CMP 43:5:0:07 116:17:10:07 133 3:0:2:13_0:01 ACHD Bale Cry Crail 12 PVC 43:5:8:0:7 116:17:10:07 143 3:0:2:13_0:01 ACHD Bale Cry Crail 12 PVC 43:5:8:0:7 116:17:10:17 143 3:0:2:13_0:01 ACHD Bale Cry Crail 12 PVC 43:5:8:0:16 116:17:14 144 3:0:2:14_0:01 ACHD Logger Creek 12 CMP 43:5:9:0:16 116:17:14 144 3:0:2:14_0:05 Private Logger Creek 13 RCP 43:5:9:0:16 116:18:0:14 143 3:0:2:14_0:05 </td <td>-</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-		•					
426 bin211_014 Bolos City Contonwood Creek 24 CMP 43.616312 -11.61.357312 428 3n2e12_004 ACHD Cottonwood Creek-Thio of 12 RCP 43.617331 -11.61.357312 428 3n2e13_001 Private take Heron 12 CMP 43.538774 -11.61.378672 430 3n2e13_003 ACHD Bobe City Conal 12 ADS 43.58875 -11.61.70065 433 3n2e13_004 ACHD Bobe City Conal 12 PVC 43.59873 -11.61.70169 433 3n2e13_007 Private Lake Heron 12 PVC 43.59876 -11.61.7141 435 3n2e13_007 Private Lake Heron 12 CMP 43.98776 -11.61.7141 443 3n2e13_007 Private Lake Heron 12 CMP 43.98776 -11.61.7141 443 3n2e14_004 Private Lake Meron 12 CMP 43.98778 -11.61.7141 443 3n2e14_004 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_						
1472 BACH2_005 ACH0 Cottomwood Creek-Tris of 12 RCP 43.614311 1-16.15702 148 3h-2613_001 Private Lake Heron 12 CMP 43.50847 116.15702 143 3h-2613_002 ACH0 Lake Heron 12 CMP 43.59877 116.15703 143 3h-2613_004 ACH0 Basic Ciry Conal 12 PVC 43.598755 116.17084 143 3h-2613_006 ACH0 Basic Ciry Conal 12 PVC 43.598753 116.17084 143 3h-2613_006 ACH0 Basic Ciry Conal 12 PVC 43.598976 116.17044 145 3h-2614_001 ACH0 Unamed 0 Drop Inlet 45.598976 116.17244 145 3h-2614_001 ACH0 Unager Creek 12 CMP 45.598976 116.18244 143 3h-2614_001 ACH0 Logger Creek 12 CMP 45.598976 116.18245 143 3h-2614_001 ACH0 <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>			,					
123 3h/221 Other Cathorowal Creek-Thio of 15 CMP 43.51721			,					
142 3a/213_001 Private Lake Heron 12 CMP 43.39047 -116.172081 431 3a/213_002 ACHD Base City Canal 12 ADS 43.57755 -116.170081 431 3a/213_004 ACHD Bose City Canal 12 PVC 43.59755 -116.17084 433 3a/213_005 ACHD Bose City Canal 12 PVC 43.0913 -116.170144 433 3a/213_006 ACHD Bose City Canal 12 PVC 43.09078 -116.17144 433 3a/213_008 ACHD Unmend 0 Drep Intel 43.599778 -116.17244 433 3a/214_002 ACHD Logger Creek 12 CMP 43.59978 -116.18076 433 3a/214_003 Private Logger Creek 15 RCP 43.59653 -116.18074 441 3a/214_008 Private Logger Creek 15 RCP 43.59653 -116.18074 443 3a/214_0108 Private								
143 andrais 004 ACHO Boles City Canal 12 PVC 44.597655 116.170085 143 andrais 005 ACHO Boles City Canal 12 PVC 44.599383 116.170184 143 andrais 005 ACHO Boles City Canal 12 PVC 44.509383 116.170144 143 andrais 006 ACHO Boles City Canal 12 PVC 44.509383 116.170144 143 andrais 006 ACHO Unamed 0 Drop Inits 43.58976 116.172434 143 andrais 0001 ACHO Unager Creek 12 CMP 43.599373 115.183076 1433 andrais 0002 ACHO Logger Creek 15 RCP 43.599476 115.183076 143 andrais 004 Private Logger Creek 15 RCP 43.599476 115.183076 1443 andrais 006 Private Boles River 20 CMP 43.50074 115.180772 1443 andrais 010 Boles River 24 CMP 43.50074 115.180774 144		3n2e13_001	Private	Lake Heron	12	CMP	43.590047	
432 3bc13_005 ACHD Boles Chy Canl 12 PVC 43.985393 -116.17013 433 3bc13_005 ACHD Boles Chy Canl 12 PVC 43.6013 -116.17014 434 3bc13_007 Private Lake Heron 12 PVC 43.6013 -116.17014 436 3bc13_007 Private Lake Heron 12 CMP 43.58976 -116.17141 437 3bc214_001 ACHD Longer Creek 12 CMP 43.58976 -116.181274 438 3bc214_003 ACHD Logger Creek 15 RCP 43.58936 -116.18308 440 3bc214_003 Private Logger Creek 15 RCP 43.58958 -116.183073 441 3bc214_003 Private Boles River 20 CMP 43.58974 -116.183073 442 3bc214_012 ACHD Boles River 20 CMP 43.60013 -116.183073 443 3bc214_012 ACHD Boles Ri	430	3n2e13_002	ACHD	Lake Heron	0	Drop Inlet	43.589774	-116.172083
1433 nhcli 2005 ACHD Bolse City Canal 12 PVC 43.500139 11.61.71014 435 nhcli 2007 Private Lake Heron 12 PVC 43.500139 11.61.71014 435 nhcli 2008 ACHD Unamed 0 Drop Inelt 43.589768 11.61.7141 437 nhcli 2008 ACHD Logger Creek 12 CMP 43.599783 11.61.81743 438 nhcli 4002 ACHD Logger Creek 12 CMP 43.599373 11.61.8034 439 nhcli 4003 Private Logger Creek 15 RCP 43.599376 11.61.8034 441 3n2e14.005 Private Boger Creek 15 RCP 43.599378 11.61.8034 442 3n2e14.005 Private Boger Creek 15 RCP 43.599378 11.61.8034 443 3n2e14.006 Private Boger Briver 24 CMP 43.500133 11.61.87025 443 3n2e14.0101 Boger Briver 24 CMP 43.500133 11.61.87026 443	431	3n2e13_003	ACHD	Boise City Canal	12	ADS	43.597655	-116.170066
434 3hze12 OPC 43.60139 -116.170144 435 3hze12 OCKP 43.68976 -116.17414 436 3hze13 OCKP 43.88976 -116.172434 437 3hze44 OO2 ACHD Longer Creek 12 CKP 43.899708 -116.1812174 438 3hze14 OO2 ACHD Logger Creek 12 CKP 43.999123 -116.1812076 439 3hze14 OO2 ACHD Logger Creek 15 RCP 43.59953 -116.180076 440 3hze14 OO3 Private Logger Creek 15 RCP 43.59953 -116.180073 442 3hze14 OO3 Private Bose River 24 CKP 43.50072 -116.180237 444 3hze14 D13 Bose River 30 RCP 43.50072 -116.187024 445 3hze14 D13 ACHD Bose River 12 CKP 43.500232 -116.182076	432	3n2e13_004	ACHD	Boise City Canal	12	PVC	43.598539	-116.170183
Hats Index1 OP History History 435 Index1 OB Drop Intet 43.89076 H15.1724.3 437 Index14 OB ACHD Logger Creek 12 CMP 43.59073 H15.1223.4 438 Index14 OD ACHD Logger Creek 12 CMP 43.59073 H15.1203.4 440 Index14 OD Private Logger Creek 15 RCP 43.59073 H16.107515 441 Index14 OD Private Bole River 6 SMP 43.590553 H16.177515 443 Index16 Bole River 24 CMP 43.60073 H16.177515 444 Index101 ACHD Bole River 24 CMP 43.60073 H16.177515 444 Index102 Private Bole River 30 RCP 43.60073 H16.17752 444 Index101 ACHD Bole River 12 CMP 43.60134 H16.187052 <td></td> <td></td> <td></td> <td>Boise City Canal</td> <td></td> <td></td> <td></td> <td>-116.170179</td>				Boise City Canal				-116.170179
136 2n243 OB ACHD Unnamed O Drop Inity 43.859078 1115.12244 437 3n2e14 OOI ACHD Logger Creek 12 CMP 43.599472 1116.18274 438 3n2e14 OOI ACHD Logger Creek 13 CMP 43.599476 116.182045 440 3n2e14 OOI Private Logger Creek 15 RCP 43.599566 -116.180454 441 3n2e14 OOI Private Boice River 20 CMP 43.599566 -116.180454 443 3n2e14 OOI Private Boice River 20 CMP 43.500103 116.19157 443 3n2e14 OIO Boice River 20 CMP 43.500123 -116.191264 443 3n2e14 OIO ACHD Boice River 15 RCP 43.500233 -116.191264 443 3n2e14 OIO ACHD Boice River 15 RCP 43.500142			ACHD					
137 3h2e14 001 ACHD Logger Creek 12 CMP 43.99323 115.18276 438 3h2e14 003 ACHD Logger Creek 18 CMP 43.99323 115.18276 440 3h2e14 003 Privatr Logger Creek 15 RCP 43.59476 115.18264 441 3h2e14 003 Privatr Logger Creek 15 RCP 43.59476 115.182651 442 3h2e14 010 Bole State University Bole River 20 CMP 43.60013 116.182576 444 3h2e14 012 ACHD Bole River 30 RCP 43.60023 -116.18126 445 3h2e14 013 ACHD Bole River 12 CMP 43.60223 -116.18126 444 3h2e14 013 ACHD Bole River 12 CMP 43.60223 -116.19126 444 3h2e14 013 ACHD Bole River 12 CMP <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
438 3n2c14_002 ACHD Logger Creek 12 CMP 43.59873 -116.18076 439 3n2c14_004 Private Logger Creek 15 RCP 43.59875 -116.18046 441 3n2c14_005 Private Logger Creek 15 RCP 43.598553 -116.18073 442 3n2c14_005 Private Boile River 6 SMP 43.598553 -116.172515 443 3n2c14_005 Boile River 20 CMP 43.59024 -116.12725 444 3n2c14_015 Boile River 20 CMP 43.60012 -116.16726 445 3n2c14_015 ACHD Boile River 20 CMP 43.60022 -116.16726 445 3n2c14_015 ACHD Boile River 15 RCP 43.60023 -116.16726 445 3n2c14_015 ACHD Boile River 12 CMP 43.50028 -116.18143 451 3n2c14_015 Drivate Logger Creek 12 CMP						•		
439 302r14 003 ACHD Logger Creek 18 CMP 43.595635 -11.61.8308 440 302r14 005 Private Logger Creek 15 RCP 43.595586 -110.618073 441 302r14 005 Private Bole Nevr 6 SMP 43.59853 -116.120073 442 302r14 005 Private Bole Nevr 20 CMP 43.59853 -116.12027 443 302r14 005 Private Bole River 20 CMP 43.50072 -116.15722 444 302r14 015 Private Bole River 30 RCP 43.600232 -115.152495 445 302r14 015 Private Bole River 12 CMP 43.601242 -115.152495 448 302r14 016 Bole River 12 CMP 43.501412 -115.152495 443 302r14 010 Dogger Creek 12 CMP 43.598663 -116.164371								
440 3n2e14_004 Private Logger Creek 15 RCP 43.594796 -116.30073 441 3n2e14_005 Private Boixe River 6 SMP 43.598553 -116.17731 443 3n2e14_008 Private Boixe River 20 CMP 43.59924 -116.17731 444 3n2e14_001 Boixe State University Boixe River 20 CMP 43.600792 -116.17721 445 3n2e14_013 ACHD Boixe River 30 RCP 43.600792 -116.13726 445 3n2e14_013 ACHD Boixe River 15 RCP 43.602325 -116.13926 447 3n2e14_013 ACHD Boixe River 12 CMP 43.602325 -116.13926 450 3n2e14_013 ACHD Boixe River 12 CMP 43.50129 -116.13926 451 3n2e14_013 ACHD,ITD Boixe River 12 CMP 43.59721 -116.163016 452 3n2e14_021 Private <td></td> <td>_</td> <td></td> <td>00</td> <td></td> <td></td> <td></td> <td></td>		_		00				
441 3n2c14 005 Private Boise River 15 RCP 44.595586 -116.180073 442 3n2c14 009 Private Boise River 20 CMP 43.59924 -116.177215 444 3n2c14 010 Boise State University Boise River 24 CMP 43.60702 -116.187205 445 3n2c14 013 ACHD Boise River 30 RCP 43.60702 -116.187305 446 3n2c14 013 ACHD Boise River 15 RCP 43.602823 -116.19205 447 3n2c14 015 ACHD Boise River 12 CMP 43.601412 -116.19205 448 3n2c14 016 ACHD Boise River 12 CMP 43.60142 -116.19207 450 3n2c14 013 Drainage District 3 Logger Creek 12 CMP 43.59724 -116.180716 451 3n2c14 021 Private Logger Creek 12 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
442 3n2e14_008 Private Boise River 6 SMP 43.598533 -116.176515 443 3n2e14_010 Boise State University Boise River 24 CMP 43.600792 -116.182376 444 3n2e14_013 ACHD Boise River 42 CMP 43.600792 -116.182376 445 3n2e14_013 ACHD Boise River 13 RCP 43.600792 -116.19362 447 3n2e14_015 ACHD Boise River 15 RCP 43.60142 -116.190823 448 3n2e14_017 ACHD Boise River 12 CMP 43.601949 -116.190823 449 3n2e14_017 ACHD, ITD Boise River 12 CMP 43.509380 -116.181843 451 3n2e14_019 ACHD Logger Creek 12 CMP 43.509721 -116.181843 453 3n2e14_021 Private Logger Creek 12 CMP 43.509718 -116.185056 453 3n2e14_023 Pr								
443 3n2e14 009 Private Boixe River 20 CMP 43.59924 -116.127215 444 3n2e14 010 Boise State University Boise River 24 CMP 43.600792 -116.187322 445 3n2e14 013 ACHD Boise River 30 RCP 43.600792 -116.19326 447 3n2e14 015 ACHD Boise River 15 RCP 43.600792 -116.192052 448 3n2e14 015 ACHD Boise River 12 CMP 43.601412 -116.192045 448 3n2e14 016 ACHD Boise River 12 CMP 43.598308 -116.192045 450 3n2e14 019 ACHD Logger Creek 12 CMP 43.597324 -116.192035 451 3n2e14 021 Private Logger Creek 12 CMP 43.596745 -116.184304 453 3n2e14 021 Private Logger Creek 12		—						
444 3n2e14_010 Boike State University Boixe River 24 CMP 43.60013 -116.182976 445 3n2e14_013 ACHD Boixe River 30 RCP 43.600732 -116.1915 446 3n2e14_015 Private Boixe River 15 RCP 43.60223 -116.1916 447 3n2e14_015 Private Boixe River 12 CMP 43.60142 -116.190823 448 3n2e14_017 ACHD Boixe River 12 CMP 43.60142 -116.190823 450 3n2e14_018 Drainage District 3 Logger Creek 36 CMP 43.597041 -116.188143 451 3n2e14_021 Private Logger Creek 12 CMP 43.596692 -116.1884371 455 3n2e14_022 Private Logger Creek 12 CMP 43.596692 -116.1884371 456 3n2e14_023 Private Logger Creek 12 CMP 43.596694 -116.189085 457 3n2e14_025 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
446 3n2e14_012 ACHD Boise River 42 CMP 43.600792 -116.187922 446 3n2e14_013 ACHD Boise River 30 RCP 43.602833 -116.19346 447 3n2e14_015 Private Boise River 15 RCP 43.602825 -116.193245 448 3n2e14_015 ACHD Boise River 12 CMP 43.60142 -116.190823 449 3n2e14_018 Drainage District 3 Logger Creek 36 CMP 43.59808 -116.1818143 451 3n2e14_020 Private Logger Creek 12 CMP 43.596745 -116.188016 452 3n2e14_021 Private Logger Creek 12 CMP 43.596745 -116.188518 454 3n2e14_022 Private Logger Creek 12 CMP 43.59674 -116.184208 455 3n2e14_024 D25 Private Logger Creek 12 CMP 43.59674 -116.183256 456 3n2e14	-							
447 3n2e14 015 Private Boise River 15 R.P 43.602525 -116.192495 448 3n2e14_017 ACH0, ITD Boise River 12 CMP 43.601412 -116.190823 450 3n2e14_018 Drainage District 3 Logger Creek 36 CMP 43.59324 -116.181433 451 3n2e14_020 Private Logger Creek 12 CMP 43.597324 -116.181481 453 3n2e14_021 Private Logger Creek 12 CMP 43.597624 -116.184981 453 3n2e14_022 Private Logger Creek 12 CMP 43.596718 -116.184981 453 3n2e14_023 Private Logger Creek 12 CMP 43.596714 -116.184981 453 3n2e14_025 Private Logger Creek 12 CMP 43.596714 -116.184926 454 3n2e14_025 Private Logger Creek 12 CMP 43.599761 -116.183256 455								
448 3n2e14_016 ACHD Boise River 12 CMP 43.601412 -116.199833 449 3n2e14_017 ACHD, ITD Boise River 24 RCP 43.601449 -116.199833 449 3n2e14_019 Drainage District 3 Logger Creek 36 CMP 43.597324 -116.188143 451 3n2e14_020 Private Logger Creek 12 CMP 43.597021 -116.188436 453 3n2e14_021 Private Logger Creek 12 CMP 43.596745 -116.1884371 455 3n2e14_022 Private Logger Creek 12 CMP 43.596745 -116.184208 456 3n2e14_024 Boise State University Boise River 18 CMP 43.59964 -116.183055 458 3n2e14_026 Private Boise River 19 CMP 43.599678 -116.18305 459 3n2e14_027 ACHD Bubic City Canal-drain of 0 open ditch 43.601739 -116.19106 416 <td>446</td> <td></td> <td>ACHD</td> <td>Boise River</td> <td>30</td> <td>RCP</td> <td>43.602823</td> <td>-116.19136</td>	446		ACHD	Boise River	30	RCP	43.602823	-116.19136
449 3n2e14 017 ACHD, ITD Boise River 24 RCP 43.601949 -116.191697 450 3n2e14 018 Drainage District 3 Logger Creek 36 CMP 43.598808 -116.188143 51 3n2e14 020 Private Logger Creek 12 CMP 43.59721 -116.185988 453 3n2e14 022 Private Logger Creek 12 CMP 43.59674 -116.185988 454 3n2e14 023 Private Logger Creek 12 CMP 43.596718 -116.184204 455 3n2e14 025 Private Logger Creek 12 CMP 43.59674 -116.184204 453 3n2e14 026 Private Logger Creek 12 CMP 43.59674 -116.184208 454 3n2e14 025 Private Boise River 19 CMP 43.59674 -116.183454 458 3n2e14 026 Private Boise River 1	447	3n2e14_015	Private	Boise River	15	RCP	43.602525	-116.192495
450 3n2e14_018 Drainage District 3 Logger Creek 36 CMP 43.598808 -116.188143 451 3n2e14_019 ACHD Logger Creek 12 CMP 43.597324 -116.188161 453 3n2e14_021 Private Logger Creek 12 CMP 43.596745 -116.1883616 453 3n2e14_022 Private Logger Creek 12 CMP 43.596745 -116.1884208 455 3n2e14_023 Private Logger Creek 12 CMP 43.596745 -116.184208 456 3n2e14_026 Private Logger Creek 12 CMP 43.59678 -116.184208 457 3n2e14_026 Private Logger Creek 24 CMP 43.59678 -116.183456 459 3n2e14_027 ACHD Bubb Caal 12 CMP 43.59678 -116.183456 461 3n2e14_029 Private Boise City Canal-drain of 0 open ditch 43.601739 -116.176334 462 3	448	3n2e14_016	ACHD	Boise River	12	CMP	43.601412	-116.190823
451 3n2e14_019 ACHD Logger Creek 12 CMP 43.597324 -116.18016 452 3n2e14_020 Private Logger Creek 12 CMP 43.597021 -116.18616 453 3n2e14_021 Private Logger Creek 12 CMP 43.597021 -116.184301 454 3n2e14_022 Private Logger Creek 12 CMP 43.596743 -116.184371 455 3n2e14_023 Private Logger Creek 12 CMP 43.596743 -116.18406 456 3n2e14_025 Private Boise River 19 CMP 43.59674 -116.18305 458 3n2e14_027 ACHD, Boise City Logger Creek 12 CMP 43.59685 -116.133266 460 3n2e14_027 ACHD, Boise City Canal-drain of 0 open ditch 43.601739 -116.178334 461 3n2e14_030 Private Boise City Canal-drain of 0 open ditch 43.601239 -116.178337 463 3n2e	449	3n2e14_017	ACHD, ITD	Boise River	24	RCP	43.601949	-116.191697
452 3n2e14_020 Private Logger Creek 12 CMP 43.597021 -116.186816 453 3n2e14_021 Private Logger Creek 12 CMP 43.596702 -116.184981 454 3n2e14_022 Private Logger Creek 12 CMP 43.596718 -116.184201 455 3n2e14_024 Boise State University Boise River 18 CMP 43.596714 -116.184208 456 3n2e14_025 Private Logger Creek 12 CMP 43.59678 -116.183164 457 3n2e14_026 Private Logger Creek 12 CMP 43.596678 -116.183164 459 3n2e14_027 ACHD Bios City Logger Creek 12 CMP 43.509076 -116.183164 460 3n2e14_029 Private Boise City Canal-drain of 0 open ditch 43.601833 -116.17173 463 3n2e14_031 Private Boise City Canal-drain of 0 open ditch 43.601863 -116.178337 <tr< td=""><td></td><td></td><td>*</td><td>**</td><td></td><td></td><td></td><td></td></tr<>			*	**				
453 3n2e14_021 Private Logger Creek 12 CMP 43.596745 -116.185988 454 3n2e14_022 Private Logger Creek 12 CMP 43.596718 -116.184371 455 3n2e14_023 Private Logger Creek 12 CMP 43.596718 -116.184208 456 3n2e14_024 Boise State University Boise River 18 CMP 43.599614 -116.18505 458 3n2e14_025 Private Boise River 19 CMP 43.59964 -116.18505 458 3n2e14_028 ACHD Bubb Canal 12 CMP 43.59678 -116.183266 460 3n2e14_028 ACHD Bubb Canal 12 CMP 43.50076 -116.180266 461 3n2e14_028 ACHD Boise City Canal-drain of 0 open ditch 43.601739 -116.17173 463 3n2e14_030 Private Boise City Canal-drain of 0 open ditch 43.602503 -116.178337 464 3n2e14_033 Drainage District 3 Logger Creek 18 ADS 43								
454 3n2e14_022 Private Logger Creek 12 CMP 43.596692 -116.184371 455 3n2e14_023 Private Logger Creek 12 CMP 43.596718 -116.184208 456 3n2e14_025 Private Boise River 19 CMP 43.59964 -116.18316 457 3n2e14_026 Private Logger Creek 22 CMP 43.599674 -116.183464 459 3n2e14_027 ACDD, Boise City Logger Creek 24 CMP 43.59076 -116.183256 460 3n2e14_028 ACHD Bubb Canal 12 CMP 43.590076 -116.183256 461 3n2e14_029 Private Boise City Canal-drain of 0 open ditch 43.601739 -116.17837 462 3n2e14_031 Private Boise City Canal-drain of 0 open ditch 43.602503 -116.178337 464 3n2e14_033 Private Logger Creek 18 ADS 43.596796 -116.178393 465 <td></td> <td>_</td> <td></td> <td>**</td> <td></td> <td></td> <td></td> <td></td>		_		**				
455 3n2e14_023 Private Logger Creek 12 CMP 43.596718 -116.184208 456 3n2e14_023 Private Boise River 18 CMP 43.599614 -116.18505 457 3n2e14_025 Private Boise River 19 CMP 43.59964 -116.183055 458 3n2e14_026 Private Logger Creek 12 CMP 43.59678 -116.183056 460 3n2e14_027 ACHD, Boise City Logger Creek 24 CMP 43.59676 -116.183256 461 3n2e14_029 Private Boise City Canal-drain of 0 open ditch 43.601863 -116.176334 462 3n2e14_030 Private Boise City Canal-drain of 0 open ditch 43.601863 -116.178337 464 3n2e14_033 Private Boise City Canal-drain of 0 open ditch 43.603089 -116.178337 465 3n2e14_035 Drainage District 3 Logger Creek 18 ADS 43.596756 -116.185513								
456 3n2e14_024 Boise State University Boise River 18 CMP 43.599614 -116.18516 457 3n2e14_025 Private Boise River 19 CMP 43.59964 -116.18505 458 3n2e14_027 ACHD, Boise City Logger Creek 24 CMP 43.59678 -116.183256 460 3n2e14_028 ACHD Bubb Canal 12 CMP 43.501739 -116.191096 461 3n2e14_029 Private Boise City Canal-drain of 0 open ditch 43.601739 -116.171073 462 3n2e14_030 Private Boise City Canal-drain of 0 open ditch 43.600363 -116.17173 463 3n2e14_031 Private Boise City Canal-drain of 0 open ditch 43.60089 -116.178989 465 3n2e14_033 Private Logger Creek 18 ADS 43.596796 -116.185851 466 3n2e14_035 Drainage District 3 Logger Creek 18 ADS 43.596147 -116.208523								
457 3n2e14_025 Private Boise River 19 CMP 43.59964 -116.185055 458 3n2e14_027 ACHD, Boise City Logger Creek 12 CMP 43.59678 -116.183266 460 3n2e14_027 ACHD, Boise City Logger Creek 24 CMP 43.59076 -116.183266 460 3n2e14_028 ACHD Bubb Canal 12 CMP 43.50076 -116.191096 461 3n2e14_029 Private Boise City Canal-drain of 0 open ditch 43.601739 -116.170733 462 3n2e14_031 Private Boise City Canal-drain of 0 open ditch 43.602503 -116.178337 464 3n2e14_032 Private, Irrigation Boise City Canal-drain of 0 open ditch 43.60289 -116.178399 465 3n2e14_032 Private Logger Creek 18 ADS 43.596796 -116.104995 466 3n2e14_036 ITD Boise River 12 PVC 43.602698 -116.104995								
458 3n2e14_026 Private Logger Creek 12 CMP 43.59678 -116.183464 459 3n2e14_027 ACHD, Boise City Logger Creek 24 CMP 43.596855 -116.183256 460 3n2e14_028 ACHD Bubb Canal 12 CMP 43.590076 -116.191096 461 3n2e14_030 Private Boise City Canal-drain of 0 open ditch 43.601739 -116.176834 462 3n2e14_031 Private Boise City Canal-drain of 0 open ditch 43.602503 -116.17837 463 3n2e14_032 Private, Irrigation Boise City Canal-drain of 0 open ditch 43.602503 -116.17837 464 3n2e14_033 Private, Irrigation Boise City Canal-drain of 0 open ditch 43.602698 -116.17837 465 3n2e14_033 Private Logger Creek 0 open ditch 43.602698 -116.186513 466 3n2e14_037 ACHD Logger Creek 0 open ditch 43.598679								
459 3n2e14_027 ACHD, Boise City Logger Creek 24 CMP 43.596865 -116.183256 460 3n2e14_028 ACHD Bubb Canal 12 CMP 43.590076 -116.191096 461 3n2e14_029 Private Boise City Canal-drain of 0 open ditch 43.601739 -116.177133 462 3n2e14_030 Private Boise City Canal-drain of 0 open ditch 43.602503 -116.177133 463 3n2e14_032 Private, Irrigation Boise City Canal-drain of 0 open ditch 43.602503 -116.178389 465 3n2e14_033 Private Logger Creek 18 ADS 43.596796 -116.186513 466 3n2e14_035 Drainage District 3 Logger Creek 0 open ditch 43.50265 -116.104995 467 3n2e14_037 ACHD Logger Creek 0 open ditch 43.50265 -116.104995 468 3n2e14_037 ACHD Rogger Creek 24 RCP 43.592617 -1								
460 3n2e14_028 ACHD Bubb Canal 12 CMP 43.590076 -116.191096 461 3n2e14_029 Private Boise City Canal-drain of 0 open ditch 43.601739 -116.176834 462 3n2e14_030 Private Boise City Canal-drain of 0 open ditch 43.601739 -116.178337 463 3n2e14_031 Private Boise City Canal-drain of 0 open ditch 43.601863 -116.178337 464 3n2e14_032 Private, Irrigation Boise City Canal-drain of 0 open ditch 43.603089 -116.178387 464 3n2e14_032 Private, Irrigation Boise City Canal-drain of 0 open ditch 43.603089 -116.178387 466 3n2e14_033 Private Logger Creek 0 open ditch 43.352365 -116.104995 467 3n2e14_037 ACHD Logger Creek 24 RCP 43.59637 -116.182071 468 3n2e15_001 ACHD Ridenbaugh Canal 18 RCP 4								
461 3n2e14_029 Private Boise City Canal-drain of 0 open ditch 43.601739 -116.176834 462 3n2e14_030 Private Boise City Canal-drain of 0 open ditch 43.601863 -116.177173 463 3n2e14_031 Private Boise City Canal-drain of 0 open ditch 43.602803 -116.178337 464 3n2e14_032 Private, Irrigation Boise City Canal-drain of 0 open ditch 43.603089 -116.178337 465 3n2e14_035 Drainage District 3 Logger Creek 18 ADS 43.596796 -116.186513 466 3n2e14_035 Drainage District 3 Logger Creek 0 open ditch 43.352365 -116.104995 467 3n2e14_037 ACHD Logger Creek 24 RCP 43.598437 -116.178737 468 3n2e15_001 ACHD Ridenbaugh Canal 10 CMP 43.598637 -116.208523 470 3n2e15_004 ACHD Ridenbaugh Canal 12 RCP 4	-							
463 3n2e14_031 Private Boise City Canal-drain of 0 open ditch 43.602503 -116.178337 464 3n2e14_032 Private, Irrigation Boise City Canal-drain of 0 open ditch 43.603089 -116.178337 464 3n2e14_033 Private Logger Creek 18 ADS 43.596796 -116.186513 466 3n2e14_035 Drainage District 3 Logger Creek 0 open ditch 43.352365 -116.104995 467 3n2e14_037 ACHD Logger Creek 24 RCP 43.598337 -116.187579 468 3n2e15_001 ACHD Ridenbaugh Canal 10 CMP 43.598617 -116.208523 470 3n2e15_006 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.209501 472 3n2e15_006 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.213355 473 3n2e15_007 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.213452 <	461	_	Private	Boise City Canal-drain of	0		43.601739	
463 3n2e14_031 Private Boise City Canal-drain of 0 open ditch 43.602503 -116.178337 464 3n2e14_032 Private, Irrigation Boise City Canal-drain of 0 open ditch 43.603089 -116.178337 464 3n2e14_033 Private Logger Creek 18 ADS 43.596796 -116.186513 466 3n2e14_035 Drainage District 3 Logger Creek 0 open ditch 43.352365 -116.104995 467 3n2e14_037 ACHD Logger Creek 24 RCP 43.598337 -116.187579 468 3n2e15_001 ACHD Ridenbaugh Canal 10 CMP 43.598617 -116.208523 470 3n2e15_006 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.209501 472 3n2e15_006 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.213355 473 3n2e15_007 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.213452 <			Private					
465 3n2e14_033 Private Logger Creek 18 ADS 43.596796 -116.186513 466 3n2e14_035 Drainage District 3 Logger Creek 0 open ditch 43.352365 -116.104995 467 3n2e14_036 ITD Boise River 12 PVC 43.602698 -116.192701 468 3n2e14_037 ACHD Logger Creek 24 RCP 43.598337 -116.1087579 469 3n2e15_001 ACHD Ridenbaugh Canal 10 CMP 43.596147 -116.208233 470 3n2e15_004 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.209061 471 3n2e15_006 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.213355 473 3n2e15_007 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.213355 474 3n2e15_009 ACHD Ridenbaugh Canal 12 CMP 43.598735 -116.21177 474 3n2e15_	463		Private	Boise City Canal-drain of	0	open ditch	43.602503	-116.178337
466 3n2e14_035 Drainage District 3 Logger Creek 0 open ditch 43.352365 -116.104995 467 3n2e14_036 ITD Boise River 12 PVC 43.602698 -116.104995 468 3n2e14_037 ACHD Logger Creek 24 RCP 43.598337 -116.187579 469 3n2e15_001 ACHD Ridenbaugh Canal 10 CMP 43.596147 -116.208523 470 3n2e15_004 ACHD Ridenbaugh Canal 12 CMP 43.598697 -116.209061 471 3n2e15_006 ACHD Ridenbaugh Canal 12 CMP 43.598695 -116.213462 472 3n2e15_007 ACHD Ridenbaugh Canal 12 CMP 43.598697 -116.213462 473 3n2e15_009 ACHD Ridenbaugh Canal 12 CMP 43.598132 -116.21217 474 3n2e15_010 ACHD Ridenbaugh Canal 12 CMP 43.598132 -116.21217 475 3n2e15_0			Private, Irrigation	Boise City Canal-drain of			43.603089	-116.178989
4673n2e14_036ITDBoise River12PVC43.602698-116.1927014683n2e14_037ACHDLogger Creek24RCP43.598337-116.1875794693n2e15_001ACHDRidenbaugh Canal10CMP43.596147-116.2085234703n2e15_004ACHDRidenbaugh Canal18RCP43.596797-116.2090614713n2e15_006ACHDRidenbaugh Canal12CMP43.598695-116.2134624723n2e15_007ACHDRidenbaugh Canal12RCP43.598617-116.2133554733n2e15_008ACHDRidenbaugh Canal12CMP43.598617-116.2133554743n2e15_009ACHDRidenbaugh Canal12CMP43.598132-116.2116194743n2e15_010ACHDRidenbaugh Canal12CMP43.598132-116.212174753n2e15_011ACHDRidenbaugh Canal12CMP43.598211-116.2124814763n2e15_017Boise State UniversityBoise River24SMP43.604067-116.1946844783n2e15_017Boise State UniversityBoise River24SMP43.604067-116.1946844793n2e15_022PrivateBubb Canal8CMP43.594869-116.2019194803n2e15_023ACHDRidenbaugh Canal0Drop Inlet43.598702-116.2134664813n2e15_025IrrigationRidenbaugh Canal<								
4683n2e14_037ACHDLogger Creek24RCP43.598337-116.1875794693n2e15_001ACHDRidenbaugh Canal10CMP43.596147-116.2085234703n2e15_004ACHDRidenbaugh Canal18RCP43.596797-116.2090614713n2e15_006ACHDRidenbaugh Canal12CMP43.598695-116.2134624723n2e15_007ACHDRidenbaugh Canal12RCP43.598617-116.2133554733n2e15_008ACHDRidenbaugh Canal12CMP43.598132-116.2133554743n2e15_009ACHDRidenbaugh Canal12CMP43.598132-116.2116194743n2e15_009ACHDRidenbaugh Canal8CMP43.598132-116.212174753n2e15_010ACHDRidenbaugh Canal12CMP43.598211-116.2124814763n2e15_017Boise State UniversityBoise River24SMP43.604067-116.1946844783n2e15_019PrivateBubb Canal8CMP43.598698-116.2019194803n2e15_023ACHDRidenbaugh Canal0Drop Inlet43.598676-116.2134664813n2e15_024ACHDRidenbaugh Canal0Drop Inlet43.598702-116.203444823n2e15_025IrrigationRidenbaugh Canal0Drop Inlet43.598702-116.20344		—						
469 3n2e15_001 ACHD Ridenbaugh Canal 10 CMP 43.596147 -116.208523 470 3n2e15_004 ACHD Ridenbaugh Canal 18 RCP 43.596797 -116.209061 471 3n2e15_006 ACHD Ridenbaugh Canal 12 CMP 43.598695 -116.213462 472 3n2e15_007 ACHD Ridenbaugh Canal 12 RCP 43.598617 -116.213355 473 3n2e15_008 ACHD Ridenbaugh Canal 12 CMP 43.598132 -116.211355 473 3n2e15_009 ACHD Ridenbaugh Canal 12 CMP 43.598132 -116.21217 474 3n2e15_010 ACHD Ridenbaugh Canal 12 CMP 43.598211 -116.212481 476 3n2e15_010 ACHD Ridenbaugh Canal 10 CMP 43.596987 -116.2092 477 3n2e15_017 Boise State University Boise River 24 SMP 43.604067 -116.194684 478 3n2								
470 3n2e15_004 ACHD Ridenbaugh Canal 18 RCP 43.596797 -116.209061 471 3n2e15_006 ACHD Ridenbaugh Canal 12 CMP 43.598695 -116.213462 472 3n2e15_007 ACHD Ridenbaugh Canal 12 RCP 43.598617 -116.213355 473 3n2e15_008 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.213355 473 3n2e15_009 ACHD Ridenbaugh Canal 12 CMP 43.598132 -116.211619 474 3n2e15_009 ACHD Ridenbaugh Canal 8 CMP 43.598132 -116.21217 475 3n2e15_010 ACHD Ridenbaugh Canal 12 CMP 43.598211 -116.212481 476 3n2e15_011 ACHD Ridenbaugh Canal 10 CMP 43.596987 -116.2092 477 3n2e15_017 Boise State University Boise River 24 SMP 43.604067 -116.194684 478 3n2e								
471 3n2e15_006 ACHD Ridenbaugh Canal 12 CMP 43.598695 -116.213462 472 3n2e15_007 ACHD Ridenbaugh Canal 12 RCP 43.598617 -116.213355 473 3n2e15_008 ACHD Ridenbaugh Canal 12 CMP 43.598617 -116.213355 473 3n2e15_008 ACHD Ridenbaugh Canal 12 CMP 43.598132 -116.211619 474 3n2e15_009 ACHD Ridenbaugh Canal 8 CMP 43.598132 -116.21217 475 3n2e15_010 ACHD Ridenbaugh Canal 12 CMP 43.598211 -116.212481 476 3n2e15_011 ACHD Ridenbaugh Canal 10 CMP 43.598276 -116.2092 477 3n2e15_017 Boise State University Boise River 24 SMP 43.604067 -116.194684 478 3n2e15_019 Private Bubb Canal 8 CMP 43.591521 -116.194637 479 3n2e15_0				*				
4723n2e15_007ACHDRidenbaugh Canal12RCP43.598617-116.2133554733n2e15_008ACHDRidenbaugh Canal12CMP43.597935-116.2116194743n2e15_009ACHDRidenbaugh Canal8CMP43.598132-116.212174753n2e15_010ACHDRidenbaugh Canal12CMP43.598132-116.2124814763n2e15_010ACHDRidenbaugh Canal10CMP43.5986987-116.2124814763n2e15_011ACHDRidenbaugh Canal10CMP43.596987-116.210244773n2e15_017Boise State UniversityBoise River24SMP43.604067-116.1946844783n2e15_019PrivateBubb Canal8CMP43.591521-116.1948474793n2e15_022PrivateBubb Canal8CMP43.594569-116.2019194803n2e15_023ACHDRidenbaugh Canal0Drop Inlet43.59876-116.2134664813n2e15_024ACHDRidenbaugh Canal0Drop Inlet43.598702-116.2134964823n2e15_025IrrigationRidenbaugh Canal10CMP43.598702-116.20344				-				
473 3n2e15_008 ACHD Ridenbaugh Canal 12 CMP 43.597935 -116.211619 474 3n2e15_009 ACHD Ridenbaugh Canal 8 CMP 43.597935 -116.21217 475 3n2e15_010 ACHD Ridenbaugh Canal 12 CMP 43.598132 -116.21217 476 3n2e15_010 ACHD Ridenbaugh Canal 12 CMP 43.598211 -116.212481 476 3n2e15_011 ACHD Ridenbaugh Canal 10 CMP 43.596987 -116.2092 477 3n2e15_017 Boise State University Boise River 24 SMP 43.604067 -116.194684 478 3n2e15_019 Private Bubb Canal 8 CMP 43.591521 -116.194437 479 3n2e15_022 Private Bubb Canal 8 CMP 43.598676 -116.201919 480 3n2e15_023 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598762 -116.213466 481 3n2e15_				0				
474 3n2e15_009 ACHD Ridenbaugh Canal 8 CMP 43.598132 -116.21217 475 3n2e15_010 ACHD Ridenbaugh Canal 12 CMP 43.598132 -116.212481 476 3n2e15_011 ACHD Ridenbaugh Canal 10 CMP 43.596987 -116.2092 477 3n2e15_017 Boise State University Boise River 24 SMP 43.604067 -116.194684 478 3n2e15_019 Private Bubb Canal 8 CMP 43.594521 -116.20919 480 3n2e15_022 Private Bubb Canal 8 CMP 43.594869 -116.201919 480 3n2e15_023 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598676 -116.213466 481 3n2e15_024 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598702 -116.21349 482 3n2e15_025 Irrigation Ridenbaugh Canal 10 CMP 43.59575 -116.208344								
475 3n2e15_010 ACHD Ridenbaugh Canal 12 CMP 43.598211 -116.212481 476 3n2e15_011 ACHD Ridenbaugh Canal 10 CMP 43.596987 -116.2092 477 3n2e15_017 Boise State University Boise River 24 SMP 43.604067 -116.194684 478 3n2e15_019 Private Bubb Canal 8 CMP 43.591521 -116.194437 479 3n2e15_022 Private Bubb Canal 8 CMP 43.594869 -116.201919 480 3n2e15_023 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598676 -116.213466 481 3n2e15_024 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598702 -116.213496 482 3n2e15_025 Irrigation Ridenbaugh Canal 10 CMP 43.59575 -116.208344				-				
476 3n2e15_011 ACHD Ridenbaugh Canal 10 CMP 43.596987 -116.2092 477 3n2e15_017 Boise State University Boise River 24 SMP 43.604067 -116.194684 478 3n2e15_019 Private Bubb Canal 8 CMP 43.591521 -116.194437 479 3n2e15_022 Private Bubb Canal 8 CMP 43.594869 -116.201919 480 3n2e15_023 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598676 -116.213466 481 3n2e15_024 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598702 -116.21349 482 3n2e15_025 Irrigation Ridenbaugh Canal 10 CMP 43.59575 -116.208344		_		· · · · · · · · · · · · · · · · · · ·				
477 3n2e15_017 Boise State University Boise River 24 SMP 43.604067 -116.194684 478 3n2e15_019 Private Bubb Canal 8 CMP 43.591521 -116.194437 479 3n2e15_022 Private Bubb Canal 8 CMP 43.594869 -116.201919 480 3n2e15_023 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598676 -116.213466 481 3n2e15_024 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598702 -116.21349 482 3n2e15_025 Irrigation Ridenbaugh Canal 10 CMP 43.59575 -116.208344				*				
478 3n2e15_019 Private Bubb Canal 8 CMP 43.591521 -116.194437 479 3n2e15_022 Private Bubb Canal 8 CMP 43.594869 -116.201919 480 3n2e15_023 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598676 -116.213466 481 3n2e15_024 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598702 -116.21349 482 3n2e15_025 Irrigation Ridenbaugh Canal 10 CMP 43.59575 -116.208344				<u>×</u>				
479 3n2e15_022 Private Bubb Canal 8 CMP 43.594869 -116.201919 480 3n2e15_023 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598676 -116.213466 481 3n2e15_024 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598702 -116.21349 482 3n2e15_025 Irrigation Ridenbaugh Canal 10 CMP 43.59575 -116.208344								
480 3n2e15_023 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598676 -116.213466 481 3n2e15_024 ACHD Ridenbaugh Canal 0 Drop Inlet 43.598702 -116.213496 482 3n2e15_025 Irrigation Ridenbaugh Canal 10 CMP 43.59575 -116.208344								
482 3n2e15_025 Irrigation Ridenbaugh Canal 10 CMP 43.59575 -116.208344	480	_	ACHD	Ridenbaugh Canal		Drop Inlet		
	481	3n2e15_024	ACHD	Ridenbaugh Canal	0	Drop Inlet	43.598702	-116.21349
483 3n2e15_029 ACHD, Irrigation Unnamed 12 CMP 43.592071 -116.208709			-					
	483	3n2e15_029	ACHD, Irrigation	Unnamed	12	CMP	43.592071	-116.208709

#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
484	3n2e15 030	ACHD	Bubb Canal	12	RCP	43.593976	-116.198546
485	3n2e16 001	ACHD	Electric Light Lateral	12	SMP	43.603261	-116.22851
486		ACHD	North Slough	12	CMP	43.604249	-116.227414
487	3n2e16_003	ACHD	Electric Light Lateral	12	CMP	43.603749	-116.227101
488	3n2e16_004	Private	Ridenbaugh Canal	7	RCP	43.597898	-116.229413
489	3n2e16_005	ACHD	Ridenbaugh Canal	12	CMP	43.598079	-116.228733
490	3n2e16_006	All Saints Episcipal Church	Ridenbaugh Canal	8	CMP	43.59837	-116.227644
491	3n2e16_007	ACHD, Irrigation	Ridenbaugh Canal	12	CMP	43.598745	-116.226429
492	3n2e16_008	ACHD	Ridenbaugh Canal	8	RCP	43.598593	-116.226897
493	3n2e16_009	ACHD	Ridenbaugh Canal	10	CMP	43.598974	-116.225629
494	3n2e16_010	ACHD	Ridenbaugh Canal	10	RCP	43.598955	-116.225275
495	3n2e16_011	ACHD	Ridenbaugh Canal	36	CMP	43.599451	-116.223518
496 497	3n2e16_012 3n2e16 013	Private	Electric Light Lateral	8 10	CMP	43.603772	-116.220203
497	3n2e16_013 3n2e16_014	Irrigation ACHD	Electric Light Lateral Electric Light Lateral	8	CMP	43.602418 43.602977	-116.218708 -116.219268
499	3n2e16_014	ACHD	Ridenbaugh Canal	12	CMP	43.600316	-116.220562
500	3n2e16 018	ACHD, Irrigation	Ridenbaugh Canal	12	CMP	43.600105	-116.221066
501	3n2e16 019	ACHD	Ridenbaugh Canal	8	CMP	43.600523	-116.217306
502	3n2e16 021	ACHD	Ridenbaugh Canal	18	RCP	43.598877	-116.214001
503	3n2e16_022	ACHD	Ridenbaugh Canal	10	CMP	43.598845	-116.213881
504		ACHD	Ridenbaugh Canal	15	RCP	43.600586	-116.217017
505		Irrigation	Ridenbaugh Canal	10	CMP	43.598159	-116.228796
506	3n2e16_025	ACHD	Ridenbaugh Canal	18	RCP	43.600725	-116.218783
507	3n2e16_026	ACHD	Ridenbaugh Canal	24	CMP	43.59994	-116.221809
508	3n2e16_027	ACHD	Unnamed	12	PVC	43.602436	-116.217967
509	3n2e16_028	ACHD	Unnamed	12	RCP	43.595259	-116.22608
510	3n2e16_029	ACHD	Unnamed	8	RCP	43.595667	-116.226088
511	3n2e16_030	ACHD	Unnamed	12	RCP	43.595298	-116.220661
512 513	3n2e16_031	ACHD	Unnamed	12 12	PVC PVC	43.596113	-116.222274
513	3n2e16_032 3n2e16 033	ACHD ACHD	Bennett Lateral Unnamed	12	PVC	43.597168 43.598922	-116.22228 -116.232393
515	3n2e16_033	ACHD	Unnamed	12	PVC	43.598791	-116.232393
515	3n2e16 035	ACHD	Unnamed	10	PVC	43.598791	-116.232198
510	3n2e16_036	ACHD	Unnamed	8	PVC	43.596526	-116.223516
518	3n2e16 037	ACHD	Unnamed	12	PVC	43.596529	-116.223672
519	3n2e17 002	ACHD	Ridenbaugh Canal	12	PVC	43.600868	-116.251082
520	3n2e17_003	Private	Ridenbaugh Canal	6	PVC	43.600454	-116.249114
521	3n2e17_004	ACHD	Ridenbaugh Canal	12	RCP	43.600202	-116.248491
522	3n2e17_005	ACHD	Ridenbaugh Canal	12	RCP	43.600099	-116.24849
523	3n2e17_006	ACHD	Ridenbaugh Canal	12	CMP	43.599164	-116.246153
524	3n2e17_007	ACHD	Ridenbaugh Canal	12	RCP	43.597785	-116.244823
525	3n2e17_008	ACHD	Farmers Lateral	6	PVC	43.592534	-116.251237
526	3n2e17_009	Private	Farmers Lateral	12	RCP	43.591459	-116.2488
527	3n2e17_010	ACHD	Rust Lateral	8	RCP	43.602595	-116.242779
528	3n2e17_011	Wright Community Church	Rust Lateral	12	CMP	43.60182	-116.242165
529	3n2e17_012	ACHD, Irrigation	Rust Lateral	0	Drop Inlet	43.600776	-116.2409
530 531	3n2e17_013 3n2e17_014	ACHD ACHD	Rust Lateral Powell Lateral	24	RCP RCP	43.600707 43.597471	-116.240942 -116.238678
532	3n2e17_014 3n2e17_015	ACHD	Ridenbaugh Canal	12	CMP	43.597077	-116.238078
533	3n2e17_015	ACHD, Irrigation	Ridenbaugh Canal	10	PVC	43.597207	-116.24317
535	3n2e17_010	ACHD	Farmers Lateral	18	CMP	43.595719	-116.236695
535	3n2e17_019	ACHD	Farmers Lateral	18	RCP	43.595205	-116.236719
536	3n2e17_020	ACHD	Farmers Lateral	12	CMP	43.594329	-116.237036
537		ACHD, Private	Farmers Lateral	21	CMP	43.593305	-116.237014
538		ACHD	Farmers Lateral	15	RCP	43.593181	-116.237182
539	3n2e17_023	ACHD	Farmers Lateral	10	RCP	43.592245	-116.237231
540	3n2e17_024	ACHD	Farmers Lateral	8	CMP	43.5916	-116.237381
541	3n2e17_025	ACHD	Farmers Lateral	8	CMP	43.591599	-116.237353
542	3n2e17_026	Private	Farmers Lateral	0	Drop Inlet	43.590673	-116.237811
543	3n2e17_027	Private	Farmers Lateral	0	Drop Inlet	43.590433	-116.238699
544	3n2e17_028	Private	Farmers Lateral	0	Drop Inlet	43.590442	-116.239066
545	3n2e17_029	Private	Farmers Lateral	0	Drop Inlet	43.59044	-116.23963
546	3n2e17_030	Private	Farmers Lateral	0	Drop Inlet	43.590458	-116.240153
547	3n2e17_031	ACHD	Rust Lateral	0	Drop Inlet	43.602853	-116.243423
548	3n2e17_032	ACHD	Ridenbaugh Canal	18	CMP	43.598493	-116.245212
549	3n2e17_033	ACHD Private	Ridenbaugh Canal	10 12	RCP RCP	43.597362	-116.24373
550 551	3n2e17_034 3n2e17_035	ACHD, Private Irrigation	Ridenbaugh Canal Farmers Lateral	12	CMP	43.597285 43.591596	-116.243434 -116.248744
551	3n2e17_035 3n2e17_036	Irrigation	Ridenbaugh Canal	10	CMP	43.597388	-116.24378
552	5112017_030	ingation	Muchbaugh Canai	10	CIVIE	-J.JJ/J00	110.24370

		011/015261112		PIPE			
#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
553	3n2e17_037	ACHD	Ridenbaugh Ditch	24	CMP	43.35497	-116.15132
554	3n2e17_038	ACHD	Ridenbaugh Ditch	12	PVC	43.354949	-116.158334
555 556	3n2e17_039 3n2e17 040	Private ACHD	Ridenbaugh Ditch Ridenbaugh Ditch	<u>15</u> 0	CMP Drop Inlet	43.354928 43.354764	-116.157615 -116.145457
550	3n2e17_040 3n2e17_041	ACHD	Ridenbaugh Ditch	0	Drop Inlet	43.354764	-116.145457
558	3n2e17_041 3n2e17_042	ACHD	Ridenbaugh Ditch	12	CMP	43.35426	-116.144736
559	3n2e17_043	Private	Ridenbaugh Ditch	12	Unknown	43.353687	-116.14421
560	3n2e17_044	Private	Ridenbaugh Ditch	8	SMP	43.354948	-116.158027
561	3n2e17_045	ACHD	Ridenbaugh Ditch	12	CMP	43.596568	-116.248496
562	3n2e17_046	ACHD	Ridenbaugh Ditch	0	Drop Inlet	43.596573	-116.248695
563	3n2e17_047 3n2e17 048	ACHD	Ridenbaugh Ditch	15 12	CMP	43.596572	-116.248696
564 565	3n2e17_048 3n2e17_049	ACHD ACHD	Unnamed Unnamed	12	CMP PVC	43.601626 43.598562	-116.23737 -116.246638
566	3n2e17_049 3n2e17_050	ACHD	Unnamed	12	PVC	43.598406	-116.246632
567	3n2e18 001	ACHD, Railroad	Ridenbaugh Canal	0	open ditch	43.604679	-116.265314
568		ACHD	Ridenbaugh Canal	36	RCP	43.603945	-116.260141
569	3n2e18_003	ACHD	Ridenbaugh Canal	8	CMP	43.603219	-116.259268
570	3n2e18_004	Private	Ridenbaugh Canal	12	CMP	43.602617	-116.25898
571	3n2e18_005	ACHD	Ridenbaugh Canal	12	CMP	43.601903	-116.25842
572	3n2e18_006	Private	Ridenbaugh Canal	8	PVC	43.600633	-116.257876
573 574	3n2e18_007 3n2e18 008	Private Private	Ridenbaugh Canal Ridenbaugh Canal	3 6	PVC RCP	43.600368 43.599742	-116.257695 -116.257338
575	3n2e18_008 3n2e18_009	ACHD, Irrigation	Ridenbaugh Canal	10	PVC	43.600346	-116.257338
576	3n2e18 010	ACHD	Ridenbaugh Canal	8	CMP	43.60026	-116.253855
577	3n2e18_011	Private	Ridenbaugh Canal	8	PVC	43.599676	-116.257466
578	3n2e18_012	Irrigation	Ridenbaugh Canal	36	RCP	43.599566	-116.256638
579	3n2e18_013	ACHD	Farmers Lateral	15	SMP	43.595855	-116.261996
580	3n2e18_014	ACHD	Farmers Lateral	12	CMP	43.594014	-116.256643
581	3n2e18_015	ACHD	Farmers Lateral	12	PVC	43.597829	-116.267257
582 583	3n2e18_016 3n2e18 017	ACHD ACHD	Ridenbaugh Canal Ridenbaugh Canal	12 8	CMP CMP	43.604416	-116.261134 -116.253895
584	3n2e18_017 3n2e18_018	ACHD	Ridenbaugh Ditch	8	PVC	43.35536	-116.1524
585	3n2e18 019	ACHD	Ridenbaugh Ditch	6	CMP	43.355281	-116.152273
586	3n2e18_020	Private	Ridenbaugh Ditch	15	RCP	43.354972	-116.15144
587	3n2e19_002	ACHD	Unnamed	15	PVC	43.580866	-116.25368
588	3n2e19_003	ACHD	Threemile Creek	30	RCP	43.575593	-116.263723
589	3n2e19_004	ACHD	Threemile Creek	12	PVC	43.576656	-116.265068
590	3n2e20_002	ACHD	Penninger Lateral	10	CMP	43.584867	-116.246472
591 592	3n2e20_004 3n2e20_005	ACHD Private	Penninger Lateral Threemile Creek	10 12	CMP CMP	43.582661 43.577742	-116.240959 -116.243354
592	3n2e20_005	ACHD	Threemile Creek	12	СМР	43.577787	-116.243354
594	3n2e20_000	Private	Threemile Creek	12	PVC	43.577162	-116.246228
595	3n2e20_008	ACHD	Threemile Lateral	10	CMP	43.577333	-116.241193
596	3n2e20_009	ACHD	Threemile Lateral	0	Drop Inlet	43.57774	-116.240158
597	3n2e20_010	ACHD	Threemile Lateral	0	Drop Inlet	43.577741	-116.24002
598	3n2e20_011	ACHD	Threemile Lateral	0	Drop Inlet	43.577721	-116.23923
599	3n2e20_013	ACHD	Threemile Lateral	12	PVC	43.577594	-116.2382
600 601	3n2e20_014 3n2e20 015	ACHD ACHD	Threemile Lateral Threemile Lateral	12 24	PVC CMP	43.577504 43.577119	-116.237287 -116.246278
601	3n2e20_015 3n2e20_016	ACHD	Unnamed	12	СМР	43.583444	-116.246278
603	3n2e20_010	ITD	Threemile Lateral	0	Drop Inlet	43.576823	-116.246582
604	3n2e20_018	ACHD	New York Canal	8	PVC	43.582391	-116.233593
605		ACHD	Threemile Creek	0	Drop Inlet	43.577296	-116.240978
606	3n2e20_020	ACHD	Threemile Creek	0	Drop Inlet	43.577728	-116.23907
607	3n2e20_021	ACHD	Threemile Creek	18	RCP	43.343161	-116.151334
608	3n2e20_022	ACHD	Unnamed	15	RCP	43.579731	-116.247845
609 610	3n2e20_023 3n2e20_024	ACHD	Unnamed	12	PVC	43.579755	-116.248534
610 611	3n2e20_024 3n2e20_025	ACHD ACHD	Unnamed New York Canal	12 12	CMP PVC	43.575829 43.582792	-116.23677 -116.233664
612	3n2e21 001	ACHD	Unnamed	5	PVC	43.57629	-116.215005
613	3n2e21_001	ACHD	Unnamed	4	PVC	43.576442	-116.215221
614	3n2e21_003	ACHD	Hyatt Lateral	0	Drop Inlet	43.588236	-116.217951
615	3n2e21_004	ACHD	Unnamed	24	CMP	43.57712	-116.215988
616	3n2e21_005	ACHD	Unnamed	12	RCP	43.575726	-116.21416
617	3n2e22_002	ACHD	Ridenbaugh Canal	15	RCP	43.588437	-116.201235
618	3n2e22_004	ACHD	Ridenbaugh Canal	12	RCP	43.585662	-116.200758
619 620	3n2e22_005 3n2e22_006	Private Private	Drain A Drain A	12 12	PVC RCP	43.58257 43.579004	-116.198994 -116.197437
620	3n2e22_006	ITD	Ridenbaugh Canal	12	RCP	43.575476	-116.193628
021	3112022_012	10	nachsaugh canar	14	nci	43.373470	110.133020

#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE	PIPE TYPE	LATITUDE	LONGITUDE
622	3n2e22 013	ITD	Ridenbaugh Canal	DIAMETER 12	PVC	43.575666	-116.193787
622	3n2e22_013 3n2e22_014	ACHD	Bennett Lateral	12	CMP	43.578898	-116.20354
624	3n2e22_014	ACHD	Ridenbaugh Canal	12	RCP	43.589794	-116.202175
625	3n2e22_010	ACHD	Unnamed	0	Drop Inlet	43.575374	-116.208644
626	3n2e22 018	ACHD	Unnamed	8	CMP	43.580785	-116.204884
627		ACHD	Unnamed	18	CMP	43.579868	-116.207153
628	3n2e22_020	ACHD	Unnamed	18	SHDPE	43.575385	-116.21231
629	3n2e23_001	ACHD	Logger Creek	12	CMP	43.587401	-116.173548
630	3n2e23_002	ACHD	Logger Creek	15	RCP	43.587332	-116.17347
631	3n2e23_003	ACHD	Logger Creek	12	CMP	43.587241	-116.173666
632	3n2e23_004	Private	Bubb Canal	12	RCP	43.586685	-116.173709
633	3n2e23_005	ACHD	Logger Creek	12	RCP	43.588347	-116.176418
634	3n2e23_006	ACHD	Bubb Canal	12	RCP	43.586872	-116.177458
635	3n2e23_007	ACHD	Bubb Canal	12	PVC	43.586885	-116.178343
636	3n2e23_013	ACHD	Bubb Canal	12	RCP	43.588368	-116.185822
637	3n2e23_014 3n2e23 015	ACHD ACHD	Bubb Canal Bubb Canal	12 10	RCP CMP	43.588691	-116.187278 -116.189701
638 639	3n2e23_015	ACHD ACHD, Private	Unnamed	10	СМР	43.589622 43.586176	-116.189701
640	3n2e23_010 3n2e23_017	Private	Drain B	12	ADS	43.582024	-116.178021
641	3n2e23_017 3n2e23_019	Private	Drain B	15	ADS	43.581535	-116.177703
642	3n2e23_019 3n2e23_020	Private	Drain B	15	RCP	43.345004	-116.103326
643	3n2e23_020	Private	Drain B	15	ADS	43.580425	-116.174895
644	3n2e23 023	Private	Drain B	12	Open Concrete Slot	43.580205	-116.173977
645	3n2e24 002	Private	Drain B	18	PVC	43.58035	-116.172521
646	3n2e24 003	Private	Unnamed	24	CMP	43.58749	-116.171294
647	3n2e24_004	ACHD	Boise River	18	CMP	43.583144	-116.156937
648	3n2e24_005	ACHD	Boise River	12	CMP	43.584577	-116.159149
649	3n2e24_006	ACHD	Boise River	12	CMP	43.356875	-116.933662
650	3n2e24_007	ACHD	Boise City Canal	18	CMP	43.587545	-116.161031
651	3n2e24_008	Private	Lake Heron Creek-north fork	12	CMP	43.586381	-116.163253
652	3n2e24_009	Private	Lake Heron Creek-north fork	12	CMP	43.586321	-116.162993
653	3n2e24_010	Private	Lake Heron Creek-north fork	4	PVC	43.585216	-116.16239
654	3n2e24_011	Private	Lake Heron Creek-south fork	12	CMP	43.585533	-116.164015
655	3n2e24_012	Private	Logger Creek	12	CMP	43.582971	-116.162211
656	3n2e24_013	Private	Unnamed	18	CMP	43.58931	-116.172343
657	3n2e24_014	Private	Unnamed	12	CMP	43.588658	-116.171972
658	3n2e24_015	ACHD, Private	Lake Heron-lateral of	18	RCP	43.588489	-116.168924
659	3n2e24_016	Private	Lake Heron	10	PVC	43.589132	-116.168729
660	3n2e24_017	Private	Lake Heron-lateral of	12	RCP	43.588668	-116.167579
661 662	3n2e24_018 3n2e24 019	Private ACHD	Lake Heron-lateral of Unnamed	0	RCP Drop Inlet	43.587545 43.588615	-116.16652 -116.170962
663	3n2e24_019	Private	Lake Heron Creek-south fork	12	CMP	43.587735	-116.165091
664	3n2e24_020	Private	Lake Heron Creek-north fork	12	CMP	43.5879	-116.164461
665	3n2e24_021	Private	Unnamed	12	RCP	43.587449	-116.17106
666	3n2e24_022	ACHD	Lake Heron Creek-south fork	12	RCP	43.586689	-116.165168
667	3n2e24_024	ACHD	Logger Creek	18	PVC	43.585845	-116.166261
668	3n2e24 025	ACHD	Logger Creek	21	PVC	43.584398	-116.164725
669	3n2e24_026	Private	Unnamed	12	СМР	43.585103	-116.168071
670		Private	Unnamed	12	СМР	43.585809	-116.16912
671	3n2e24_028	ACHD	Unnamed	12	CMP	43.584179	-116.168276
672	3n2e24_030	ACHD	Unnamed	12	RCP	43.584636	-116.168879
673	3n2e24_031	ACHD	Unnamed	12	RCP	43.585083	-116.169641
674	3n2e24_032	Private	Logger Creek	12	CMP	43.581848	-116.160595
675	3n2e24_033	Private	Logger Creek	12	CMP	43.580635	-116.158693
676	3n2e24_034	Private	Logger Creek	10	RCP	43.578507	-116.154747
677	3n2e24_035	Private	Logger Creek	10	RCP	43.577197	-116.153879
678	3n2e24_039	Private	Unnamed	12	CMP	43.588626	-116.171942
679	3n2e24_040	ACHD	Unnamed	0	Drop Inlet	43.58833	-116.170826
680	3n2e24_041	ACHD	Boise River	12	CMP	43.356376	-116.933447
681	3n2e24_042	ACHD	Gallagher Canal	12	PVC	43.578689	-116.165813
682	3n2e25_001	ACHD	Ridenbaugh Canal	12	RCP	43.574334	-116.162536
683 684	3n2e25_002	ACHD ACHD	Ridenbaugh Canal	18 12	CMP ADS	43.573764	-116.158342
684 685	3n2e25_003 3n2e26 002	ACHD	New York Canal Ridenbaugh Canal	12	CMP	43.564358 43.573458	-116.167759 -116.190688
686	3n2e26_002 3n2e26_003	ACHD	Ridenbaugh Canal	12	RCP	43.573458	-116.190088
687	3n2e26_003	ACHD ACHD, ITD	Ridenbaugh Canal	12	RCP	43.574835	-116.193033
688	3n2e26_004 3n2e26_005	ITD	Ridenbaugh Canal	12	RCP	43.574855	-116.193278
689	3n2e26_009	Private	Drain D	8	PVC	43.56786	-116.17881
690	3n2e26 012	Private	Drain D	12	CMP	43.569182	-116.180809
			5.05				

691 692 693 694 695 696 697 698 699	3n2e26_015 3n2e27_001 3n2e27_002 3n2e27_003 3n2e27_004	Private ACHD ACHD	Drain D	DIAMETER 0	Grated Manhole	43.5695	-116 191109
693 694 695 696 697 698 699	3n2e27_002 3n2e27_003		New York Canal				-116.181108
694 695 696 697 698 699		ACHD	New York Canal	6	CMP	43.572151	-116.209194
695 696 697 698 699			New York Canal	12	CMP	43.571244	-116.205629
696 697 698 699	3n2e27_004	ACHD	New York Canal	10	CMP	43.570212	-116.20307
697 698 699		ACHD, ITD	New York Canal	15	CMP	43.569064	-116.199209
698 699	3n2e27_005	ACHD	New York Canal	24	CMP	43.568422	-116.194806
699	3n2e27_006	ACHD	Unnamed	6	RCP	43.572431	-116.199767
	3n2e27_007	ACHD	Unnamed	10	CMP	43.572758	-116.199992
	3n2e27_008	ACHD	Unnamed	10	CMP	43.572757	-116.200164
700	3n2e28_001 3n2e28_002	Private ACHD	New York Canal	8	PVC RCP	43.574493	-116.214837
701	3n2e28_002 3n2e29_001	Boise City	New York Canal Fivemile Creek	24	RCP	43.574358 43.334348	-116.214389 -116.143576
702	3n2e32 001	ACHD, Boise City	Fivemile Creek	0	open ditch	43.560876	-116.24395
703	3n2e33 001	ACHD	Fivemile Creek	12	PVC	43.554335	-116.233274
705	3n2e33 002	Private	Fivemile Creek	24	CMP	43.554225	-116.23252
706	3n2e34 001	ACHD	Fivemile Creek	18	PVC	43.557247	-116.193785
707	3n2e36_001	ACHD	Fivemile Creek-Trib. to	12	PVC	43.54973	-116.159655
708	3n2e36_002	Private	Fivemile Creek-Trib. to	24	PVC	43.550066	-116.159862
709	3n2e36_003	ACHD	Fivemile Creek-Trib. to	18	RCP	43.54995	-116.16067
710	3n2e36_004	ACHD	Fivemile Creek-Trib. to	12	HDPE	43.547641	-116.153946
711	3n2e36_005	ACHD	Fivemile Creek-Trib. to	12	CMP	43.546504	-116.153755
712	3n2e36_006	ACHD	Fivemile Creek-Trib. to	48	CMP	43.546407	-116.153787
713	3n2e36_007	ACHD	Fivemile Creek-Trib. to	12	HDPE	43.54675	-116.154286
714	3n2e36_009	ACHD	Fivemile Creek-Trib. to	12	CMP	43.547373	-116.153713
715	3n2e36_010	ACHD	Fivemile Creek-Trib. to	0	open ditch	43.549713	-116.15868
716	3n2e36_011	ITD	Fivemile Creek-Trib. to	18	CMP	43.551002	-116.172751
717	3n2e36_012	ITD	Fivemile Creek-Trib. to	18	CMP	43.550884	-116.172549
718	3n2e36_013	Private	Fivemile Creek	16	ADS	43.549771	-116.15969
719	3n2e36_014	ACHD	Fivemile Creek	24	RCP	43.330652	-116.93751
720	3n3e19_001	ACHD	Walling Creek	15 12	RCP	43.577889	-116.147426
721	3n3e19_002	ACHD	Unnamed	12	RCP PVC	43.575389	-116.152283
722	3n3e19_003 3n3e19_004	ACHD ACHD	Unnamed Unnamed	24	PVC PVC	43.577204 43.577055	-116.141101 -116.14054
724	3n3e19_004 3n3e19_005	ACHD	Penitentiary Canal	12	PVC	43.579225	-116.144033
725	3n3e19_006	ACHD	Unnamed	12	RCP	43.579524	-116.144803
726	3n3e19_007	ACHD	Unnamed	18	CMP	43.585323	-116.144886
727	3n3e19 008	ACHD	Unnamed	15	CMP	43.584793	-116.145111
728	3n3e19 009	ACHD	Unnamed	12	CMP	43.582855	-116.145787
729	3n3e19 010	ACHD	Unnamed	18	CMP	43.581004	-116.147516
730	3n3e19_011	ACHD	Penitentiary Canal	24	CMP	43.578981	-116.146078
731	3n3e19_012	ACHD	Penitentiary Canal	24	CMP	43.578573	-116.146949
732	3n3e19_013	ACHD	Unnamed	24	PVC	43.577044	-116.14058
733	3n3e19_014	ACHD	Unnamed	24	PVC	43.57704	-116.140685
734	3n3e19_015	DD3	Boise River	46	CMP	43.575052	-116.152037
735	3n3e20_001	ACHD	Penitentiary Canal	12	CMP	43.577771	-116.126218
736	3n3e21_001	ACHD	Unnamed	18	PVC	43.579567	-116.112656
737	3n3e28_001	ACHD	Penitentiary Canal	12	PVC	43.568273	-116.112583
738	3n3e29_002	ACHD	Ridenbaugh Canal	12	CMP	43.565114	-116.132816
739	3n3e30_001	Private	Unnamed	12	PVC	43.573345	-116.149287
740	3n3e30_003	Private	Unnamed	8	PVC	43.56827	-116.141564
741	3n3e30_004	Private	Unnamed	15	PVC	43.568119	-116.141457
742	3n3e30_005	ACHD	Ridenbaugh Canal	12	RCP	43.5655	-116.134487
743 744	3n3e30_006 3n3e31_001	ACHD	Ridenbaugh Canal	12	PVC	43.567018	-116.144071
744	3n3e31_001 3n3e31_002	ACHD ACHD	Unnamed Unnamed	15 18	RCP RCP	43.54726 43.547134	-116.138188 -116.137957
745	3n3e31_002 3n3e31_003	ACHD	Unnamed	18	RCP	43.547134	-116.137957
740	3n3e31_003	ACHD	Unnamed	12	HDPE	43.547079	-116.136987
747	3n3e31_004 3n3e31_005	ACHD	Unnamed	12	RCP	43.547095	-116.135486
748	3n3e31_006	ACHD	Unnamed	24	RCP	43.546741	-116.134706
750	3n3e32 001	ACHD	Fivemile Creek - Intermittent	12	PVC	43.324504	-116.729019
751	3n3e32 002	ACHD	Fivemile Creek - Intermittent	24	RCP	43.546958	-116.132017
752	3n3e32_003	ACHD	Unnamed	15	RCP	43.546951	-116.130463
753	3n3e32_004	ACHD	Unnamed	26	RCP	43.546815	-116.129053
754	3n3e32_005	ACHD	Unnamed	24	RCP	43.546765	-116.12796
755		ACHD	Fivemile Creek - Intermittent	26	RCP	43.546779	-116.126442
756		ACHD	Unnamed	30	RCP	43.546914	-116.12606
757	3n3e32_008	ACHD	Unnamed	24	PVC	43.547222	-116.125297
758	3n3e32_009	ACHD	Fivemile Creek - Intermittent	24	PVC	43.547221	-116.125296
759	4n1e13_001	ACHD	Eagle Drain	16	RCP	43.680795	-116.277478

#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE	ΡΙΡΕ ΤΥΡΕ	LATITUDE	LONGITUDE
760	4n1e13 002	ACHD	Eagle Drain	DIAMETER 27	RCP	43.680862	-116.279254
761	4n1e13_002 4n1e13_003	Irrigation, Private	Eagle Drain	10	СМР	43.684676	-116.293933
762	4n1e13_003	ACHD	Eagle Drain	24	CMP	43.684654	-116.293871
763	4n1e13_004	Private	Eagle Drain	24	RCP	43.68417	-116.289638
764	4n1e13 006	ACHD	Eagle Drain	48	RCP	43.684065	-116.289281
765	4n1e13_007	ACHD	Eagle Drain	24	RCP	43.683954	-116.288836
766	4n1e13_008	ACHD	Eagle Drain	12	HDPE	43.683648	-116.286817
767	4n1e13_009	ACHD	Eagle Drain	12	HDPE	43.683156	-116.283737
768	4n1e13_010	ACHD	Eagle Drain	12	HDPE	43.683171	-116.28445
769	4n1e13_011	ACHD	Eagle Drain	12	Corr. PVC	43.683033	-116.283334
770	4n1e13_012	ACHD	Eagle Drain	15	PVC	43.680911	-116.279299
771	4n1e13_015	ACHD	Eagle Drain	12	RCP	43.684439	-116.290631
772	4n1e13_016	ACHD	Eagle Drain	12	RCP	43.684336	-116.290432
773	4n1e13_017	ACHD	Eagle Drain	12	RCP	43.68397	-116.289059
774	4n1e13_019	ACHD	Eagle Drain	12	CMP	43.684663	-116.292606
775	4n1e13_020 4n1e13 021	ACHD	Eagle Drain Unnamed	12 10	CMP PVC	43.684641	-116.291427
776	4n1e13_021 4n1e13_022	ACHD ACHD	Seaman Gulch	10	PVC	43.684984 43.685208	-116.284047 -116.287779
778	4n1e13_022 4n1e14 001	ACHD	Eagle Drain	12	CMP	43.685208	-116.313853
779	4n1e14_001 4n1e14_002	ACHD	Eagle Drain	12	CMP	43.685804	-116.313845
779	4n1e14_002 4n1e14_003	Irrigation	Eagle Drain	12	CMP	43.684889	-116.313845
780	4n1e14_003	ACHD	Eagle Drain	24	CMP	43.684895	-116.301408
782	4n1e14_004	ACHD	Eagle Drain	12	CMP	43.684655	-116.294116
783	4n1e14_005	ACHD	Eagle Drain	30	RCP	43.684824	-116.301549
784	4n1e14 007	Irrigation	Eagle Drain	48	RCP	43.684698	-116.298974
785	4n1e14 008	Irrigation	Eagle Drain	18	CMP	43.684652	-116.294257
786	4n1e14 010	ACHD	Eagle Drain	12	PVC	43.684816	-116.301313
787	4n1e14 011	ACHD	Eagle Drain	12	CMP	43.684886	-116.303358
788	4n1e14_012	ACHD	Eagle Drain	12	CMP	43.684877	-116.303572
789	4n1e14_013	ACHD	Eagle Drain	12	PVC	43.684892	-116.30396
790	4n1e14_014	Irrigation	Eagle Drain	12	CMP	43.684768	-116.301731
791	4n1e23_001	ACHD	Dry Creek Canal	12	RCP	43.677148	-116.304038
792	4n1e23_002	ACHD	Elmore Drain	12	CMP	43.671594	-116.298287
793	4n1e23_003	ACHD	Elmore Drain	12	CMP	43.670788	-116.297299
794	4n1e23_004	ACHD	Elmore Drain	12	CMP	43.670768	-116.29742
795	4n1e23_005	ACHD	Elmore Drain	12	CMP	43.671045	-116.297733
796	4n1e23_006	Private	Warm Springs Canal	0	Drop Inlet	43.664502	-116.298379
797	4n1e23_007	ACHD	Warm Springs Canal	15	PVC	43.66477	-116.298353
798	4n1e23_008	ACHD	Warm Springs Canal	14	PVC	43.664769	-116.300061
799	4n1e23_009	ACHD	Dry Creek Canal	0	Grated Manhole	43.675313	-116.299173
800	4n1e23_010	Private	Dry Creek Canal	12	PVC	43.673903	-116.302646
801	4n1e23_013	Private	Dry Creek Canal	12	PVC	43.675264	-116.299153
802	4n1e23_014	ACHD	Dry Creek Canal	10	PVC	43.677272	-116.304379
803 804	4n1e23_015 4n1e23 016	Private ACHD	Warm Springs Canal Dry Creek Canal	12	Drop Inlet PVC	43.664422 43.673447	-116.298312 -116.294232
804	4n1e23_018 4n1e24_001	ACHD	Eagle Drain-lateral of	12	RCP	43.676902	-116.294232
805	4n1e24_001 4n1e24_002	ACHD	Eagle Drain-lateral of	12	RCP	43.675342	-116.284026
800	4n1e24_002 4n1e24_003	ACHD	Eagle Drain-lateral of	12	RCP	43.67382	-116.283527
808	4n1e24_003	ACHD	Elmore Drain	10	CMP	43.667487	-116.282578
809	4n1e24_006	Private	Dry Creek Canal	6	RCP	43.671284	-116.288836
810	4n1e24_007	ACHD	Elmore Drain	0	open ditch	43.667597	-116.286655
811	4n1e24_008	ACHD	Elmore Drain	12	HDPE	43.666866	-116.280431
812	4n1e24_009	ITD	Elmore Drain	12	CMP	43.665655	-116.279453
813	4n1e24_010	ITD	Elmore Drain	18	PVC	43.665551	-116.278927
814		ACHD	Elmore Drain	12	CMP	43.667909	-116.291594
815	4n1e24_013	Private	Dry Creek Canal	8	RCP	43.670489	-116.285921
816	4n1e24_014	Private	Dry Creek Canal	10	CMP	43.670422	-116.285846
817	4n1e24_015	Private	Dry Creek Canal	10	CMP	43.670443	-116.287436
818	4n1e24_016	Private	Dry Creek Canal	10	CMP	43.670442	-116.287306
819	4n1e24_017	Private	Dry Creek Canal	10	CMP	43.671285	-116.288939
820	4n1e24_021	ACHD	Elmore Drain	12	PVC	43.668879	-116.29329
821	4n1e24_022	ACHD, ITD	Dry Creek Canal	22	RCP	43.667821	-116.279442
822	4n1e24_023	ACHD	Elmore Drain	12	PVC	43.667615	-116.291642
823	4n1e24_024	ACHD	Elmore Drain	12	PVC	43.668172	-116.289862
824	4n1e24_025	ACHD	Elmore Drain	12	CMP	43.667228	-116.285623
825	4n1e24_026	ACHD	Boise River	4	PVC	43.663181	-116.291881
826	4n1e24_027	Private	Dry Creek Canal	0	Unknown	43.67009	-116.285795
827	4n1e24_028	Private	Dry Creek Canal	0	Drop Inlet	43.670398	-116.28582
828	4n1e25_001	Private	Warm Springs Canal	18	PVC	43.661164	-116.292966

183 Avtra2, D02 Private Vern Spring Carul 183 PVC 43,2013 1112,2031 101 41422, D04 ACrD Warn Spring Carul 18 PVC 43,2015 1112,2031 102 410-75, D06 ACrD Warn Spring Carul 12 PVC 44,0075 1112,2031 103 410-75, D06 ACrD Warn Spring Carul 12 PVC 44,0070 1112,2031 103 410-75, D06 ACrD Warn Spring Carul 12 PVC 44,0070 1112,2031 103 410-25, D01 ACrD Warn Spring Carul 12 PVC 43,0074 1112,2031 104 410-25, D11 ACrD, Private Warn Spring Carul 12 PVC 43,00944 1112,22431 104 410-25, D13 ACrD, Warn Spring Carul 12 PVC 44,00944 1112,22431 104 410-25, D14 ACrD, Private Warn Spring Carul 10 AGR 44,005, D14 1112,22431 104 410-25, D14	#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
818 4rtic> (08) Price Warn Spring Caral 18 PVC 44.56.077 110.29813 812 4rtic25 (06) AC10 Warn Spring Caral 12 PVC 45.66.077 116.299139 812 4rtic25 (06) AC10 Warn Spring Caral 12 PVC 45.66.271 116.299130 813 4rtic25 (06) AC10 Warn Spring Caral 13 PVC 45.66.271 116.29503 814 4rtic25 (01) AC10 Warn Spring Caral 12 PVC 45.66.271 116.28537 813 4rtic25 (02) AC10 Warn Spring Caral 12 PVC 45.65.971 116.28541 814 4rtic25 (02) Pricet Warn Spring Caral 12 PVC 45.65.971 116.28451 814 4rtic25 (01) Pricet Warn Spring Caral 12 PVC 45.65.671 116.28452 814 4rtic25 (01) Pricet Warn Spring Caral 10 PVC 45.65.677 116.284526 814	829	4n1e25 002	Private	Warm Springs Canal		PVC	43.660789	-116.292313
131 At Halz, 505 At Pro Warn Speing Canal 18 PVC 43.84077 -11.822053 133 41.125, 055 At Pro Warn Speing Canal 12 PVC 43.86073 -11.822051 133 41.125, 055 At Pro Warn Speing Canal 12 PVC 43.86077 -11.822051 134 41.125, 056 At Pro Warn Speing Canal 12 PVC 43.86077 -11.822051 138 41.125, 010 At Pro Warn Speing Canal 12 PVC 43.86077 -11.822051 138 41.125, 013 Prote Warn Speing Canal 12 PVC 43.850781 -11.822052 138 41.125, 013 Prote Warn Speing Canal 12 PVC 43.850781 -11.822032 134 41.125, 013 At Prote Warn Speing Canal 12 PVC 43.850781 -11.822032 134 41.125, 013 At Prote Warn Speing Canal 10 PVC 43.850781 -11.16.28043 144 <td></td> <td></td> <td></td> <td>, *</td> <td></td> <td></td> <td></td> <td></td>				, *				
192 An Price Marm Spring Canal 12 PVC 41.86.0071 41.66.20811 814 Anta25_007 ACDD Warm Spring Canal 12 CMP 41.66.0071 11.62.88611 815 Anta25_008 ACDD Warm Spring Canal 12 CMP 41.66.0077 11.62.88671 816 Anta25_008 ACDD Warm Spring Canal 10 PVC 41.86.0077 11.62.88671 816 Anta25_011 ACDD Warm Spring Canal 10 PVC 41.86.00714 11.62.8841 818 Anta25_013 ACDD Warm Spring Canal 10 PVC 41.86.00714 11.62.8941 841 Anta25_016 APrice Warm Spring Canal 10 Aprice 44.86.27014 11.62.8941 843 Anta25_016 APrice Warm Spring Canal 10 Aprice 44.86.27014 11.62.8941 844 Anta25_016 APrice Warm Spring Canal 10 Aprice 44.86.27014 11.62.8941 844 Anta		_		· •		-		
184 44125, 07 AC10 Warn Spring Canal 12 CMP 44.65.001 -116.28827 858 44125, 08 AC10 Warn Spring Canal 8 PVC 45.66727 -116.28837 818 44125, 001 AC10 Warn Spring Canal 12 PVC 45.86734 -116.28837 818 44125, 011 AC40, Private Warn Spring Canal 10 PVC 45.86734 -116.28411 94 44125, 014 Private Warn Spring Canal 10 PVC 45.85744 -115.28401 94 44125, 015 AC10, D Warn Spring Canal 10 PVC 45.85744 -115.28401 94 44125, 016 Private Warn Spring Canal 10 AD5 45.85744 -115.28401 94 44125, 018 Private Warn Spring Canal 10 AD5 45.85747 -115.27357 94 44125, 018 Private Warn Spring Canal 10 AD5 45.85747 -115.27357 94 44125,						PVC		-116.291063
835 4n125_009 ACHD Wern Spring Canal 82 PVC 41.50072 11.628537 837 4n1275_010 ACHD Wern Spring Canal 12 PVC 43.50074 11.628537 838 4n125_011 ACHD Wern Spring Canal 12 PVC 43.50074 11.628413 849 4n125_012 PVC 43.50074 11.628413 11.628413 849 4n125_013 ACHD Wern Spring Canal 13 PVC 43.50094 11.628744 841 4n125_013 Proxite Wern Spring Canal 13 PVC 43.55094 -11.628413 844 4n125_018 Proxite Wern Spring Canal 13 PVC 43.55116 -11.6372137 845 4n125_018 Proxite Wern Spring Canal 12 PVC 43.55116 -11.6372137 846 4n125_021 ACHD Thurnan MII Canal 12 PVC 43.55217 -11.638038 847 4n125_021 ACHD Thurnan MII Canal	833	4n1e25_006	ACHD	Warm Springs Canal	12	PVC	43.660571	-116.289911
883 4+105_009 ACID Wern Symps Canal 8 PPC 44.566977 110.25537 838 4+105_011 ACHD, Phyte Wern Symps Canal 12 PPC 43.55978 110.25537 838 4+105_013 ACHD, Phyte Wern Symps Canal 12 PPC 43.55978 110.25537 840 4+105_013 ACHD, Phyte Wern Symps Canal 12 OPC 43.55978 110.25537 841 4+105_013 ACHD, TD Wern Symps Canal 12 OPC 43.55978 116.28809 842 4+105_015 ACHD, TD Wern Symps Canal 18 PMC 43.55171 116.28809 843 4+105_019 ACHD, TD Thurnan MII Canal 18 CMP 43.55171 116.28809 844 4+105_023 Private Thurnan MII Canal 12 PVC 43.55277 116.28809 845 4+105_023 Private Thurnan MII Canal 12 PVC 43.55277 116.288573 845 4+105_	834	4n1e25_007	ACHD	Warm Springs Canal	12	CMP	43.660501	-116.288627
837 4ntc2, 010 ACHD Wurn Syring-Canal 12 PVC 41.657837 838 4ntc25, 011 ACHD Wurn Syring-Canal 12 PVC 41.657844 -116.28431 839 4ntc25, 013 ACHD Wurn Syring-Canal 12 PVC 41.557814 -116.28734 841 4ntc25, 013 ACHD Wurn Syring-Canal 12 PVC 41.557814 -116.28734 841 4ntc25, 015 ACHD, ID Wurn Syring-Canal 8 PVC 41.557814 -116.28737 843 4ntc25, 015 ACHD, ID Wurn Syring-Canal 8 PVC 41.557854 -116.28737 844 4ntc25, 015 Arrival Nurn Syring-Canal 10 Acto 41.55737 -116.28131 845 4ntc25, 012 Acto Thurna MII Canal 12 PVC 41.55737 -115.28131 846 4ntc25, 023 Acto Thurna MII Canal 6 SMP 41.55737 -116.28231 854 4ntc25, 023	835		ACHD	Warm Springs Canal				-116.286796
838 4+1025_012 Private Worm Spring-Canal 12 PVC 44.565738 116.24412 840 4+1025_013 ACHD Worm Spring-Canal 12 PVC 44.565921 116.24813 841 4+1025_015 ACHD Worm Spring-Canal 12 OVC 44.565913 116.288274 842 4+1025_015 ACHD, ITD Worm Spring-Canal 18 PVC 44.557716 116.288574 843 4+1025_016 Private Worm Spring-Canal 18 PVC 44.557716 116.288761 844 4+1025_017 Private Worm Spring-Canal 18 PVC 44.55277 116.288761 847 4+1025_027 ACHD, ITD Thurnan MII Canal 12 PVC 44.55277 116.288733 848 4+1025_027 ACHD, ITD Thurnan MII Canal 6 SMP 44.55277 116.288734 853 4+1025_027 ACHD, ITD Thurnan MII Canal 6 SMP 44.55277 116.288473 854								
133 4nlac5_012 Private Warm Sympic Canal 10 PVC 43.65934 -116.28744 440 4nlc25_014 Private Warm Sympic Canal 12 CMP 43.55714 116.28744 424 4nlc25_015 ACH0, T/D Warm Sympic Canal 0 open (dir.) 43.55714 116.28744 444 4nlc25_017 Private Warm Sympic Canal 8 PVC 43.55714 116.28743 456 4nlc35_013 ACH0 Thuran INII Canal 12 CMP 43.55124 116.287373 456 4nlc35_013 ACH0 Thuran INII Canal 12 CMP 43.55124 116.287343 457 4nlc25_023 ACH0, TID Thuran INII Canal 13 PVC 43.55124 116.287443 453 4nlc25_023 ACH0, TID Thuran INII Canal 6 SMP 43.55124 116.287443 453 4nlc25_023 ACH0 Warm Sympic Canal 0 pen dru 43.55124 116.282443 453								
840 4h125_014 PVct 43.55801 11.6.287344 841 4h125_015 ACH0,ITD Warm Spring Canal 0 open dich 43.55701 -11.6.28934 842 4h125_016 Private Warm Spring Canal 0 open dich 43.55751 -11.6.28936 843 4h125_017 Private Warm Spring Canal 8 PVC 43.55524 -11.6.28737 844 4h125_018 Private Warm Spring Canal 10 AOS 43.65524 -11.6.288363 847 4h125_020 Private Thurman Mil Canal 12 PVC 43.65275 -116.284853 848 4h125_021 ACH0,ITD Thurman Mil Canal 6 SMP 44.65274 -116.284851 840 4h125_025 Private Thurman Mil Canal 6 SMP 44.65274 -116.284851 841025_025 Private Thurman Mil Canal 0 PVC 43.65287 -116.284871 854 4h125_0205 ACH0 Warm Spring Canal				· •				
141 extra CDF, D14 Private Warm Springs Canal 12 CMP 43.857614 -116.280374 442 4r1025, 015 Private Warm Springs Canal 16 PVC 43.85755 -116.280374 444 4r1025, 015 Private Warm Springs Canal 10 ADS 43.85524 -116.282757 454 4r1025, 019 ACH0 Thurman Mill Granl 12 CVM 43.85527 -116.280378 454 4r1025, 021 ACH0, TD Thurman Mill Granl 12 PVC 43.85527 -116.28065 484 4r1025, 021 ACH0, TD Thurman Mill Granl 12 PVC 43.85527 -116.28065 485 4r1025, 023 Private Thurman Mill Granl 6 SMP 43.85567 -116.28057 453 4r1025, 028 Private Thurman Mill Granl 12 CMP 43.85567 -116.28057 453 4r1025, 028 Ar1025, 028 Private Thurman Mill Granl 12 CMP 43.85571 -116.28037								
B21 A+0:25 Ois Open dtch 0 43:570.5 -1:16:38030 B44 41:25:016 Private Warm Springs Canal 8 PVC 43:55524 -1:16:38757 B44 41:125:017 Private Warm Springs Canal 8 PVC 43:55524 -1:16:38757 B45 41:125:018 Private Warm Springs Canal 10 ADS 43:55524 -1:16:38753 B46 41:125:201 Private Thurman Nill Canal 12 PVC 43:55273 -1:16:38763 B47 41:125:202 APK1D; TD Thurman Nill Canal 6 SMP 43:55274 -1:16:38733 B48 41:125:203 Private Thurman Nill Canal 6 SMP 43:55273 -1:16:38733 B53 41:125:203 ACHD Warm Springs Canal 0 Open dtch 43:55273 -1:16:38733 B53 41:125:203 ACHD Warm Springs Canal 0 Open dtch 43:55273 -1:16:38873 B54 41:125:203 ACHD								
B83 4+1025_016 Private Warm Springs Canal 16 PVC 43.657955 11.6.28800 B44 4+1025_019 ACH0 Thurnan Mill Canal 10 ADS 43.55421 -11.6.28800 B45 4+1025_019 ACH0 Thurnan Mill Canal 12 CVIP 43.554237 -11.6.28805 B47 4+1025_021 ACH0 (TD Thurnan Mill Canal 12 CVIP 43.554237 -116.28805 B48 4+1025_021 ACH0 (TD Thurnan Mill Canal 12 PVC 43.55427 -116.28405 B49 4+1025_023 Private Thurnan Mill Canal 6 SMP 43.65797 -116.28405 B51 4+1102_023 PVC 43.55707 -116.28405 -116.28405 B53 4+1102_020 ACH0 Warm Spring Canal 0 open dich 43.65977 -116.28405 B54 4+1125_030 ACH0 Warm Spring Canal 0 open dich 43.65918 -116.28405 B55 4+11025_030 ACH0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
846 ant_25_017 Private Warm Spring Canal 8 PVC 44.65547 41.15.2717 846 ant_25_019 ACHD Thurran Mill Canal 12 CMP 43.65347 11.15.288163 847 ant_25_070 Private Thurran Mill Canal 12 PVC 43.65247 11.62.84053 848 ant_25_021 ACHD, ITO Thurran Mill Canal 12 PVC 43.65275 11.62.84053 850 ant_25_023 Private Thurran Mill Canal 6 SMP 43.65276 11.62.8733 851 ant_25_024 Private Thurran Mill Canal 6 SMP 43.65976 11.62.8733 853 ant_25_028 TD.Ads.county Euke Canal 0 open dith 43.65918 11.62.88135 854 ant_25_030 ACHD Warm Spring Canal 10 RCP 43.65919 11.62.84219 855 ant_162_031 ACHD Warm Spring Canal 0 Open dith 43.65919 11.62.84219 856<		—	,					
985 4n122 018 Private Warm Springs Canal 10 A06 43.65547 11.61.72817 847 4n125, 010 Private Thurnan Mill Canal 12 CMP 43.653287 11.61.28803. 848 4n125, 011 ACH0, ITD Thurnan Mill Canal 12 PVC 43.65247 11.61.28405. 849 4n125, 023 Private Thurnan Mill Canal 6 SMP 43.65274 11.63.28673. 851 4n122, 025 Private Thurnan Mill Canal 6 SMP 43.65173 11.63.28673. 852 4n122, 025 Private Thurnan Mill Canal 6 SMP 43.65174 11.63.28673. 853 4n122, 023 ACHD Warm Springs Canal 10 RCP 43.65387 11.63.28672 854 4n122, 036 ACHD Warm Springs Canal 0 Open dith 43.65384 11.63.28427 855 4n122, 036 ACHD Warm Springs Canal 0 Orpen dith 43.65384 11.63.28436 </td <td></td> <td></td> <td></td> <td>, ,</td> <td></td> <td></td> <td></td> <td></td>				, ,				
846 An122, 019 ACHO Thurnan MII Canal 12 CMP 44.653163 -116.288518 847 An122, 021 ACHO, ITO Thurnan MII Canal 12 PVC 44.652327 -116.288618 848 An122, 021 ACHO, ITO Thurnan MII Canal 12 PVC 44.652327 -116.284019 850 An122, 023 Privite Thurnan MII Canal 6 SMP 43.65237 -116.28731 851 An122, 024 Privite Thurnan MII Canal 6 SMP 43.65936 -116.287351 853 An122, 025 Privite Thurnan MII Canal 6 SMP 43.65936 -116.287351 854 An122, 024 Privite Warm Spring Canal 10 NCP 43.66911 -116.288351 855 An122, 031 ACHO Warm Spring Canal 0 Open right 43.65916 -116.284311 855 An122, 035 ACHO Warm Spring Canal 0 Open right 43.65711 -116.284311 8								
948 ni122 PVC 43.65237 -115.24045 949 ni122 022 ACHD, ITD Thurman Mill Canal 6 5MP 43.65237 -115.24045 950 ni1225 023 Private Thurman Mill Canal 6 5MP 43.651731 -116.286734 951 ni1225 023 Private Thurman Mill Canal 6 5MP 43.651731 -116.286734 953 ni1225 023 Private Thurman Mill Canal 0 open ditch 43.659391 -116.286734 955 ni125 030 ACHD Warm Springs Canal 10 RCP 43.658397 -116.284032 957 ni125 031 ACHD Warm Springs Canal 0 open ditch 43.55119 -116.284032 958 ni125 032 ACHD Warm Springs Canal 0 open linet 43.55139 -116.284032 959 ni125 032 ACHD Warm Springs Canal 0 open linet 43.5524	846				12	CMP		
#40 entiq25 Q22 Private Thurman Mill Canal 6 SMP 43.65274 116.284449 851 Anta25 Q24 Private Thurman Mill Canal 6 SMP 43.65274 1116.284733 851 Anta25 Q25 Private Thurman Mill Canal 6 SMP 43.65076 1116.285323 853 Anta25 Q26 Private Thurman Mill Canal 0 open dttch 43.65011 1116.285323 854 Anta25 Q30 ACHD Warm Spring Canal 10 PVC 43.65031 1116.284321 855 Anta25 Q31 ACHD Warm Spring Canal 0 open dttch 43.65719 -116.284323 856 Anta25 Q34 ACHD Warm Spring Canal 0 open dttch 43.65719 -116.28433 856 Anta25 Q34 ACHD Warm Spring Canal 10 RCP 43.95744 -116.28423 856 Anta25 Q34 ACHD Wa	847	4n1e25_020	Private	Thurman Mill Canal	18	CMP	43.654287	-116.288163
B51 Aniz2, 023 Private Thurman Mill Canal 6 SMP 43.65121 -116.2807447 B51 Aniz2, 025 Private Thurman Mill Canal 6 SMP 43.651731 -116.280735 B53 Aniz2, 025 Private Thurman Mill Canal 6 SMP 43.65173 -116.282532 B54 Aniz2, 023 ACHD Warm Spring, Canal 12 CMP 43.669816 -116.284212 B55 Aniz2, 033 ACHD Warm Spring, Canal 10 PVC 43.658459 -116.284212 B56 Aniz25, 034 ACHD Warm Spring, Canal 0 Open dr.ch 43.557139 -116.284321 B57 Hniz2, 034 ACHD Warm Spring, Canal 0 Drop Intet 43.55713 -116.284321 B58 Aniz2, 033 ACHD Warm Spring, Canal 10 RCP 43.55913 -116.284321 B58 Aniz2, 033 ACHD Thurman Mill Canal 12 PVC 43.55513 -116.284321 B	848	4n1e25_021	ACHD, ITD	Thurman Mill Canal	12	PVC	43.652527	-116.28405
BS1 anta25 D24 Private Thurran Mill Canal 6 5MP 43.65976 116.285731 BS2 anta25 D25 Private Thurran Mill Canal 0 open ditch 43.65916 116.285932 BS4 anta25 D23 ACHD Warm Springs Canal 10 RCP 43.65911 116.288321 BS5 anta25 D31 ACHD Warm Springs Canal 00 PVC 43.658216 116.288321 BS5 anta25 D33 ACHD Warm Springs Canal 0 open ditch 44.557139 116.288321 BS6 dn125 D35 Anta25 D35 Anta25 D36 ACHD Warm Springs Canal 0 open ditch 44.557139 116.288321 B66 anta25 D35 Anta25 D36 ACHD Warm Springs Canal 10 RCP 43.35844 116.248427 B66 anta26 D37 ACHD Warm Springs Canal 12 RCV 43.65514 116.24	849	4n1e25_022	ACHD, ITD	Thurman Mill Canal	12	PVC	43.652475	-116.284049
B53 Anic25 D25 Private Thurman Mill Chanl 6 SMP 44.859076 116.28253 853 Anic25 O29 ACHO Warm Springs Canal 12 CMP 43.65018 116.28293 854 4nic25 O39 ACHO Warm Springs Canal 10 RCP 43.65087 -116.28431 855 4nic25 O31 Private Warm Springs Canal 0 open dick 43.65287 -116.28431 854 4nic25 O31 ACHO Settiers Canal 0 open dick 43.65743 -116.28431 854 4nic25 O31 ACHO Warm Springs Canal 0 open dick 43.65743 -116.24433 854 4nic25 O36 ACHO Warm Springs Canal 10 RCP 43.85746 -116.24431 861 4nic25 O38 ACHO Turman Mill Canal 12 PVC 43.65572 -116.24457 862 4nic25 O39 ACHO Unmamed								
B53 Ante25 0.28 ITD, Add County Eureka Canal 0 open ditch 43.699185 116.278250 854 Ante25 0.30 ACHD Warm Springs Canal 10 RCP 43.659369 1116.284321 856 Ante25 0.31 Private Warm Springs Canal 10 RCP 43.659369 1116.284321 857 Ante25 0.31 ACHD Strings Canal 0 Open ditch 43.657119 -1116.28431 858 Ante25 0.34 ACHD Warm Springs Canal 0 Open ditch 43.657149 -1116.28421 859 Ante25 0.35 ACHD Warm Springs Canal 12 RCP 43.657341 -1116.27423 861 Ante25 0.34 ACHD Warm Springs Canal 12 PVC 43.65254 -1116.28421 863 401625 0.4 ACHD Warm Springs Canal 12 PVC 43.655254 -1116.28421 864 401625 0.4 ACHD	851						43.651731	-116.286733
B55 4n1e25 0.02 ACHD Warm Springs Canal 10 RCP 43.659639 116.248312 B55 4n1e25 031 Private Warm Springs Canal 10 PVC 43.65887 -116.248312 B56 4n1e25 031 ACHD Settiers Canal 30 CMP 43.648349 -116.2484312 B58 4n1e25 033 ACHD Warm Springs Canal 0 open dict 43.657439 -116.248431 B58 4n1e25 033 ACHD Warm Springs Canal 0 Depn left 43.657439 -116.248431 B61 4n1e25 037 ACHD Warm Springs Canal 10 RCP 43.85574 -116.248431 B62 4n1e25 038 ACHD Turman Mill Canal 12 PVC 43.65574 -116.248431 B64 4n1e25 001 Private Thurman Mill Canal 24 ADS 43.65574 -116.248981 B64 4n1e26 001 Private Thur								
B55 4n1e25 030 ACHD Warn Springs Canal 10 RCP 43.639369 -116.28422 B56 4n1e25 031 Private Warn Springs Canal 0 Open ditch 43.648549 -116.28403 B58 4n1e25 034 ACHD Warn Springs Canal 0 Open ditch 43.657139 -116.28403 B58 4n1e25 035 ACHD Warn Springs Canal 0 Open ditch 43.657289 -116.28421 B61 4n1e25 035 ACHD Warn Springs Canal 10 RCP 43.655246 -116.28427 B61 4n1e25 037 ACHD Warn Springs Canal 10 RCP 43.65524 -116.28428 B61 4n1e25 037 ACHD Warn Springs Canal 10 RCP 43.65524 -116.28428 B62 4n1e25 043 ACHD Unnamed 12 PVC 43.65524 -116.28428 B65 4n1e26 004 ACHD Thurman MIII Can		-						
B56 4n1e25 031 Private Warm Springs Canal 10 PVC 43.658377 -116.284312 857 4n1e25 034 ACHD Warm Springs Canal 0 open ditch 43.657119 -116.284039 858 4n1e25 035 TD Warm Springs Canal 0 open ditch 43.657139 -116.284039 861 4n1e25 035 TD Warm Springs Canal 0 Open ditch 43.657139 -116.284039 861 4n1e25 037 ACHD Warm Springs Canal 10 RCP 43.39341 -116.28427 862 4n1e25 039 TD Unnamed 12 PVC 43.65572 -116.279921 864 4n1e26 001 Private Thurman MIII Canal 12 PVC 43.655713 -116.298981 866 4n1e26 004 ACHD Thurman MIII Canal 12 CMP 43.655713 -116.30406 867 4n1e26 04 ACHD Thurman MIII		-						
B57 4n1e25 0.02 ACHD Settlers Canal 30 CMP 43.648549 -116.234033 858 4n1e25 0.34 ACHD Warm Springs Canal 0 Open ditch 43.657149 -116.234033 850 4n1e25 0.35 ATD Warm Springs Canal 10 RCP 43.659286 -116.23427 861 4n1e25 0.37 ACHD Warm Springs Canal 12 RCP 43.65524 -116.23427 861 4n1e25 0.37 ACHD Thurman Mill Canal 12 PVC 43.65524 -116.249291 863 4n1e25 0.03 ACHD Thurman Mill Canal 12 PVC 43.655745 -116.28981 864 4n1e26 0.04 ACHD Thurman Mill Canal 12 PVC 43.655745 -116.298981 866 4n1e26 0.04 ACHD Thurman Mill Canal 12 CMP 43.648552 -116.180430 868 4n1e26 0.05 Ante16 0.05 <td></td> <td></td> <td></td> <td>1 0</td> <td></td> <td></td> <td></td> <td></td>				1 0				
858 4n1e25_034 A/LD Warm Springs Canal 0 open ditch 43.657119 -116.284039 859 4n1e25_035 TD Warm Springs Canal 12 RCP 43.657439 -116.2843211 861 4n1e25_037 A/LD Warm Springs Canal 12 RCP 43.65524 -116.284371 861 4n1e25_037 A/LD Warm Springs Canal 10 RCP 43.65524 -116.28427 863 4n1e25_039 ID Unnamed 12 PVC 43.65524 -116.28425 864 4n1e25_001 A/LD Unnamed 0 Drog Iniet 43.65513 -116.28495 865 4n1e26_001 Private Thurman MII Canal 12 PVC 43.655733 -116.28495 866 4n1e26_005 A/CHD Thurman MII Canal 12 CMP 43.648652 -116.284827 870 An1e26_004 A/CHD Thurman MII Canal 12 CMP 43.648756 -116.284827 871 41.626_005 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
859 4n1e25_035 TD Warm Springs Canal 0 Drop Inlet 43.65739 -116.28321 860 4n1e25_036 ACHD Warm Springs Canal 10 RCP 43.659286 -116.28427 861 4n1e25_037 ACHD Warm Springs Canal 10 RCP 43.6524 -116.28427 862 4n1e25_038 ACHD Thurman MII Canal 12 PVC 43.65572 -116.27921 864 4n1e25_040 ACHD Unnamed 0 Drop Inlet 43.655713 -116.279921 864 4n1e25_004 ACHD Thurman MII Canal 12 ADS 43.655713 -116.298981 866 4n1e25_005 ACHD Thurman MII Canal 15 CMP 43.655713 -116.298081 867 4n1e25_005 ACHD Settlers Canal 12 CMP 43.64865 -116.29802 868 4n1e25_005 ACHD Settlers Canal 12 CMP 43.64865 -116.29826 871 4n1e25_001		—						
860 4n1e25 035 ACHD Warn Springs Canal 12 RCP 43.69324. -116.17308 861 4n1e25 037 ACHD Thurnan MII Canal 12 PVC 43.6525.4 -116.28427 863 4n1e25 039 TD Unnamed 12 PVC 43.6525.4 -116.284267 864 4n1e25 040 ACHD Unnamed 0 Drop Inlet 43.65521.8 -116.284267 865 4n1e25 040 ACHD Unnamed 0 Drop Inlet 43.65521.8 -116.296838 866 4n1e26 002 ACHD Thurman MII Canal 12 CMP 43.655713 -116.30406 867 4n1e26 004 ACHD Statisr Stanal 12 CMP 43.648756 -116.30307 870 4n1e26 005 ACHD Statisr Stanal 12 CMP 43.648756 -116.30307 871 4n1e26 007 ACHD Warm Springs Canal 12						•		
861 4n1e25 037 ACHD Warm Springs Canal 10 RCP 43.39341 -116.173308 862 4n1e25 033 ACHD Thurman Mill Canal 12 PVC 43.65254 -116.284267 863 4n1e25 040 ACHD Unnamed 0 Drop Inlet 43.6556913 -116.284195 864 4n1e25 001 Private Thurman Mill Canal 12 PVC 43.655246 -116.296885 866 4n1e26 002 ACHD Thurman Mill Canal 12 PVC 43.655246 -116.300406 867 4n1e26 005 ACHD Settlers Canal 12 CMP 43.648551 -116.1303097 868 4n1e26 006 Irrigation Settlers Canal 12 CMP 43.64873 -116.298782 870 4n1e26 001 ACHD Warms prings Canal 12 CMP 43.64873 -116.29671 872 4n1e26 013 ACHD Thurman MilliCanal-1et				, ,				
862 4n1e25_039 ACHD Thurman Mil Canal 12 PVC 43.65264 -116.284267 863 4n1e25_039 ITD Unnamed 0 Pvc 43.655672 -116.279921 864 4n1e25_040 ACHD Unnamed 0 Drop Iniel 43.655265 -116.284961 865 4n1e25_0001 Private Thurman Mil Canal 12 PVC 43.65574 -116.309801 866 4n1e26_0004 ACHD Thurman Mil Canal 12 CMP 43.648695 -116.309406 868 4n1e26_005 ACHD Settlers Canal 12 CMP 43.648652 -116.309407 870 4n1e26_007 ACHD Warms Springs Canal 12 CMP 43.648756 -116.29862 871 4n1e26_011 ACHD Thurman Mil Canal-Lateral 12 CMP 43.648756 -116.298721 872 4n1e26_011 ACHD Thurman Mil Canal-Lateral 12 CMP 43.65843 -116.298922 873 4n1e		—						
864 4n1e25_040 ACHD Unnamed 0 Drop Inlet 43.656913 -116.284196 865 4n1e26_001 Private Thurman Mill Canal 12 ADS 43.65524 -116.298981 866 4n1e26_004 ACHD Thurman Mill Canal 12 CMP 43.65574 -116.298981 867 4n1e26_006 Irrigation Settlers Canal 12 CMP 43.648695 -116.304046 868 4n1e26_007 ACHD Thurman Mill Canal 12 CMP 43.648652 -116.304046 869 4n1e26_008 Irrigation Settlers Canal 0 open ditch 43.648756 -116.298021 871 4n1e26_009 ACHD Warm Springs Canal 12 CMP 43.66873 -116.298782 873 4n1e26_011 ACHD Thurman Mill Canal-Lateral 12 CMP 43.66825 -116.297821 874 4n1e26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658816 -116.297822								
885 Ante26_001 Private Thurman Mill Canal 24 ADS 43.655286 -116.298885 866 4n1e26_002 ACHD Thurman Mill Canal 12 PVC 43.655713 -116.298881 867 4n1e26_004 ACHD Thurman Mill Canal 15 CMP 43.655713 -116.303087 868 4n1e26_005 ACHD Settlers Canal 12 CMP 43.648652 -116.30307 870 4n1e26_008 Irrigation Settlers Canal 12 CMP 43.648736 -116.298262 871 4n1e26_009 ACHD Warm Springs Canal 12 CMP 43.648736 -116.298262 872 4n1e26_011 ACHD Thurman Mill Canal-Lateral 12 CMP 43.65828 -116.298787 874 4n1e26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.65828 -116.29787 875 4n1e26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.655635 -116.30267	863	4n1e25_039	ITD	Unnamed	12	PVC	43.655672	-116.279921
866 4n1226_002 ACHD Thurman Mill Canal 12 PVC 43.655745 -116.298981 867 4n1226_005 ACHD Thurman Mill Canal 15 CMP 43.648655 -116.304046 868 4n1226_006 Irrigation Settlers Canal 12 CMP 43.648652 -116.303097 870 4n1226_006 Irrigation Settlers Canal 0 open ditch 43.64873 -116.298262 871 4n1226_008 Irrigation Settlers Canal 12 CMP 43.64873 -116.2985712 872 4n1226_009 ACHD Warm Springs Canal 12 RCP 43.662458 -116.2995912 873 4n1226_011 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658343 -116.299787 875 4n1226_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.65842 -116.39785 876 4n1226_017 ACHD Thurman Mill Canal-Lateral 12 CMP 43.65473 -116.39478 <	864	4n1e25_040	ACHD	Unnamed	0	Drop Inlet	43.656913	-116.284196
867 4n1e26_004 ACHD Thurman Mill Canal 15 CMP 43.655713 -116.300406 868 4n1e26_005 ACHD Settlers Canal 12 CMP 43.648695 -116.181443 869 4n1e26_007 ACHD, Irrigation Settlers Canal 0 open ditch 43.64852 -116.303097 870 4n1e26_008 Irrigation Settlers Canal 12 CMP 43.64873 -116.298262 871 4n1e26_009 ACHD Warn Springs Canal 12 RCP 43.66248 -116.298262 872 4n1e26_011 ACHD Thurman Mill Canal-Lateral 12 CMP 43.65284 -116.299512 873 4n1e26_012 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658840 -116.297825 876 4n1e26_013 ACHD Thurman Mill Canal 15 CMP 43.655743 -116.297822 877 4n1e26_013 ACHD Thurman Mill Canal 16 CMP 43.65643 -116.30478	865	4n1e26_001	Private	Thurman Mill Canal	24	ADS	43.655286	-116.296885
868 4nle26_005 ACHD Settlers Canal 12 CMP 43,648655 -116,181443 869 4nle26_007 ACHD, Irrigation Settlers Canal 0 open ditch 43,648755 -116,203097 870 4nle26_009 ACHD, Irrigation Settlers Canal 12 CMP 43,64875 -116,292622 871 4nle26_009 ACHD Warm Springs Canal 12 CMP 43,66475 -116,295912 873 4nle26_011 ACHD Thurman Mill Canal-Lateral 12 CMP 43,66428 -116,295912 874 4nle26_012 ACHD Thurman Mill Canal-Lateral 12 CMP 43,65824 -116,295966 874 4nle26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43,65834 -116,29787 875 4nle26_017 ACHD Thurman Mill Canal-Lateral 12 CMP 43,65874 -116,30483 876 4nle26_021 ACHD Helm Lateral 12 CMP 43,65473 -116,30473	866	4n1e26_002	ACHD	Thurman Mill Canal		PVC	43.655745	-116.298981
869 4n1e26_006 Irrigation Settlers Canal 12 CMP 43.648652 -116.303097 870 4n1e26_008 Irrigation Settlers Canal 0 open ditch 43.648756 -116.292862 871 4n1e26_009 ACHD Warm Springs Canal 12 CMP 43.662458 -116.292671 872 4n1e26_011 ACHD Thurman Mill Canal-Lateral 12 CMP 43.662458 -116.295912 873 4n1e26_012 ACHD Thurman Mill Canal-Lateral 12 CMP 43.6582843 -116.299787 874 4n1e26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658842 -116.297835 876 4n1e26_017 ACHD Thurman Mill Canal 15 CMP 43.658865 -116.30217 878 4n1e26_021 ACHD Settlers Canal 18 CMP 43.648654 -116.309112 879 4n1e26_022 Private Thurman Mill Canal 8 PVC 43.654731 -116.29407 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>		-				-		
870 4n1e26_007 ACHD, Irrigation Settlers Canal 0 open ditch 43.648756 -116.298262 871 4n1e26_008 Irrigation Settlers Canal 12 CMP 43.64873 -116.296771 872 4n1e26_009 ACHD Warm Springs Canal 12 RCP 43.66248 -116.299696 873 4n1e26_011 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658343 -116.299787 875 4n1e26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658842 -116.297835 876 4n1e26_014 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658842 -116.297835 877 4n1e26_017 ACHD Thurman Mill Canal 15 CMP 43.658749 -116.30438 880 4n1e26_021 ACHD Stetlers Canal 18 CMP 43.65463 +116.294707 881 4n1e26_023 Private Thurman Mill Canal 8 PVC 43.65463 +116.294707								
871 4n1e26_008 Irrigation Settlers Canal 12 CMP 43.64873 -116.296771 872 4n1e26_010 ACHD Warm Springs Canal 12 RCP 43.662458 -116.2995912 873 4n1e26_011 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658843 -116.299787 875 4n1e26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658816 -116.297835 876 4n1e26_014 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658816 -116.297835 876 4n1e26_015 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658842 -116.30267 877 4n1e26_017 ACHD Helm Lateral 12 CMP 43.658463 -116.30267 878 4n1e26_021 ACHD Settlers Canal 18 CMP 43.658473 -116.30438 880 4n1e26_022 Private Thurman Mill Canal 8 PVC 43.654635 -116.294707			-					
872 4n1e26_009 ACHD Warm Springs Canal 12 RCP 43.662458 -116.295912 873 4n1e26_011 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658343 -116.295912 874 4n1e26_012 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658228 -116.299787 875 4n1e26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658842 -116.297822 876 4n1e26_014 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658635 -116.30267 878 4n1e26_017 ACHD Helm Lateral 12 CMP 43.658749 -116.30267 879 4n1e26_021 ACHD Settlers Canal 18 CMP 43.664574 -116.304438 880 4n1e26_022 Private Thurman Mill Canal 8 PVC 43.65468 -116.29470 881 4n1e26_023 Private Thurman Mill Canal 8 PVC 43.65468 -116.294224			-					
873 4n1e26_011 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658343 -116.299696 874 4n1e26_012 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658228 -116.299787 875 4n1e26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658816 -116.297822 876 4n1e26_014 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658842 -116.297822 877 4n1e26_015 ACHD Thurman Mill Canal 15 CMP 43.658645 -116.30267 878 4n1e26_017 ACHD Helm Lateral 12 CMP 43.658645 -116.30267 878 4n1e26_021 ACHD Settlers Canal 18 CMP 43.648654 -116.3024707 880 4n1e26_022 Private Thurman Mill Canal 8 PVC 43.65468 -116.29437 881 4n1e26_024 Private Thurman Mill Canal 8 PVC 43.654635 -116.294224			-					
874 4n1e26_012 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658228 -116.299787 875 4n1e26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658816 -116.297835 876 4n1e26_014 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658816 -116.297832 877 4n1e26_015 ACHD Thurman Mill Canal 15 CMP 43.658663 -116.30267 878 4n1e26_017 ACHD Helm Lateral 12 CMP 43.654654 -116.302477 879 4n1e26_021 ACHD Settlers Canal 18 CMP 43.648654 -116.294707 880 4n1e26_022 Private Thurman Mill Canal 8 PVC 43.654778 -116.294377 881 4n1e26_024 Private Thurman Mill Canal 8 PVC 43.65468 -116.294327 882 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.654655 -116.294224 <t< td=""><td></td><td>—</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		—						
875 An1e26_013 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658816 -116.297835 876 4n1e26_014 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658842 -116.297832 877 4n1e26_015 ACHD Thurman Mill Canal 15 CMP 43.655635 -116.30267 878 4n1e26_017 ACHD Helm Lateral 12 CMP 43.655749 -116.30267 879 4n1e26_021 ACHD Settlers Canal 18 CMP 43.654731 -116.304438 880 4n1e26_022 Private Thurman Mill Canal 8 PVC 43.654731 -116.294707 881 4n1e26_023 Private Thurman Mill Canal 8 PVC 43.65468 -116.294224 882 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.654635 -116.294224 884 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.654635 -116.294234 885 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
876 4n1e26_014 ACHD Thurman Mill Canal-Lateral 12 CMP 43.658842 -116.297822 877 4n1e26_015 ACHD Thurman Mill Canal 15 CMP 43.656635 -116.30267 878 4n1e26_017 ACHD Helm Lateral 12 CMP 43.655749 -116.30217 879 4n1e26_021 ACHD Settlers Canal 18 CMP 43.648654 -116.304438 880 4n1e26_022 Private Thurman Mill Canal 8 PVC 43.654778 -116.29407 881 4n1e26_023 Private Thurman Mill Canal 8 PVC 43.65468 -116.29407 882 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.65468 -116.29402 883 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.655035 -116.29437 885 4n1e26_028 Private Thurman Mill Canal 12 PVC 43.655055 -116.295429 886	.	_						
877 4n1e26_015 ACHD Thurman Mill Canal 15 CMP 43.656635 -116.30267 878 4n1e26_017 ACHD Helm Lateral 12 CMP 43.655749 -116.309112 879 4n1e26_021 ACHD Settlers Canal 18 CMP 43.654635 -116.309112 880 4n1e26_022 Private Thurman Mill Canal 8 PVC 43.654731 -116.294707 881 4n1e26_023 Private Thurman Mill Canal 8 PVC 43.65468 -116.294927 882 4n1e26_025 Private Thurman Mill Canal 8 PVC 43.65468 -116.294927 883 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.654635 -116.294924 884 4n1e26_028 Private Thurman Mill Canal 8 PVC 43.655075 -116.295783 885 4n1e26_028 Private Thurman Mill Canal 12 PVC 43.655704 -116.295429 886								
878 4n1e26_017 ACHD Helm Lateral 12 CMP 43.655749 -116.309112 879 4n1e26_021 ACHD Settlers Canal 18 CMP 43.648654 -116.304438 880 4n1e26_022 Private Thurman Mill Canal 8 PVC 43.654731 -116.294707 881 4n1e26_023 Private Thurman Mill Canal 8 PVC 43.654778 -116.294927 882 4n1e26_025 Private Thurman Mill Canal 8 PVC 43.654635 -116.294377 883 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.654635 -116.294224 884 4n1e26_028 Private Thurman Mill Canal 8 PVC 43.655025 -116.295783 885 4n1e26_029 Private Warm Springs Canal 16 PVC 43.654635 -116.295429 886 4n1e26_030 ACHD Settlers Canal 12 PVC 43.648556 -116.294349 887								
879 4n1e26_021 ACHD Settlers Canal 18 CMP 43.648654 -116.304438 880 4n1e26_022 Private Thurman Mill Canal 8 PVC 43.654731 -116.294707 881 4n1e26_023 Private Thurman Mill Canal 8 PVC 43.654778 -116.294927 882 4n1e26_024 Private Thurman Mill Canal 8 PVC 43.654635 -116.294327 883 4n1e26_025 Private Thurman Mill Canal 8 PVC 43.654635 -116.294224 884 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.654635 -116.294224 884 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.654635 -116.294224 884 4n1e26_028 Private Thurman Mill Canal 16 PVC 43.6561657 -116.295783 885 4n1e26_029 Private Thurman Mill Canal 12 PVC 43.651657 -116.291634 8								
881 4n1e26_023 Private Thurman Mill Canal 8 PVC 43.654778 -116.29492 882 4n1e26_024 Private Thurman Mill Canal 8 PVC 43.65468 -116.294377 883 4n1e26_025 Private Thurman Mill Canal 8 PVC 43.654635 -116.294224 884 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.654635 -116.295783 885 4n1e26_028 Private Thurman Mill Canal 8 PVC 43.654637 -116.295783 886 4n1e26_029 Private Thurman Mill Canal 16 PVC 43.655025 -116.295429 886 4n1e26_029 Private Thurman Mill Canal 12 PVC 43.655704 -116.29439 887 4n1e26_030 ACHD Settlers Canal 48 RCP 43.648612 -116.29434 888 4n1e26_033 Private Helm Lateral 15 CMP 43.658242 -116.1311523 890								
882 4n1e26_024 Private Thurman Mill Canal 8 PVC 43.65468 -116.294377 883 4n1e26_025 Private Thurman Mill Canal 8 PVC 43.654635 -116.294224 884 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.655025 -116.295783 885 4n1e26_028 Private Warm Springs Canal 16 PVC 43.6550704 -116.295429 886 4n1e26_029 Private Thurman Mill Canal 12 PVC 43.655704 -116.29903 887 4n1e26_030 ACHD Settlers Canal 48 RCP 43.648556 -116.294349 888 4n1e26_031 Irrigation Settlers Canal 15 CMP 43.648612 -116.294634 889 4n1e26_033 Private Helm Lateral 15 CMP 43.658242 -116.115.23 890 4n1e26_034 ACHD Thurman Drain 42 RCP 43.65566 -116.294868 891	880	4n1e26_022	Private	Thurman Mill Canal	8	PVC	43.654731	-116.294707
883 4n1e26_025 Private Thurman Mill Canal 8 PVC 43.654635 -116.294224 884 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.655025 -116.295783 885 4n1e26_028 Private Warm Springs Canal 16 PVC 43.655704 -116.295429 886 4n1e26_029 Private Thurman Mill Canal 12 PVC 43.655704 -116.29903 887 4n1e26_030 ACHD Settlers Canal 48 RCP 43.648556 -116.294369 888 4n1e26_031 Irrigation Settlers Canal 15 CMP 43.648612 -116.294634 889 4n1e26_033 Private Helm Lateral 15 CMP 43.658242 -116.1294634 889 4n1e26_034 ACHD Thurman Drain 42 RCP 43.65566 -116.294866 891 4n1e27_001 ACHD Zinger Lateral 12 RCP 43.655656 -116.333865 892	881	4n1e26_023	Private	Thurman Mill Canal			43.654778	-116.29492
884 4n1e26_026 Private Thurman Mill Canal 8 PVC 43.655025 -116.295783 885 4n1e26_028 Private Warm Springs Canal 16 PVC 43.661657 -116.295429 886 4n1e26_029 Private Thurman Mill Canal 12 PVC 43.655704 -116.29903 887 4n1e26_030 ACHD Settlers Canal 48 RCP 43.648556 -116.294369 888 4n1e26_031 Irrigation Settlers Canal 48 RCP 43.648612 -116.294634 889 4n1e26_033 Private Helm Lateral 15 CMP 43.658242 -116.294634 889 4n1e26_034 ACHD Thurman Drain 42 RCP 43.65566 -116.294634 890 4n1e26_034 ACHD Thurman Drain 42 RCP 43.65566 -116.294896 891 4n1e27_001 ACHD Zinger Lateral 12 RCP 43.655656 -116.333865 892 4n1e27_00								
885 4n1e26_028 Private Warm Springs Canal 16 PVC 43.661657 -116.295429 886 4n1e26_029 Private Thurman Mill Canal 12 PVC 43.6515704 -116.29903 887 4n1e26_030 ACHD Settlers Canal 48 RCP 43.648556 -116.294369 888 4n1e26_031 Irrigation Settlers Canal 15 CMP 43.648612 -116.294634 889 4n1e26_033 Private Helm Lateral 15 CMP 43.658242 -116.31523 890 4n1e26_034 ACHD Thurman Drain 42 RCP 43.655696 -116.298986 891 4n1e27_001 ACHD Zinger Lateral 24 RCP 43.655565 -116.338865 892 4n1e27_002 ACHD Zinger Lateral 12 RVC 43.655565 -116.334865 893 4n1e27_003 ACHD Zinger Lateral 12 PVC 43.651256 -116.334113 893 4n1e27_003 </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_						
886 4n1e26_029 Private Thurman Mill Canal 12 PVC 43.655704 -116.29903 887 4n1e26_030 ACHD Settlers Canal 48 RCP 43.648556 -116.294369 888 4n1e26_031 Irrigation Settlers Canal 15 CMP 43.648526 -116.294634 889 4n1e26_033 Private Helm Lateral 15 CMP 43.658242 -116.294634 889 4n1e26_034 ACHD Thurman Drain 42 RCP 43.655696 -116.298986 890 4n1e27_001 ACHD Zinger Lateral 24 RCP 43.655566 -116.393865 892 4n1e27_002 ACHD Zinger Lateral 12 RCP 43.65555 -116.334113 893 4n1e27_003 ACHD Zinger Lateral 12 PVC 43.651256 -116.324957 894 4n1e27_004 ACHD Zinger Lateral 10 PVC 43.651348 -116.325206 895 4n1e27_005								
887 4n1e26_030 ACHD Settlers Canal 48 RCP 43.648556 -116.294369 888 4n1e26_031 Irrigation Settlers Canal 15 CMP 43.648556 -116.294634 889 4n1e26_033 Private Helm Lateral 15 CMP 43.658242 -116.311523 890 4n1e26_034 ACHD Thurman Drain 42 RCP 43.655696 -116.298986 891 4n1e27_001 ACHD Zinger Lateral 24 RCP 43.655566 -116.333865 892 4n1e27_002 ACHD Zinger Lateral 12 RCP 43.65555 -116.334113 893 4n1e27_003 ACHD Zinger Lateral 12 PVC 43.651256 -116.324957 894 4n1e27_004 ACHD Zinger Lateral 10 PVC 43.651348 -116.322506 895 4n1e27_005 ACHD Zinger Lateral 12 PVC 43.648629 -116.323197 896 4n1e27_006 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-						
888 4n1e26_031 Irrigation Settlers Canal 15 CMP 43.648612 -116.294634 889 4n1e26_033 Private Helm Lateral 15 CMP 43.658242 -116.311523 890 4n1e26_034 ACHD Thurman Drain 42 RCP 43.655696 -116.298986 891 4n1e27_001 ACHD Zinger Lateral 24 RCP 43.655566 -116.333865 892 4n1e27_002 ACHD Zinger Lateral 12 RCP 43.65565 -116.334113 893 4n1e27_003 ACHD Zinger Lateral 12 PVC 43.651256 -116.324957 894 4n1e27_004 ACHD Zinger Lateral 10 PVC 43.651348 -116.324957 894 4n1e27_005 ACHD Zinger Lateral 10 PVC 43.651348 -116.323197 895 4n1e27_005 ACHD Zinger Lateral 12 PVC 43.648629 -116.323197 896 4n1e27_006 <t< td=""><td></td><td>—</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		—						
889 4n1e26_033 Private Helm Lateral 15 CMP 43.658242 -116.311523 890 4n1e26_034 ACHD Thurman Drain 42 RCP 43.655696 -116.298986 891 4n1e27_001 ACHD Zinger Lateral 24 RCP 43.655656 -116.33865 892 4n1e27_002 ACHD Zinger Lateral 12 RCP 43.65565 -116.334113 893 4n1e27_003 ACHD Zinger Lateral 12 PVC 43.651256 -116.324957 894 4n1e27_004 ACHD Zinger Lateral 10 PVC 43.651348 -116.325206 895 4n1e27_005 ACHD Zinger Lateral 12 PVC 43.649546 -116.323197 896 4n1e27_006 ACHD Zinger Lateral 12 PVC 43.648629 -116.324195								
890 4n1e26_034 ACHD Thurman Drain 42 RCP 43.655696 -116.298986 891 4n1e27_001 ACHD Zinger Lateral 24 RCP 43.655666 -116.333865 892 4n1e27_002 ACHD Zinger Lateral 12 RCP 43.65565 -116.334113 893 4n1e27_003 ACHD Zinger Lateral 12 PVC 43.651256 -116.324957 894 4n1e27_004 ACHD Zinger Lateral 10 PVC 43.651348 -116.325206 895 4n1e27_005 ACHD Zinger Lateral 12 PVC 43.649546 -116.323197 896 4n1e27_006 ACHD Zinger Lateral 12 PVC 43.648629 -116.314205			-					
891 4n1e27_001 ACHD Zinger Lateral 24 RCP 43.655566 -116.333865 892 4n1e27_002 ACHD Zinger Lateral 12 RCP 43.65556 -116.334113 893 4n1e27_003 ACHD Zinger Lateral 12 PVC 43.651256 -116.324957 894 4n1e27_004 ACHD Zinger Lateral 10 PVC 43.651348 -116.32206 895 4n1e27_005 ACHD Zinger Lateral 12 PVC 43.649546 -116.323197 896 4n1e27_006 ACHD Zinger Lateral 12 CMP 43.648629 -116.314205								
892 4n1e27_002 ACHD Zinger Lateral 12 RCP 43.65565 -116.334113 893 4n1e27_003 ACHD Zinger Lateral 12 PVC 43.651256 -116.324957 894 4n1e27_004 ACHD Zinger Lateral 10 PVC 43.651348 -116.32206 895 4n1e27_005 ACHD Zinger Lateral 12 PVC 43.649546 -116.323197 896 4n1e27_006 ACHD Zinger Lateral 12 CMP 43.648629 -116.314205								
893 4n1e27_003 ACHD Zinger Lateral 12 PVC 43.651256 -116.324957 894 4n1e27_004 ACHD Zinger Lateral 10 PVC 43.651348 -116.325206 895 4n1e27_005 ACHD Zinger Lateral 10 PVC 43.649546 -116.323197 896 4n1e27_006 ACHD Zinger Lateral 12 CMP 43.648629 -116.314205								
894 4n1e27_004 ACHD Zinger Lateral 10 PVC 43.651348 -116.325206 895 4n1e27_005 ACHD Zinger Lateral 12 PVC 43.649546 -116.323197 896 4n1e27_006 ACHD Zinger Lateral 12 CMP 43.648629 -116.314205		—		*				
895 4n1e27_005 ACHD Zinger Lateral 12 PVC 43.649546 -116.323197 896 4n1e27_006 ACHD Zinger Lateral 12 CMP 43.648629 -116.314205				-				
896 4n1e27_006 ACHD Zinger Lateral 12 CMP 43.648629 -116.314205				*				
897 4n1e27_007 ACHD Zinger Lateral 12 RCP 43.649297 -116.31677				-	12	CMP		
	897	4n1e27_007	ACHD	Zinger Lateral	12	RCP	43.649297	-116.31677

198 Advid 7,08 ADD Tager Lateral 10.1 DVP 48.5026 118.39897 900 4107 2,012 ACDD Meddia FJ tarenl 12 PVC 48.5026 118.39897 900 4102 7,013 ACDD Meddia FJ tarenl 12 PVC 48.5026 118.33987 901 4102 7,013 ACDD Zeyer Lateral 13 PVC 0.54203 110.132857 903 4102 7,013 ACDD Zeyer Lateral 13 PVC 0.54203 110.132932 905 4102 7,004 ACDD McMillin Lateral 13 100F 416112 110.132932 110.132932 905 4102 7,004 ACDD McMillin Lateral 13 1105C 43.5131 115.32932 116.32932 905 4102 7,004 ACDD McMillin Lateral 13 1105C 43.5131 115.32932 116.34312 116.34242 116.34276 116.34276 905 4102 7,00 ACDD McMilin Lateral 13 0.	#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
699 Attro2, 099 Attro2, 099 Attro2, 012 ACAD McMBar 9, Laterel 12 PVC 44,65774 115,2398 601 4ttr27, 013 ACAD McMBar 9, Laterel 12 PVC 44,65774 115,2398 603 4ttr27, 014 ACAD Zaget Laterel 13 PVC 44,6407 115,1318 604 4ttr28, 023 ACAD Zaget Laterel 13 PVC 44,6407 115,33784 605 4ttr28, 065 ACAD McMellin Laterel 12 CAP 44,640375 116,33074 606 4ttr28, 065 ACAD McMellin Laterel 12 CAP 44,650307 116,34025 607 4ttr28, 065 ACAD McMellin Laterel 16 PVC 44,65130 116,34025 610 4ttr28, 065 ACAD McMellin Laterel 16 PVC 44,65134 116,34025 611 4ttr28, 065 ACAD Noth Stogph 12 CAP 44,653344 116,34025 711 </th <th>898</th> <th>4n1e27 008</th> <th>ACHD</th> <th>Zinger Lateral</th> <th></th> <th>CMP</th> <th>43.652024</th> <th>-116.328639</th>	898	4n1e27 008	ACHD	Zinger Lateral		CMP	43.652024	-116.328639
900 4milar 2, 121 APC 418.257 418.33992 901 4milar 2, 124 APC 43.85182 118.33992 901 4milar 2, 124 APC 43.85886 118.33992 902 4milar 2, 124 APC 43.85886 118.33992 903 4milar 2, 124 DPC 43.85886 118.33992 905 4milar 2, 124 DPC 43.85886 118.33992 905 4milar 2, 124 DPC 43.85896 118.33992 907 4milar 2, 124 DPC 43.85396 118.33932 907 4milar 2, 306 Acho McMallan Lateral 12 CMF 44.86394 116.33923 908 4milar 2, 305 Acho McMallan Lateral 18 HDF 43.86394 116.33924 911 4milar 2, 305 Acho McMallan Lateral 0 opernetch 44.843946 116.33924 913 4milar 2, 305 Acho North Sough 13 CMF 44.843946 116.33924				*				
909 4 molog 0.01 A Molog 7.02 0.04 0.01					12	PVC		
909 44 relax 001 2012 ACPD 2012 RCP 40.533801 -10.533973 905 44.128 0.03 ACMD McMillin Lateral 1.2 RCP 4.56.50971 -10.533973 905 44.128 0.04 ACMD McMillin Lateral 1.2 RCP 4.56.5007 -10.533973 907 41.128 0.05 ACMD McMillin Lateral 1.2 CMP 4.55.4543 -11.533952 908 41.128 0.05 ACMD McMillin Lateral 8 PVC 4.55.4543 -11.533952 913 41.123 0.02 APriot Numeri Songh 1.2 CMP 4.55.45435 -11.533952 914 41.123 0.01 APriot Numeri Songh 1.2 CMP 4.55.45485 -11.533952 914 41.123 0.02 APriot Numeri Songh 1.3 CMP 4.55.45485 -11.533952 914 41.123 0.02 APriot APriot APriot <td>901</td> <td>4n1e27_013</td> <td>ACHD</td> <td>McMillan #2 Lateral</td> <td>12</td> <td>PVC</td> <td>43.652132</td> <td>-116.315092</td>	901	4n1e27_013	ACHD	McMillan #2 Lateral	12	PVC	43.652132	-116.315092
904 4hcl28_003 ACHD McMillia Lateral 12 HDP 43559991 -11539797 905 4hcl28_003 ACHD McMillia Lateral 0 \$\not_1000000000000000000000000000000000000	902	4n1e27_014	ACHD	Zinger Lateral	18	PVC	43.648607	-116.32139
905 4n108_001 ACHD MeMilin Literal 12 HDF 43.601125 115.33872 907 4n128_005 ACHD MeMilin Literal 12 CMP 43.661027 116.33872 907 4n128_005 ACHD MeMilin Literal 12 CMP 43.66113 116.33678 908 4n128_005 ACHD MeMilin Literal 18 HDFE 43.66113 116.342754 911 4n163_002 Provats Sharer Literal 0 open fach 43.64181 116.342754 912 4n163_005 ACHD North Storgh 0 open fach 43.64481 116.345724 913 4n163_005 ACHD North Storgh 15 CMP 43.67924 116.34372 914 4n163_005 ACHD North Storgh 15 CMP 43.67924 116.33374 914 4n163_005 ACHD North Storgh 15 CMP 43.64343 116.33374 914 4n164_005 ACHD Nor				Zinger Lateral			43.655808	-116.334553
906 4hiz82.001 ArchD MeMilia Lateral 0 5/6 Trap 435592.01 -115.337932 907 4hiz82.005 ArchD MeMilia Lateral 12 CMP 435592.11 155.34783 908 4hiz82.007 ArChD MeMilia Lateral 18 HDPE 435.6182 -115.34783 911 4hiz83.001 TD North Sough 0 gen ditch 435.6183 -115.34783 912 4hiz83.002 ArChD North Sough 24 RCC 435.6183 -115.34784 913 4hiz83.003 ArChD North Sough 13 CMP 435.6184 -115.31584 914 4hiz83.003 ArChD North Sough 13 CMP 435.61834 -115.335241 913 4hiz83.003 ArChD North Sough 13 CMP 435.61834 -115.335241 914 4hiz84.003 ArChD Karres Lateral 10 CMP 435.61834 -115.335241 914 4hiz84.003 ArChD <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
907 AIND Mobilian Lateral 12 CMP 4359924 -115332789 908 4n128_005 AIND Mobilian Lateral 18 HDPE 41561333781 115332781 909 4n128_005 AIND Mobilian Lateral 18 HDPE 43561384 11533763 911 4n123_002 Private Shaver Lateral 0 open ditch 4554384 11533764 913 4n123_003 AICD North Sough 2 0.00 4354248 11533764 914 4n123_003 AICD North Sough 13 OMP 4352784 -11533764 915 4n143_005 AICD North Sough 8 PVC 4354434 -11533784 914 4n143_005 AICD North Sough 8 PVC 4354434 -11533784 915 4n163_005 AICD North Sough 8 PVC 4354436 -115332879 914 4163_4005 AICD Karnes Lateral 15 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
908 41:28_007 ACHD McMillin Lateral 12 CMP 43.561.518 -11.53.2025 910 41:28_008 ACHD McMillin Lateral 6 PVC 43.561.518 -11.53.2025 911 41:28_008 ACHD McMillin Lateral 6 PVC 43.561.82 -11.53.2025 911 41:13_002 Private Shaver Lateral 0 open ditch 43.541.83 -11.63.2026 914 41:13_003 ACHD North Soigh 12 CMP 43.59246 -11.63.4227 914 41:13_005 ACHD North Soigh 13 CMP 43.59246 -11.53.3924 915 41:13_005 ACHD North Soigh 10 CMP 43.59468 -11.53.3924 915 41:13_005 ACHD North Soigh 13 CMP 43.59468 -11.53.3924 915 41:13_106 ACHD North Soigh 13 CMP 43.59468 -11.53.3924 914 41:13_104 ASTD								
909 4n12E_007 ACHO MeMilian Lateral 18 HDPC 43.66183 -116.32765 911 4n1c33_001 ITD North Slough 0 open dith 43.64381 -116.32765 911 4n1c33_002 Private Shaver Literal 0 open dith 43.64383 -116.332765 913 4n1c33_004 ACHD North Slough 24 RCP 43.643264 -116.34287 914 4n1c33_004 ACHD North Slough 15 CMP 43.633264 -116.343872 915 4n1c33_006 ACHD North Slough 15 CMP 43.63564 -116.338472 917 4n1c34_001 Rober CMP North Slough 10 CMP 43.63564 -116.338472 918 4n1c34_001 Rober CMP North Slough 10 CMP 43.64563 -116.338472 914 40.64 ACHD Karnes Literal 10 CMP 43.64563 -116.3387219 914 40.64 ACHD								
910 4n1c32_008 ACHD Menth Stogh 0 PVC 41.65422 -11.05.3762 911 4n1c33_001 TD Nonth Stogh 0 open dich 43.65233 -11.05.37632 912 4n1c33_003 ACHD Nonth Stogh 12 CMP 43.652354 -11.6533724 913 4n1c33_005 ACHD Nonth Stogh 15 CMP 43.632945 -11.6533513 914 4n1c33_007 ACHD North Stogh 15 CMP 43.632548 -11.6533543 913 4n1c33_007 ACHD North Stogh 8 PVC 43.64763 -11.6533543 913 4n1c43_001 Bolec City Kames Lateral 15 PVC 43.64663 -11.6533271 914 4n1c43_003 ACHD Kames Lateral 15 RCP 43.64663 -11.633271 914 4n1c43_006 Private Kames Lateral 15 RCP 43.64663 -11.6327162 914 4n1c43_006 Private								
911 4nr.03 001 morth blongh 0 open dtch 43.84381 -11.63.37634 913 4nr.03 002 Private Shaver Lateral 0 open dtch 43.84305 -11.63.37634 913 4nr.033 004 ACH0 North Slongh 12 CMP 43.84326 -11.63.43372 915 4nr.033 006 ACH0 North Slongh 15 CMP 43.633264 -11.63.33842 917 4nr.033 006 ACH0 North Slongh 8 PVC 43.634565 -11.63.33842 913 4nr.034 0.02 ARCH0 North Slongh 8 PVC 43.645651 -11.63.32875 924 4nr.043 0.03 ACH0 Karres Lateral 15 CMP 43.645663 -11.63.32875 924 4nr.043 0.06 Arrivate Karres Lateral 12 PVC 43.646663 -11.63.32472 924 4nr.043 0.06 Arrivate Karres Lateral 10								
912 Private Sharer Lateral 0 open dich 43.64283 -116.33724 913 Ancta3,003 ACHO North Slough 12 CMP 43.632846 -116.342785 914 Anle3,005 ACHO North Slough 15 CMP 43.632741 -116.343781 915 Anle3,007 ACHO North Slough 10 CMP 43.632741 -116.338741 914 Anle3,008 ACHO North Slough 8 PVC 43.64266 -116.338741 914 Anle3,001 Bolec City Karres Lateral 115 CMP 43.642663 -116.332712 912 Anle34,002 Arlo10, Imguton Karres Lateral 112 PVC 43.64663 -116.3327162 914 Anle34,006 Private Karres Lateral 12 PVC 43.64663 -116.3327162 914 Anle34,006 Private Karres Lateral 12 PVC 43.64261 -116.3327162 914 Anle34,006 Arlo10								
913 Ant.93 OCH North Sough 24 RCP 43.64106 -116.344322 914 Ant.93.005 ACHD North Sough 15 CMP 43.637844 -116.34332 915 Ant.93.006 ACHD North Sough 15 CMP 43.637844 -116.33842 917 Ant.83_007 ACHD North Sough 10 CMP 43.63784 -116.33842 917 Ant.83_008 ACHD North Sough 10 CMP 43.64750 -116.33820 918 Ant.24_002 ACHD Karnes Lateral 10 PVC 43.646635 -116.33287 924 Ant.24_002 ACHD Karnes Lateral 12 PVC 43.646635 -116.33289 924 Ant.24_006 Private Karnes Lateral 12 PVC 43.646635 -116.324242 924 Ant.24_006 Private Karnes Lateral 12 PVC 43.64635 -116.324242 924 Ant.24_007 ACHD Karne		—						
915 AnL33 OC ACHO North Sough 15 CMP 43.63741 -11.633842 912 AnL33 OOF ACHO North Sough 10 CMP 43.63584 -11.633842 912 AnL33 OOF ACHO North Sough 8 PVC 43.64564 -11.6338421 913 AnL24 OOF ASHO Karnes Lateral 10 PVC 43.64563 -11.61.532879 924 AnL24 OOF ACHO Karnes Lateral 12 PVC 43.646635 -11.61.532879 924 AnL24 OOF Private Karnes Lateral 12 PVC 43.646635 -11.61.532421 924 AnL24 OOF Private Karnes Lateral 12 PVC 43.64263 -11.61.532421 924 AnL24 OOF ACHO Karnes Lateral 12 PVC 43.64263 -11.61.532421 924 AnL24 OOF ACHO Karnes Lateral 12 PVC <td></td> <td></td> <td></td> <td></td> <td>24</td> <td>· ·</td> <td></td> <td></td>					24	· ·		
915 Ant.33 OM ACHD North Sough 15 CMP 43.637541 -11.6338542 918 4n1c33 OW ACHD North Sough 8 PVC 43.64563 -11.633854 918 4n1c34 OU Bole City Karnes Lateral 10 PVC 43.64756 -11.6338271 920 4n1c34 OU ACHD Karnes Lateral 12 PVC 43.64653 -11.6332782 921 4n1c34 OO Private Karnes Lateral 10 CMP 43.64653 -11.6322852 922 4n1c34 OO Private Karnes Lateral 12 PVC 43.64648 -11.6324173 923 4n1c34 OO ACHD Karnes Lateral 12 PVC 43.64234 -11.6324173 924 4n1c34 OO ACHD Karnes Lateral 13 RCP 43.64241 -11.632762 924 4n1c34 OI ACHD Karnes Lateral 13 RCP	914	4n1e33_004	ACHD	North Slough	12	CMP	43.639246	-116.344372
11. ntra3_007 ACHD North Stugh 10 CMP 43.83854 -116.338341 191 ntra3_008 ACHD North Stugh 8 PVC 43.64656 -116.338271 202 ntra3_008 ACHD Karnes Lateral 12 PVC 43.64659 -116.33274 212 ntra3_008 ACHD Karnes Lateral 12 PVC 43.646693 -116.332745 221 ntra3_008 ACHD Karnes Lateral 10 CMP 43.646693 -116.324752 223 ntra3_005 Private Karnes Lateral 12 PVC 43.64293 -116.324762 224 ntra3_008 ACHD Karnes Lateral 12 PVC 43.64293 -116.32767 225 ntra3_008 ACHD Karnes Lateral 12 PVC 43.64293 -116.32767 226 ntra3_019 ACHD Karnes Lateral 12 PVC 43.64341 -116.32767 228 ntra43_019 ACHD Karne	915	4n1e33_005	ACHD	North Slough	15	CMP	43.637845	-116.341351
191 Antel ² 008 ACHD North Slough 8 PVC 43.84366 -116.33201 191 Antel ⁴ 001 Boise City Karros Latral 15 CMP 43.64752 -116.33279 201 Antel ⁴ 003 ACHD Karros Latral 15 CMP 43.64853 -116.33289 202 Antel ⁴ 005 Prinate Karros Latral 10 CMP 43.64863 -116.32462 203 Antel ⁴ 005 Prinate Karros Latral 12 PVC 43.64403 -116.32462 204 Antel ⁴ 006 Antel ⁴ 006 Karros Latral 12 PVC 43.64411 11.5.12463 204 Antel ⁴ 006 Antel ⁴ 006 Karros Latral 8 PVC 43.64411 11.6.12266 204 Antel ⁴ 010 ACHD Karros Latral 0 open ditch 43.64123 -116.3276 204 Antel ⁴ 016 ACHD Karros Latral 0 Open ditch 43.64306 -116.32865 203 Ante	916	4n1e33_006	ACHD	North Slough	15	CMP	43.637141	-116.339842
919 Ant.B4 001 PVC 43.847592 -116.333271 921 Ant.B4.003 ACHD Karnes Lateral 12 PVC 43.64883 -116.333274 921 Ant.B4.004 ACHD Karnes Lateral 12 PVC 43.64883 -116.32859 923 Ant.B4.005 Private Karnes Lateral 10 CMP 43.64486 -116.324712 924 Ant.B4.005 Private Karnes Lateral 12 PVC 43.64486 -116.32472 924 Ant.B4.007 ACHD Sarners Lateral 15 RCP 43.64486 -116.321631 924 Ant.B4.009 ACHD Karners Lateral 12 CMP 43.64181 -116.321631 924 Ant.B4.011 ACHD North Slough 24 CAP 43.64181 -116.322376 925 Ant.B4.011 ACHD North Slough 18 CMP 43.64183 -116.323619 931 Ant.B4.013 ACHD North Slough 18	917	4n1e33_007	ACHD	North Slough	10	CMP	43.635584	-116.338543
920 Ante34 001 Karnes Lateral 15 CVP 43.64703 -116.332879 921 Ante34_003 ACHD Karnes Lateral 15 RCP 43.646635 -116.327895 923 Ante34_005 Private Karnes Lateral 10 CVP 43.646635 -116.32472 924 Ante34_005 Private Karnes Lateral 12 PVC 43.646185 -116.32472 925 Ante34_005 ACHD Karnes Lateral 12 PVC 43.64218 -116.32476 926 Ante34_005 ACHD Karnes Lateral 12 CVP 43.64218 -116.32476 927 Ante34_010 ACHD Karnes Lateral 12 CVP 43.64318 -116.32576 926 Ante34_011 ACHD North Slough 22 CVP 43.64309 -116.32571 927 Ante34_015 ACHD North Slough 22 CVP 43.64309 -116.32571 928 Ante34_015 ACHD <	918	4n1e33_008	ACHD	North Slough			43.634636	-116.336201
921 Ante-8 001 Karnes Lateral 12 PVC 43.546663 -116.32859 922 Ante-84.004 ACMD. brigation Karnes Lateral 10 CMP 43.646635 -116.32462 923 Ante-84.005 Private Karnes Lateral 12 PVC 43.64635 -116.32462 924 Ante-84.005 ACHD Shawref Lateral 12 PVC 43.64236 -116.32462 924 Ante-84.007 ACHD Karnes Lateral 12 PVC 43.64236 -116.32167 924 Ante-84.009 ACHD Karnes Lateral 02 Opendtch 43.64246 -116.321697 924 Ante-84.011 ACHD Karnes Lateral 02 Opendtch 43.64169 -116.328793 930 Ante-84.011 ACHD North Stough 12 CMP 43.643631 -116.328793 931 Ante-84.012 Ante-84.014 ACHD North Stough 18 CMP 43.643640 -116.3128793 9331 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
922 Ante-34_004 ACPD, tragation Karnes Lateral 15 RCP 43.846635 116.327862 923 Anta 34_005 Private Karnes Lateral 12 PVC 43.64635 1116.32442 924 Anta 34_005 Arken Starres Lateral 12 PVC 43.64239 1116.33424 924 Anta 34_008 ACHD Karnes Lateral 15 RCP 43.642434 1116.31424 924 Anta 34_008 ACHD Karnes Lateral 8 PVC 43.643436 1116.31267 924 Anta 34_014 ACHD Karnes Lateral 0 openditch 43.643457 115.33276 923 Anta 34_014 ACHD North Slough 22 CMP 43.634359 115.332676 923 Anta 34_014 ACHD North Slough 12 CMP 43.634369 115.332679 923 Anta 34_014 ACHD North Slough 12 CMP 43.64233 115.332693 923 Anta 34_019								
923 Ante34_005 Private Karnes Lateral 10 CMP 43.44535 115.32742 924 Ante34_007 ACHD Shaver Lateral 12 PVC 43.64535 -116.33471 925 Ante34_007 ACHD Karnes Lateral 15 RCP 43.64251 -116.331697 924 Ante34_009 ACHD Karnes Lateral 12 CMP 43.64346 -116.321697 924 Ante34_011 ACHD Karnes Lateral 0 openditch 43.64146 -116.32263 929 Ante34_011 ACHD North Slough 24 CMP 43.634572 -116.3276 931 Ante34_015 ACHD North Slough 24 CMP 43.634501 -116.32859 933 Ante34_019 ACHD North Slough 18 CMP 43.63451 -116.32859 933 Ante34_020 ACHD Karnes Lateral 15 CMP 43.642174 116.31691 934 Ante34_021 ACHD								
224 4n1e34 006 Private Karnes Lateral 12 PVC 43.64459 -116.32442 255 4n1e34 007 ACHD Karnes Lateral 15 RCP 43.64259 -116.321633 264 4n1e34 008 ACHD Karnes Lateral 8 PVC 43.64236 -116.321637 278 4n1e34 010 ACHD Karnes Lateral 0 open ditch 43.64237 -116.32767 278 4n1e34 011 ACHD North Slough 24 CMP 43.643507 -116.32767 279 4n1e34 015 ACHD North Slough 12 CMP 43.64351 -116.328593 271 41.643 018 ACHD Korth Slough 12 RCP 43.64351 -116.328593 273 4n1e34 018 ACHD Karnes Lateral 12 RCP 43.64253 -116.312758 273 4n1e34 0.03 ACHD Karnes Lateral 12 RC		-						
925 4n1e34 007 ACHD Snavre lateral 12 PVC 43.64259 -116.321637 926 4n1e34 009 ACHD Karnes lateral 8 PVC 43.64231 -116.321637 927 4n1e34 010 ACHD Karnes lateral 12 CMP 43.64348 -116.321637 928 4n1e34 011 ACHD North Slough 24 CMP 43.643472 -116.321637 930 4n1e34 014 ACHD North Slough 24 CMP 43.643699 -116.328593 931 4n1e34 016 ACHD North Slough 18 CMP 43.64369 -116.328593 933 4n1e34 018 ACHD Karnes lateral 12 RCP 43.64369 -116.31873 934 4n1e34 020 ACHD Karnes lateral 12 RCP 43.64369 -116.31873 935 4n1e34 022 ACHD Karnes lateral 12 PVC								
226 4n1e34 008 ACHD Karnes Lateral 15 RCP 43.642411 -116.321691 297 4n1e34 010 ACHD Karnes Lateral 12 CMP 43.64348 -116.322876 292 4n1e34 011 ACHD Karnes Lateral 0 open ditch 43.64348 -116.322761 393 4n1e34 014 ACHD North Slough 24 CMP 43.643472 -116.322763 393 4n1e34 015 ACHD North Slough 12 CMP 43.63450 -116.328939 393 4n1e34 018 ACHD Karnes Lateral 12 RCP 43.64123 -116.31893 393 4n1e34 019 ACHD Karnes Lateral 12 RCP 43.641234 -116.31893 393 4n1e34 021 ACHD Karnes Lateral 12 RCP 43.642234 -116.31893 393 4n1e34 021 ACHD Karnes Lateral 12		_						
927 4n1e34 009 ACHD Karnes Lateral 8 PVC 43.64326 -116.321697 928 4n1e34 0.11 ACHD Karnes Lateral 0 open dtch 43.64348 -116.33276 929 4n1e34 0.14 ACHD North Slough 24 CMP 43.643272 -116.332796 931 4n1e34 0.15 ACHD North Slough 12 CMP 43.634509 -116.328593 932 4n1e34 0.16 ACHD North Slough 12 CMP 43.63450 -116.328593 933 4n1e34 0.16 ACHD Karnes Lateral 12 RCP 43.641253 -116.316593 934 4n1e34 0.02 ACHD Karnes Lateral 12 PVC 43.64223 -116.316593 935 4n1e34 0.02 ACHD Karnes Lateral 12 PVC 43.642274 -116.32173 936 4n1e35 0.01 ACHD Karnes Lateral 12								
928 4n1c34_010 ACHD Karnes lateral 12 CMP 43.64348 -116.32276 929 4n1c34_014 ACHD North Slough 24 CMP 43.643169 -116.323719 930 4n1c34_015 ACHD North Slough 12 CMP 43.634572 -116.328593 931 4n1c34_015 ACHD North Slough 18 CMP 43.634361 -116.328593 933 4n1c34_019 ACHD Karnes Lateral 12 RCP 43.64123 -116.318593 934 4n1c34_019 ACHD Karnes Lateral 12 RCP 43.64233 -116.318593 936 4n1c34_020 ACHD Karnes Lateral 12 RCP 43.642174 -116.312726 937 4n1c34_023 ACHD Karnes Lateral 0 open ditch 43.642174 -116.312726 939 4n1c35_001 ACHD Zinger Lateral 12 PVC 43.642021 -116.312726 939 4n1c35_004 ACHD <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
930 4n1c3a_014 ACHD North Slough 24 CMP 43.634572 -116.32759 931 4n1c34_015 ACHD North Slough 12 CMP 43.634509 -116.32769 932 4n1c34_015 ACHD North Slough 18 CMP 43.634361 -116.32769 933 4n1c34_019 ACHD Karnes Lateral 12 RCP 43.634364 -116.31768 934 4n1c34_020 ACHD Karnes Lateral 15 RCP 43.639364 -116.3185 935 4n1c34_022 Irrigation Settlers Canal 12 PVC 43.64027 -116.316959 936 4n1c34_022 ACHD Karnes Lateral 12 PVC 43.64027 +116.31171 937 4n1c35_001 ACHD Karnes Lateral 12 PVC 43.640250 +116.3117207 934 4n1c35_002 ACHD Karnes Lateral 12 PVC 43.640254 +116.311207 944 4n1c35_002 ACHD								
931 4n1e34 015 ACHD North Slough 12 CMP 43.634509 -116.326593 932 4n1e34 015 ACHD North Slough 18 CMP 43.634361 -116.326593 933 4n1e34 019 ACHD Karnes Lateral 12 RCP 43.64253 -116.31659 934 4n1e34 020 ACHD Karnes Lateral 12 PVC 43.634256 -116.31659 935 4n1e34 022 Irigation Settlers Canal 12 PVC 43.642174 -116.32173 938 4n1e34 022 ACHD Karnes Lateral 12 PVC 43.642174 -116.32173 938 4n1e35 001 ACHD Karnes Lateral 12 PVC 43.642278 -116.321726 939 4n1e35 002 ACHD Karnes Lateral 12 ADS 43.64254 -116.311720 940 4n1e35 002 ACHD Settlers Canal 8 CMP 43.64264 -116.313769 942 4n1e35 005	929	4n1e34_011	ACHD, Irrigation	Shavrer Lateral	0	open ditch	43.641169	-116.333719
932 4n1e34_016 ACHD North Slough 18 CMP 43.634361 -116.326919 933 4n1e34_019 ACHD Karnes Lateral 12 RCP 43.634253 -116.319738 934 4n1e34_019 ACHD Karnes Lateral 15 RCP 43.634069 -116.316591 935 4n1e34_022 ACHD Settlers Canal 12 PVC 43.642174 -116.321713 936 4n1e34_023 ACHD Karnes Lateral 12 PVC 43.642021 -116.321713 939 4n1e34_024 ACHD Karnes Lateral 0 open ditch 43.642021 -116.321726 939 4n1e35_001 ACHD Zinger Lateral 12 ADS 43.64284 -116.313276 941 4n1e35_003 ACHD Settlers Canal 8 CMP 43.641624 -116.313769 944 4n1e35_006 ACHD Settlers Canal 12 PVC 43.640253 -116.313769 944 4n1e35_007 A	930	4n1e34_014	ACHD	North Slough	24	CMP	43.634572	-116.32976
933 4n1e34 018 ACHD Karnes Lateral 12 RCP 43.641253 -116.319738 934 4n1e34_019 ACHD Karnes Lateral 15 RCP 43.639346 -116.3185 935 4n1e34_022 Irrigation Settlers Canal 12 PVC 43.635543 -116.31659 936 4n1e34_024 ACHD Karnes Lateral 12 RCP 43.642174 -116.321713 938 4n1e34_024 ACHD Karnes Lateral 0 open ditch 43.642505 -116.321726 939 4n1e35_001 ACHD Karnes Lateral 0 open ditch 43.64021 -116.321726 940 4n1e35_002 ACHD Settlers Canal 8 PVC 43.64024 -116.312828 942 4n1e35_003 ACHD Settlers Canal 12 PVC 43.64024 -116.313782 943 4n1e35_006 ACHD Settlers Canal 12 PVC 43.64023 -116.313828 944 4n1e	931	4n1e34_015	ACHD	North Slough	12	CMP	43.634509	-116.328593
934 Ante34_019 ACHD Karnes Lateral 15 RCP 43.633346 -116.3185 935 4n1e34_020 ACHD Settlers Canal 12 PVC 43.633543 -116.316959 936 4n1e34_023 ACHD Karnes Lateral 12 RCP 43.642174 -116.321713 937 4n1e34_024 ACHD Karnes Lateral 12 RCP 43.64205 -116.312726 938 4n1e35_001 ACHD Karnes Lateral 0 open ditch 43.641021 -116.312726 940 4n1e35_002 ACHD Settlers Canal 8 PVC 43.642788 -116.313276 941 4n1e35_003 ACHD Settlers Canal 8 PVC 43.641024 -116.313769 942 4n1e35_004 ACHD Settlers Canal 0 open ditch 43.640273 -116.313876 944 4n1e35_006 ACHD Settlers Canal 12 PVC 43.640273 -116.313876 946 4n1e35_007	932	4n1e34_016	ACHD	North Slough	18	CMP	43.634361	-116.326919
935 4nle34 020 ACHD Settlers Canal 12 PVC 43.634069 -116.316959 936 4nle34 022 Irrigation Settlers Canal 15 CMP 43.633543 -116.316959 937 4nle34 023 ACHD Karnes Lateral 12 RCP 43.642174 -116.321726 939 4nle35 024 ACHD Karnes Lateral 0 open ditch 43.642051 -116.31174 940 4nle35 002 ACHD Zinger Lateral 12 ADS 43.646554 -116.313769 941 4nle35 002 ACHD Settlers Canal 8 CMP 43.641624 -116.313769 943 4nle35 005 Irrigation Settlers Canal 12 PVC 43.64023 -116.313769 944 4nle35 005 ACHD Settlers Canal 12 PVC 43.64023 -116.313769 944 4nle35 0005 ACHD Settlers Canal								
936 4nle34_022 Irrigation Settlers Canal 15 CMP 43.635543 -116.316691 937 4nle34_023 ACHD Karnes Lateral 12 RCP 43.642174 -116.321713 938 4nle34_023 ACHD Karnes Lateral 0 open ditch 43.642505 -116.321726 939 4nle35_001 ACHD Karnes Lateral 0 open ditch 43.642564 -116.311207 940 4nle35_002 ACHD Settlers Canal 8 PVC 43.640564 -116.31267 941 4nle35_003 ACHD Settlers Canal 8 CMP 43.640564 -116.313769 942 4nle35_004 ACHD Settlers Canal 12 PVC 43.640203 -116.313687 944 4nle35_006 ACHD Zinger Lateral 12 PVC 43.643362 -116.313687 944 4nle35_008 ACHD Zinger Lateral 12 PVC 43.643362 -116.313769 947 4nle35_010								
937 4n1e34_023 ACHD Karnes Lateral 12 RCP 43.642174 -116.321713 938 4n1e34_025 ACHD Karnes Lateral 12 PVC 43.642505 -116.321724 939 4n1e35_001 ACHD Karnes Lateral 0 open ditch 43.640201 -116.311207 940 4n1e35_001 ACHD Settlers Canal 8 PVC 43.642788 -116.313278 942 4n1e35_002 ACHD Settlers Canal 8 CMP 43.641065 -116.313769 943 4n1e35_004 ACHD Settlers Canal 12 PVC 43.640273 -116.313760 944 4n1e35_005 Irrigation Settlers Canal 0 open ditch 43.640253 -116.313762 945 4n1e35_007 ACHD Zinger Lateral 12 PVC 43.643262 -116.313762 946 4n1e35_009 ACHD Zinger Lateral 12 PVC 43.643262 -116.313065 947 4n1e35_010								
938 4n1e34_024 ACHD Karnes Lateral 12 PVC 43.642505 -116.321726 939 4n1e35_001 ACHD Karnes Lateral 0 open ditch 43.64021 -116.319174 940 4n1e35_001 ACHD Zinger Lateral 12 ADS 43.646554 -116.3131207 941 4n1e35_002 ACHD Settlers Canal 8 PVC 43.64024 -116.313828 942 4n1e35_004 ACHD Settlers Canal 12 PVC 43.640273 -116.313796 944 4n1e35_005 Irrigation Settlers Canal 12 PVC 43.64023 -116.313786 946 4n1e35_006 ACHD Zinger Lateral 12 PVC 43.64326 -116.313687 946 4n1e35_009 ACHD Zinger Lateral 12 PVC 43.643274 -116.313876 948 4n1e35_010 ACHD Unnamed 12 PVC 43.643577 -116.308831 950 4n1e35_011 AC		—	*					
939 4n1e34_025 ACHD Karnes Lateral 0 open ditch 43.641021 -116.319174 940 4n1e35_001 ACHD Zinger Lateral 12 ADS 43.646554 -116.311207 941 4n1e35_002 ACHD Settlers Canal 8 PVC 43.641624 -116.313828 942 4n1e35_003 ACHD Settlers Canal 8 CMP 43.641065 -116.313769 944 4n1e35_004 ACHD Settlers Canal 12 PVC 43.640273 -116.313789 945 4n1e35_006 ACHD Settlers Canal 0 open ditch 43.640273 -116.313789 946 4n1e35_007 ACHD Zinger Lateral 12 PVC 43.643263 -116.313769 948 4n1e35_009 ACHD Unnamed 12 PVC 43.643262 -116.313789 949 4n1e35_010 ACHD Unnamed 12 PVC 43.634512 -116.305831 950 4n1e35_011 ACHD <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
940 4n1e35_001 ACHD Zinger Lateral 12 ADS 43.646554 -116.311207 941 4n1e35_002 ACHD Settlers Canal 8 PVC 43.641624 -116.313828 942 4n1e35_004 ACHD Settlers Canal 12 PVC 43.641065 -116.313769 943 4n1e35_004 ACHD Settlers Canal 12 PVC 43.642065 -116.313769 944 4n1e35_006 ACHD Settlers Canal 12 PVC 43.642053 -116.313786 945 4n1e35_006 ACHD Zinger Lateral 12 PVC 43.643835 -116.313765 946 4n1e35_008 ACHD Zinger Lateral 12 PVC 43.643836 -116.313765 947 4n1e35_009 ACHD Unnamed 12 PVC 43.643562 -116.313848 949 4n1e35_010 ACHD Unnamed 12 PVC 43.637557 -116.30831 950 4n1e35_011 ACHD <								
941 4n1e35 002 ACHD Settlers Canal 8 PVC 43.642788 -116.313828 942 4n1e35 003 ACHD Settlers Canal 8 CMP 43.641624 -116.313769 943 4n1e35 004 ACHD Settlers Canal 12 PVC 43.64065 -116.313687 944 4n1e35 005 Irrigation Settlers Canal 12 PVC 43.640273 -116.313687 944 4n1e35 006 ACHD Settlers Canal 0 open ditch 43.642273 -116.313762 944 4n1e35 006 ACHD Zinger Lateral 12 PVC 43.643835 -116.313762 947 4n1e35 009 ACHD Unnamed 12 PVC 43.643757 -116.305831 948 4n1e35 010 ACHD Unnamed 12 PVC 43.634695 -116.305831 950 4n1e35 012 ACHD Unnamed 12 PVC <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
942 4n1e35_003 ACHD Settlers Canal 8 CMP 43.641624 -116.313769 943 4n1e35_004 ACHD Settlers Canal 12 PVC 43.64005 -116.313769 944 4n1e35_005 Irrigation Settlers Canal 12 PVC 43.640273 -116.313782 945 4n1e35_006 ACHD Settlers Canal 0 open ditch 43.64233 -116.313782 946 4n1e35_007 ACHD Zinger Lateral 12 PVC 43.648378 -116.313782 946 4n1e35_008 ACHD Zinger Lateral 12 PVC 43.643362 -116.313782 947 4n1e35_010 ACHD Unnamed 12 PVC 43.64362 -116.30581 948 4n1e35_011 ACHD Unnamed 12 PVC 43.63459 -116.20581 949 4n1e35_012 ACHD Unnamed 12 PVC 43.63459 -116.20581 950 4n1e35_011 ACHD <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></td<>				-				
943 4n1e35_004 ACHD Settlers Canal 12 PVC 43.641065 -116.313796 944 4n1e35_005 Irrigation Settlers Canal 12 PVC 43.640273 -116.313782 945 4n1e35_006 ACHD Settlers Canal 0 open ditch 43.642053 -116.313782 946 4n1e35_007 ACHD Zinger Lateral 12 PVC 43.643835 -116.313057 947 4n1e35_008 ACHD Zinger Lateral 12 PVC 43.643835 -116.313057 948 4n1e35_010 ACHD Unnamed 12 PVC 43.643825 -116.308831 950 4n1e35_010 ACHD Unnamed 12 PVC 43.634595 -116.208831 951 4n1e35_012 ACHD Unnamed 12 PVC 43.63459 -116.294748 952 4n1e35_014 ACHD Unnamed 12 PVC 43.634593 -116.294748 953 4n1e36_001 ACHD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
944 4n1e35_005 Irrigation Settlers Canal 12 PVC 43.640273 -116.313687 945 4n1e35_006 ACHD Settlers Canal 0 open ditch 43.640253 -116.313782 946 4n1e35_007 ACHD Zinger Lateral 12 PVC 43.648378 -116.313762 947 4n1e35_008 ACHD Zinger Lateral 12 PVC 43.643362 -116.313848 947 4n1e35_009 ACHD Unnamed 12 PVC 43.643362 -116.313848 949 4n1e35_010 ACHD Unnamed 12 PVC 43.633557 -116.305831 950 4n1e35_011 ACHD Unnamed 12 PVC 43.63459 -116.290748 951 4n1e35_013 ACHD Unnamed 12 PVC 43.63459 -116.294748 953 4n1e35_014 ACHD Unnamed 12 PVC 43.646312 -116.292258 954 4n1e36_001 ACHD Settle								
946 4n1e35_007 ACHD Zinger Lateral 12 PVC 43.648385 -116.313065 947 4n1e35_008 ACHD Zinger Lateral 12 PVC 43.648378 -116.313576 948 4n1e35_009 ACHD Settlers Canal 12 RCP 43.643362 -116.313848 949 4n1e35_010 ACHD Unnamed 12 PVC 43.637547 -116.308381 950 4n1e35_011 ACHD Unnamed 12 PVC 43.637557 -116.304875 951 4n1e35_012 ACHD Unnamed 12 PVC 43.634549 -116.296014 952 4n1e35_013 ACHD Unnamed 12 PVC 43.634549 -116.2920448 953 4n1e36_001 ACHD Unnamed 12 CMP 43.646328 -116.292058 954 4n1e36_001 ACHD Settlers Canal 10 CMP 43.646328 -116.292258 955 4n1e36_002 ACHD Settlers Canal<					12	PVC		
947 4n1e35_008 ACHD Zinger Lateral 12 PVC 43.648378 -116.313576 948 4n1e35_009 ACHD Settlers Canal 12 RCP 43.643362 -116.313848 949 4n1e35_010 ACHD Unnamed 12 PVC 43.637547 -116.305831 950 4n1e35_011 ACHD Unnamed 12 PVC 43.637557 -116.304875 951 4n1e35_012 ACHD Unnamed 12 PVC 43.634549 -116.296014 952 4n1e35_013 ACHD Unnamed 12 PVC 43.634549 -116.294748 953 4n1e35_014 ACHD Unnamed 0 Drop Inlet 43.636593 -116.294748 954 4n1e36_001 ACHD Settlers Canal 15 CMP 43.648312 -116.292258 955 4n1e36_002 ACHD Settlers Canal 10 CMP 43.645238 -116.28844 957 4n1e36_003 ACHD Settlers Ca	945	4n1e35_006	*			open ditch		
948 4n1e35_009 ACHD Settlers Canal 12 RCP 43.643362 -116.313848 949 4n1e35_010 ACHD Unnamed 12 PVC 43.637547 -116.305831 950 4n1e35_011 ACHD Unnamed 12 PVC 43.637557 -116.304875 951 4n1e35_012 ACHD Unnamed 12 PVC 43.634695 -116.296014 952 4n1e35_013 ACHD Unnamed 12 PVC 43.634599 -116.296014 953 4n1e35_014 ACHD Unnamed 0 Drop Inlet 43.636593 -116.294748 954 4n1e36_001 ACHD Unnamed 0 Drop Inlet 43.64528 -116.29258 955 4n1e36_002 ACHD Settlers Canal 15 CMP 43.646328 -116.288902 955 4n1e36_002 ACHD Settlers Canal 10 CMP 43.645157 -116.28884 957 4n1e36_003 ACHD Settlers Canal	946	4n1e35_007	ACHD	Zinger Lateral	12	PVC	43.648385	-116.313065
949 4nle35_010 ACHD Unnamed 12 PVC 43.637547 -116.305831 950 4nle35_011 ACHD Unnamed 12 PVC 43.637557 -116.304875 951 4nle35_012 ACHD Unnamed 12 PVC 43.634595 -116.296014 952 4nle35_013 ACHD Unnamed 12 PVC 43.634549 -116.296014 953 4nle35_014 ACHD Unnamed 0 Drop Inlet 43.636593 -116.292158 954 4nle36_001 ACHD Settlers Canal 15 CMP 43.648312 -116.292258 955 4nle36_002 ACHD Settlers Canal 10 CMP 43.646157 -116.288902 956 4nle36_003 ACHD Settlers Canal 10 CMP 43.645157 -116.28884 957 4nle36_004 ACHD Settlers Canal 10 CMP 43.645105 -116.287382 958 4nle36_005 ACHD Settlers Ca	947		ACHD	Zinger Lateral				-116.313576
950 4n1e35_011 ACHD Unnamed 12 PVC 43.637557 -116.304875 951 4n1e35_012 ACHD Unnamed 12 PVC 43.634695 -116.296014 952 4n1e35_013 ACHD Unnamed 12 PVC 43.634549 -116.296014 953 4n1e35_014 ACHD Unnamed 0 Drop Inlet 43.636593 -116.309846 954 4n1e36_001 ACHD Unnamed 0 Drop Inlet 43.636593 -116.309846 954 4n1e36_001 ACHD Settlers Canal 15 CMP 43.648312 -116.292258 955 4n1e36_002 ACHD Settlers Canal 10 CMP 43.646228 -116.28840 957 4n1e36_004 ACHD Settlers Canal 10 CMP 43.645157 -116.28844 957 4n1e36_005 ACHD Settlers Canal 10 CMP 43.645153 -116.287382 958 4n1e36_005 ACHD Settle								
951 4n1e35_012 ACHD Unnamed 12 PVC 43.634695 -116.296014 952 4n1e35_013 ACHD Unnamed 12 PVC 43.634549 -116.294748 953 4n1e35_014 ACHD Unnamed 0 Drop Inlet 43.636593 -116.294748 953 4n1e36_001 ACHD Settlers Canal 15 CMP 43.648312 -116.292258 954 4n1e36_002 ACHD Settlers Canal 12 CMP 43.646328 -116.292258 955 4n1e36_002 ACHD Settlers Canal 10 CMP 43.646328 -116.288902 956 4n1e36_003 ACHD Settlers Canal 10 CMP 43.645233 -116.28834 957 4n1e36_004 ACHD Settlers Canal 10 CMP 43.645082 -116.287308 958 4n1e36_005 ACHD Settlers Canal 10 CMP 43.645082 -116.287382 959 4n1e36_006 ACHD <								
952 4n1e35_013 ACHD Unnamed 12 PVC 43.634549 -116.294748 953 4n1e35_014 ACHD Unnamed 0 Drop Inlet 43.636593 -116.294748 954 4n1e36_001 ACHD Settlers Canal 15 CMP 43.648312 -116.292258 955 4n1e36_002 ACHD Settlers Canal 12 CMP 43.646328 -116.288902 956 4n1e36_003 ACHD Settlers Canal 10 CMP 43.646157 -116.28884 957 4n1e36_004 ACHD Settlers Canal 10 CMP 43.645032 -116.287308 958 4n1e36_005 ACHD Settlers Canal 10 CMP 43.645082 -116.287308 959 4n1e36_006 ACHD Settlers Canal 10 CMP 43.645082 -116.287382 960 4n1e36_007 ACHD Settlers Canal 10 CMP 43.645205 -116.285641 961 4n1e36_010 ACHD								
953 4n1e35_014 ACHD Unnamed 0 Drop Inlet 43.636593 -116.309846 954 4n1e36_001 ACHD Settlers Canal 15 CMP 43.648312 -116.292258 955 4n1e36_002 ACHD Settlers Canal 12 CMP 43.646328 -116.288902 956 4n1e36_003 ACHD Settlers Canal 10 CMP 43.646157 -116.28884 957 4n1e36_004 ACHD Settlers Canal 10 CMP 43.645233 -116.287308 958 4n1e36_005 ACHD Settlers Canal 10 CMP 43.645082 -116.287308 959 4n1e36_006 ACHD Settlers Canal 10 CMP 43.645082 -116.287382 959 4n1e36_007 ACHD Settlers Canal 10 CMP 43.645085 -116.285767 961 4n1e36_007 ACHD Settlers Canal 12 CMP 43.645068 -116.285767 961 4n1e36_010 ACHD<								
954 4n1e36_001 ACHD Settlers Canal 15 CMP 43.648312 -116.292258 955 4n1e36_002 ACHD Settlers Canal 12 CMP 43.646328 -116.288902 956 4n1e36_003 ACHD Settlers Canal 10 CMP 43.646157 -116.28884 957 4n1e36_004 ACHD Settlers Canal 10 CMP 43.645233 -116.287308 958 4n1e36_005 ACHD Settlers Canal 10 CMP 43.645082 -116.287308 959 4n1e36_006 ACHD Settlers Canal 10 CMP 43.645082 -116.287308 959 4n1e36_007 ACHD Settlers Canal 10 CMP 43.645085 -116.285767 961 4n1e36_007 ACHD Settlers Canal 16 PVC 43.645205 -116.285767 961 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645068 -116.285314 962 4n1e36_010 ACHD		—						
955 4n1e36_002 ACHD Settlers Canal 12 CMP 43.646328 -116.288902 956 4n1e36_003 ACHD Settlers Canal 10 CMP 43.646157 -116.28884 957 4n1e36_004 ACHD Settlers Canal 10 CMP 43.645157 -116.28884 957 4n1e36_004 ACHD Settlers Canal 10 CMP 43.645233 -116.287308 958 4n1e36_005 ACHD Settlers Canal 10 CMP 43.645082 -116.287382 959 4n1e36_006 ACHD Settlers Canal 24 CMP 43.645105 -116.285767 961 4n1e36_007 ACHD Settlers Canal 16 PVC 43.645205 -116.285767 961 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645234 -116.285314 962 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645068 -116.282667 963 4n1e36_011 ACHD<								
956 4n1e36_003 ACHD Settlers Canal 10 CMP 43.646157 -116.28884 957 4n1e36_004 ACHD Settlers Canal 10 CMP 43.646157 -116.28884 957 4n1e36_005 ACHD Settlers Canal 10 CMP 43.645233 -116.287308 958 4n1e36_005 ACHD Settlers Canal 10 CMP 43.645082 -116.287382 959 4n1e36_006 ACHD Settlers Canal 24 CMP 43.645105 -116.286541 960 4n1e36_007 ACHD Settlers Canal 16 PVC 43.645205 -116.285767 961 4n1e36_008 ACHD Settlers Canal 12 CMP 43.645234 -116.285314 962 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645068 -116.282667 963 4n1e36_011 ACHD Settlers Canal 10 CMP 43.644334 -116.281635 964 4n1e36_012 ACHD<								
957 4n1e36_004 ACHD Settlers Canal 10 CMP 43.645233 -116.287308 958 4n1e36_005 ACHD Settlers Canal 10 CMP 43.645082 -116.287308 959 4n1e36_006 ACHD Settlers Canal 24 CMP 43.645082 -116.287382 959 4n1e36_006 ACHD Settlers Canal 24 CMP 43.645105 -116.286541 960 4n1e36_007 ACHD Settlers Canal 16 PVC 43.645205 -116.285767 961 4n1e36_008 ACHD Settlers Canal 12 CMP 43.645234 -116.285314 962 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645068 -116.282667 963 4n1e36_011 ACHD Settlers Canal 10 CMP 43.644334 -116.281635 964 4n1e36_012 ACHD Settlers Canal 18 CMP 43.644371 -116.27753 965 4n1e36_014 ACHD		—						
958 4n1e36_005 ACHD Settlers Canal 10 CMP 43.645082 -116.287382 959 4n1e36_006 ACHD Settlers Canal 24 CMP 43.64505 -116.286541 960 4n1e36_007 ACHD Settlers Canal 16 PVC 43.645205 -116.285767 961 4n1e36_008 ACHD Settlers Canal 12 CMP 43.645234 -116.285314 962 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645068 -116.282667 963 4n1e36_011 ACHD Settlers Canal 10 CMP 43.644304 -116.281635 964 4n1e36_012 ACHD Settlers Canal 10 CMP 43.644371 -116.279183 965 4n1e36_014 ACHD Settlers Canal 18 CMP 43.644154 -116.277753								
959 4n1e36_006 ACHD Settlers Canal 24 CMP 43.645105 -116.286541 960 4n1e36_007 ACHD Settlers Canal 16 PVC 43.645205 -116.285767 961 4n1e36_008 ACHD Settlers Canal 12 CMP 43.645234 -116.285741 962 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645234 -116.285314 962 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645068 -116.282667 963 4n1e36_011 ACHD Settlers Canal 10 CMP 43.644344 -116.281635 964 4n1e36_012 ACHD Settlers Canal 18 CMP 43.644371 -116.27753 965 4n1e36_014 ACHD Settlers Canal 48 CMP 43.644154 -116.277753								
960 4n1e36_007 ACHD Settlers Canal 16 PVC 43.645205 -116.285767 961 4n1e36_008 ACHD Settlers Canal 12 CMP 43.645234 -116.285747 962 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645268 -116.285747 963 4n1e36_011 ACHD Settlers Canal 12 CMP 43.645068 -116.282667 963 4n1e36_011 ACHD Settlers Canal 10 CMP 43.644334 -116.281635 964 4n1e36_012 ACHD Settlers Canal 18 CMP 43.644371 -116.27753 965 4n1e36_014 ACHD Settlers Canal 48 CMP 43.644154 -116.277753								
961 4n1e36_008 ACHD Settlers Canal 12 CMP 43.645234 -116.285314 962 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645068 -116.282667 963 4n1e36_011 ACHD Settlers Canal 10 CMP 43.644834 -116.282667 964 4n1e36_012 ACHD Settlers Canal 10 CMP 43.644834 -116.281635 964 4n1e36_012 ACHD Settlers Canal 18 CMP 43.644371 -116.27753 965 4n1e36_014 ACHD Settlers Canal 48 CMP 43.644154 -116.277753								
962 4n1e36_010 ACHD Settlers Canal 12 CMP 43.645068 -116.282667 963 4n1e36_011 ACHD Settlers Canal 10 CMP 43.644834 -116.282667 964 4n1e36_012 ACHD Settlers Canal 10 CMP 43.644834 -116.281635 964 4n1e36_012 ACHD Settlers Canal 18 CMP 43.644371 -116.279183 965 4n1e36_014 ACHD Settlers Canal 48 CMP 43.644154 -116.277753								
964 4n1e36_012 ACHD Settlers Canal 18 CMP 43.644371 -116.279183 965 4n1e36_014 ACHD Settlers Canal 48 CMP 43.644154 -116.277753	962	4n1e36_010	ACHD	Settlers Canal	12	CMP	43.645068	
965 4n1e36_014 ACHD Settlers Canal 48 CMP 43.644154 -116.277753	963		ACHD	Settlers Canal	10	CMP	43.644834	-116.281635
-	964	4n1e36_012	ACHD	Settlers Canal	18		43.644371	-116.279183
966 4n1e36_026 ACHD Settlers Canal 0 open ditch 43.645113 -116.286821								
	966	4n1e36_026	ACHD	Settlers Canal	0	open ditch	43.645113	-116.286821

#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE	PIPE TYPE	LATITUDE	LONGITUDE
967	4n1e36 028	Irrigation	Settlers Canal	DIAMETER 10	SMP	43.645456	-116.288407
967	4n1e36_028 4n1e36_029	ACHD	Settlers Canal	10	CMP	43.645134	-116.283272
969	4n1e36 031	ACHD	Thurman Mill Canal	12	PVC	43.647966	-116.279487
970	4n2e17_001	ACHD, Private	Pierce Creek	0	open ditch	43.690285	-116.245117
971	4n2e17_002	ACHD	Pierce Creek	0	open ditch	43.688179	-116.247692
972	4n2e17_003	ACHD	Pierce Gulch	0	open ditch	43.687766	-116.248198
973	4n2e18_001	ACHD	Farmers Union Canal	15	CMP	43.679496	-116.271584
974	4n2e18_002	ACHD ACHD	Pierce Creek	12 15	CMP CMP	43.679445	-116.268038 -116.267381
975 976	4n2e18_003 4n2e18_005	ACHD	Pierce Creek Pierce Creek	15	CMP	43.680008 43.681331	-116.257898
977	4n2e18 006	ACHD	Pierce Creek	12	CMP	43.683659	-116.252903
978	4n2e18_007	ACHD	Eagle Drain	15	RCP	43.679724	-116.274016
979	4n2e18_008	ACHD	Eagle Drain	12	PVC	43.67839	-116.274073
980	4n2e18_009	ACHD	Eagle Drain	12	CMP	43.680355	-116.263467
981	4n2e19_001	ACHD	Eagle Drain	12	PVC	43.67719	-116.273987
982	4n2e19_002	ACHD	Eagle Drain	12	PVC	43.676529	-116.273961
983 984	4n2e19_003 4n2e19_004	ACHD ACHD	Eagle Drain Eagle Drain	12 8	PVC CMP	43.675108 43.67506	-116.273969 -116.274041
985	4n2e19_004 4n2e19_005	ACHD	Eagle Drain	12	PVC	43.674085	-116.273972
986	4n2e19 006	ACHD	Eagle Drain	0	open ditch	43.673606	-116.273892
987	4n2e19_007	ACHD	Farmers Union Canal	24	CMP	43.675683	-116.263736
988	4n2e19_008	Private	Lake Elmore	15	RCP	43.663049	-116.273022
989	4n2e19_009	ACHD	Lake Elmore	12	PVC	43.663407	-116.272848
990	4n2e19_010	ACHD	Eagle Drain	15	PVC	43.668754	-116.263258
991	4n2e19_011	ACHD	Eagle Drain	24	CMP	43.67012	-116.264626
992 993	4n2e19_012 4n2e19_013	Private ACHD	Eagle Drain Eagle Drain	0	open ditch	43.668337 43.667592	-116.262665 -116.261938
994	4n2e19_013	ACHD	Eagle Drain	24	PVC	43.666756	-116.261171
995	4n2e19_015	ACHD	Eagle Drain	12	PVC	43.664723	-116.258685
996	4n2e19_016	ACHD	Eagle Drain	12	CMP	43.66363	-116.254869
997	4n2e19_017	ACHD	Eagle Drain	15	CMP	43.663473	-116.254339
998	4n2e19_019	ACHD	Eagle Drain	12	CMP	43.663818	-116.255472
999 1000	4n2e19_020 4n2e19_021	Boise School District ACHD	Eagle Drain	8 30	PVC CMP	43.664441 43.664431	-116.258027 -116.258296
1000	4n2e19_021 4n2e19_022	ACHD	Eagle Drain Farmers Union Canal	8	СМР	43.670077	-116.255856
1001	4n2e19 023	Private	Farmers Union Canal	12	CMP	43.672002	-116.257847
1003	4n2e19_024	Private	Farmers Union Canal	12	SMP	43.671949	-116.257324
1004	4n2e19_025	ACHD	Eagle Drain	12	CMP	43.673855	-116.274021
1005	4n2e19_026	ACHD	Eagle Drain	0	open ditch	43.670272	-116.264773
1006	4n2e19_027	Irrigation	Eagle Drain	15	CMP	43.672006	-116.266521
1007	4n2e19_028	ACHD	Eagle Drain	12	CMP	43.673628	-116.26834
1008	4n2e19_030 4n2e19_031	Irrigation Private	Eagle Drain Eagle Drain	15 12	HDPE CMP	43.673612 43.67357	-116.268624 -116.269276
1009	4n2e19_031 4n2e19_032	ACHD	Unnamed	30	RCP	43.672797	-116.274116
1010	4n2e19_033	ACHD	Unnamed	10	PVC	43.671246	-116.274151
1012	4n2e19_034	ACHD	Unnamed	10	PVC	43.663525	-116.268597
1013	4n2e19_035	ACHD	Eagle Drain	30	PVC	43.67287171	-116.2675294
1014	4n2e20_001	ACHD	Polecat Gulch	18	RCP	43.663335	-116.249553
1015	4n2e20_002	ACHD	Polecat Gulch	12	PVC	43.664278	-116.249542
1016 1017	4n2e20_004 4n2e20_005	ACHD ACHD	Polecat Gulch Polecat Gulch	15 12	PVC PVC	43.665233 43.665999	-116.249554 -116.248369
1017	4n2e20_005 4n2e20_006	ACHD	Polecat Gulch	12	PVC PVC	43.665999	-116.248309
1013	4n2e20_000	ACHD	Polecat Gulch	0	Drop Inlet	43.666155	-116.248303
1020	4n2e20_008	ACHD	Polecat Gulch	0	Drop Inlet	43.666957	-116.248307
1021	4n2e20_009	ACHD	Polecat Gulch	0	Drop Inlet	43.667754	-116.248291
1022	4n2e20_010	ACHD	Polecat Gulch	12	PVC	43.668649	-116.248291
1023	4n2e20_011	ACHD	Polecat Gulch	12	PVC	43.66864	-116.248277
1024	4n2e20_012	ACHD	Polecat Gulch Polecat Gulch	12	PVC	43.669205	-116.247816 -116.246527
1025 1026	4n2e20_013 4n2e20 014	ACHD ACHD	Polecat Guich Polecat Guich	12	CMP PVC	43.669928 43.670063	-116.246527 -116.246251
1020	4n2e20_014 4n2e20_015	ACHD	Polecat Gulch	24	ADS	43.669962	-116.245988
1027	4n2e20_016	ACHD	Polecat Gulch	0	Drop Inlet	43.670197	-116.245862
1029		ACHD	Polecat Gulch	0	Drop Inlet	43.670416	-116.244756
1030	4n2e20_018	ACHD	Polecat Gulch	0	Drop Inlet	43.670822	-116.243763
1031	4n2e20_019	ACHD	Polecat Gulch	0	Drop Inlet	43.671286	-116.24287
1032	4n2e20_020	ACHD	Polecat Gulch	0	Drop Inlet	43.671857	-116.242058
1033 1034	4n2e20_021 4n2e20_022	ACHD ACHD	Polecat Gulch Polecat Gulch	0	Drop Inlet Drop Inlet	43.672383 43.672832	-116.24126 -116.240201
1034	4n2e20_022 4n2e20_023	ACHD	Polecat Gulch	0	Drop Inlet	43.673262	-116.239168
1000			. Sicour culoit	v	=. opet	.5.07.52.02	

1015 4br/s 2024 AC10 Present fieldh 10 Drog triket 44.07411 113.234776 1038 4br/s/20, 206 AC10 Poeter Goldh 0 Drog triket 44.07412 115.2377.1 1038 4br/s/20, 207 AC10 Poeter Goldh 0 Drog triket 44.0742.1 112.2378.1 104 4br/s/20, 208 AC10 Poeter Goldh 0 Drog triket 44.0742.1 112.2368.1 104 4br/s/20, 208 AC10 Poeter Goldh 0 Drog triket 44.0742.1 112.2468.1 104 4br/s/20, 201 AC10 Poeter Goldh 0 Drog triket 44.0742.1 112.2468.1 104 4br/s/20, 201 AC10 Stream Goldh 10 CMP 43.6568.1 113.2758.1 105 4br/s/20, 201 AC10 Stream Goldh 10 CMP 43.6568.6 118.2758.9 105 4br/s/20, 203 AC10 Stream Goldh 12 PVC 43.5568.6 118.27389.7	#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE	PIPE TYPE	LATITUDE	LONGITUDE
1927 Articazo Desizes Guich 0 Drog Iniel 45.87213 -118.23714 1038 442.80, 025 ACHD Polesce Guich 0 Drog Iniel 45.87423 -118.23841 1039 467260, 025 ACHD Polesce Guich 0 Drog Iniel 45.87429 -118.23841 1041 46230, 020 ACHD Polesce Guich 0 Drog Iniel 45.67429 -118.23841 1044 46230, 021 ACHD Polesce Guich 0 Drog Iniel 45.65477 -118.23841 1044 46242, 002 ACHD Polesce Guich 0 Drog Iniel 45.65477 -118.23841 1045 46221, 002 ACHD Stewart Guich 12 RCP 45.868577 -118.23841 1045 46221, 002 ACHD Stewart Guich 12 RCP 45.868577 -118.23841 1044 46276, 001 ACHD Stewart Guich 12 RCP 45.86867 -118.23841 1054 46278, 003 ACHD	1036	4n2e20 024	ACHD	Polecat Gulch	DIAMETER	Dron Inlet	43 673711	-116 238461
1038 40-20_0/6 At/10 Pelocas Galdh 0 Drog Inell 43.57.232 111.23285 1040 40-20_0/25 At/10 Pelocas Galdh 12 PVC 43.57.238 111.23285 1041 40-20_0/25 At/10 Pelocas Galdh 0 Drog Inell 43.17.422 111.23281 1041 40-20_0/25 At/10 Pelocas Galdh 0 Drog Inell 43.16.19281 111.23281 1042 40-20_0/25 At/10 Pelocas Galdh 12 Drog Inell 43.56.1927 111.23281 1045 40-22_0/25 At/10 Stewar Galdh 12 Drog Inell 43.56.1927 111.23281 1045 40-22_0/25 At/10 Stewar Galdh 10 Drog Inell 43.56.1927 111.23281 1045 40-22_0/25 At/10 Stewar Galdh 10 Drog Inell 43.56.1923 114.122821 1045 40-22_0/25 At/10 Stewar Galdh 12 Dreg Inell 13.55.494 114.122812 1045<		-			-	· · ·		
1940 47/220 2023 ACHO Polecal Guich 12 PVC 44.37/280 -116.23888 1942 44/320 203 ACHO Polecal Guich 0 Drog Inet 43.57482 -116.238618 1942 44/320 203 ACHO Polecal Guich 0 Drog Inet 43.53797 -116.29861 1944 44/320 203 ACHO Polecal Guich 0 Drog Inet 43.53797 -116.29861 1945 44/320 203 ACHO Stewart Guich 20 RCP 44.8455577 -116.21631 1946 44/325 203 ACHO Caras Guich 10 Oper dirth 43.49965 -116.22598 1948 44/325 203 ACHO Doine Cry Grant 10 Oper dirth 43.49966 -116.22598 1948 44/325 203 ACHO Doine Cry Grant 12 PVC 43.59987 -116.22484 1958 44/325 203 ACHO Doine Cry Grant								
1914 Arbot Poleca Guich 0 Drop Iniel 43.74280 112.23884 1032 4/2220 0.30 Arbito Poleca Guich 0 Drop Iniel 43.57481 112.23864 1043 472270 0.31 Arbito Poleca Guich 0 Drop Iniel 43.57397 116.23864 1045 472271 0.31 Arbito 2 8.67 44.162507 116.218518 1046 472271 0.31 Arbito 2 8.67 41.1621851 1048 47274 0.02 Arbito 0 Baser Guich 2.3 0.14 41.828857 116.218518 1048 47282 0.03 Arbito Baser Guich 1.2 PVC 43.56856 115.22481 1051 47278 0.35 Arbito Baser Guich 1.2 PVC 43.56856 115.22482 1053 47278 0.35 Arbito Baser Guich 1.2 PVC 43.55656 115.22482 10	1039	4n2e20_027	ACHD	Polecat Gulch	0	Drop Inlet	43.674281	-116.23685
1912 A che20,039 A che Poleca Guich 0 Drop Iniet 43.74981 -110.23814 1044 4h2/20,032 A Che Poleca Guich 0 Drop Iniet 43.67497 116.23814 1044 4h2/20,032 A Che Stewart Guich 12 R.P 41.665397 116.231314 1046 4h2/21,001 A Che Stewart Guich 12 R.P 41.665544 -116.231314 1047 4h2/26,008 Private Che4 0 Que P 41.58304 -116.221314 1056 4h2/26,001 A Che Stewart Guich 0 Que P 41.6849687 -116.222852 1051 4h2/28,006 A Che Stewart Guich 12 P/C 41.585656 -116.232874 1054 4h2/28,006 A Che Stewart Guich 12 P/C 41.584697 -116.222874 1054 4h2/28,006 A Che Stewart Guich 12 P/C 41.564611 116.224741 1054 4h2/28,007	1040	4n2e20_028	ACHD	Polecat Gulch	12	PVC	43.674269	-116.236843
1913 ACHD Polect Guich 0 Drop Iniet 41.852897 -116.282547 1044 40/221_001 ACHD Stewarf Guich 12 RCP 43.655377 -116.282543 1045 40/221_001 ACHD Stewarf Guich 12 RCP 43.655544 -116.215553 1047 40/226_005 ACHD Crane Guich 10 CMP 43.55517 -116.215573 1048 40/206_006 ACHD Crane Guich 10 CMP 43.55567 -116.21563 1049 40/206_007 ACHD Bale Circl Crant 0 open rule 44.55656 -116.221645 1051 40/228_000 ACHD Bale Circl Crant 0 Drop Iniet 44.55657 -116.222845 1055 40/228_000 ACHD Bale Circl Crant 0 Drop Iniet 44.55677 -116.223874 1055 40/228_000 ACHD Bale Circl Crant 0 Drop Iniet 44.55173 -116.22484 1055 40/228_000 AC						•		
1044 4x2c0_032 ACHD Prevent Guich 12 Drag Imitely 4x3c032 -116.215134 1045 4x2c2_002 ACHD Strewart Guich 12 RCP 41.865514 -116.215134 1048 4x2c2_002 ACHD Crane Guich 10 GMP 43.55814 -116.21534 1048 4x2c2_003 ACHD Crane Guich 10 GMP 43.55814 -116.125607 1050 4x2c8_003 ACHD Baixe Cry Carall 0 open atth 43.46806 -116.225407 1051 4x2c8_003 ACHD Baixe Cry Carall 13 Preve 43.64807 -116.22807 1053 4x2c8_003 ACHD Baixe Cry Carall 13 Stef 43.64807 -116.22807 1054 4x2c8_003 ACHD Baixe Cry Carall 13 Stef 43.648173 -116.22807 1055 4x2c8_003 ACHD Baixe Cry Carall 10 Open atth 43.648173 -116.22807 1055 4x2c8_003		_						
1945 4r021_002 ACHD Strewst Guich 12 RCP 43.665577 115.215134 1947 Arazes_066 Private Grane Guich 10 CMP 43.56554 -116.215058 1948 Arazes_086 ACHD Crane Guich 10 CMP 43.55554 -116.125593 1948 Arazes_001 ACHD Baite City Canal 0 open ditch 43.65696 -116.2252837 1051 Arazes_003 ACHD Baite City Canal 0 open ditch 43.649867 -116.2252867 1053 Arazes_003 ACHD Baite City Canal 0 open ditch 43.64987 -116.2252867 1054 Arazes_003 ACHD Baite City Canal 0 Drop nitet 43.64987 -116.225287 1055 Arazes_003 ACHD Baite City Canal 0 Drop nitet 43.64111 -116.22524 1056 Arazes_003 ACHD Baite City Canal 0 Drop nitet 43.64111 -116.22524 1056 <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>						•		
1966 4-221,002 ACHD Stewart Guich 27 RCP 41,85544 -116,27533 1974 4-225,006 Private Crane Guich 24 CMP 43,55544 -116,27533 1984 4-225,005 ACHD Crane Guich 10 CMP 43,55544 -116,27537 1051 4-228,001 ACHD Bole City Granil 0 open dith 44,648,07 -116,225463 1053 44248,003 ACHD Bole City Granil 12 DPC 43,56384 -116,225463 1054 44248,005 ACHD Bole City Granil 13 ROP 44,56497 -116,222649 1055 47,273,005 ACHD Bole City Granil 13 ROP 45,5137 -116,222837 1056 47,273,001 ACHD Bole City Granil 10 Open dith 44,56497 -115,22397 1056 47,272,001 ACHD Bole City Granil 10 Open dith 44,56497 -115,22397 1056 47,272,001						· · ·		
1937 4:2252,086 Private Crane Guich 10 OMF 412,553.43 -116,37537 1048 4:2025,008 ACHD Crane Suich 10 CMF 43,5553.37 -116,37557 1051 4:2028,001 ACHD Baice Ciry Cranil 0 open ditch 43,64587 -116,27558 1051 4:2028,001 ACHD Baice Ciry Cranil 12 PVC 43,55586 -116,23254 1053 4:2028,005 ACHD Baice Ciry Cranil 12 PVC 43,55658 -116,23224 1054 4:2028,005 ACHD Baice Ciry Cranil 18 SAP 43,55181 -116,23224 1055 4:2028,008 ACHD Baice Ciry Cranil 0 Deep Intel 43,64877 -116,23224 1056 4:2029,008 ACHD Baice Ciry Cranil 0 Deep Intel 43,64877 -116,23234 1056 4:2029,008 ACHD Baice Ciry Cranil 0 Deep Intel 43,64571 -116,232484 1056								
1909 An226 009 ACH0 Come Guich 10 CMF 43.65837 -1.16.27369 1905 4n228 001 ACH0 Bote City Canl 0 open dith 43.64867 -1.16.22382 1905 4n228 003 ACH0 Bote City Canl 12 PVC 43.55056 -1.16.23387 1905 4n228 006 ACH0 Bote City Canl 0 Drop Init 43.648473 -1.16.233224 1905 4n228 006 ACH0 Bote City Canl 18 RCP 43.55150 -1.16.23324 1905 4n228 006 ACH0 Bote City Canl 18 RCP 43.56181 -1.16.23375 1905 4n228 001 ACH0 Bote City Canl 0 Drep Init 43.64877 -1.16.23891 1905 4n228 001 ACH0 Bote City Canl 12 PVC 43.55187 -1.16.23891 1005 4n229 001 ACH0 Bote City Canl 12 PVC 43.55587 -1.16.24893 1016 4n229 001 <td< td=""><td></td><td>-</td><td></td><td>Crane Gulch</td><td></td><td></td><td></td><td></td></td<>		-		Crane Gulch				
1506 4+228_002 ACH0 Bose City Comil 0 open dtch 43,64995 -116,22382 1515 4+228_003 ACH0 Bose City Comil 12 PVC 43,65856 -116,2248 153 4+228_005 ACH0 Bose City Comil 12 CMP 43,65856 -116,2248 1554 4+228_007 ACH0 Bose City Comil 18 SMP 43,65181 -116,22387 1565 4+228_009 ACH0 Bose City Comil 18 SMP 43,65181 -116,23287 1565 4+228_009 ACH0 Bose City Comil 0 Orop Intel 43,662507 -116,23874 1566 4+229_001 ACH0 Bose City Comil 10 CMP 43,652507 -116,23874 1566 4+229_003 ACH0 Stewari Gidch 15 CMP 43,652507 -116,24883 1566 4+229_003 ACH0 Stewari Gidch 12 CMP 43,652607 -116,24884 1566 4+229_004 ACH0	1048	4n2e26_008	ACHD	Crane Gulch	24	CMP	43.656544	-116.176573
1951 4n/228_003 ACH0 Bole Cly Canl 0 open filts 43.64867 -116.22864 1053 4n/228_005 ACH0 Stewart Guich 12 PVC 43.56505 -116.23224 1054 4n/228_006 ACH0 Bole Cly Canl 0 Drop Intel 43.64847 -116.23224 1055 4n/228_008 ACH0 Bole Cly Canl 18 SMP 43.65813 -116.23204 1056 4n/228_009 ACH0 Bole Cly Canl 18 RCP 43.64877 -116.23251 1058 4n/228_010 ACH0 Stewart Guich 0 pren ltch 43.64877 -116.23262 1064 4n/228_01 ACH0 Stewart Guich 12 PVC 43.05175 -116.23682 1064 4n/228_004 ACH0 Bole Cly Canl 12 PVC 43.055078 -116.248638 1064 4n/229_004 ACH0 Farmers Union Canal 12 CMP 43.655084 -116.248698 1064 4n/229_006	1049	4n2e26_009	ACHD	Crane Gulch	10	CMP	43.658537	-116.174567
1952 4n2.22 003 ACH0 Beise City Canal 12 PVC 43.60856 -11.62.2340 1054 4n2.22 005 ACH0 Boise City Canal 0 Drop Intel 43.68457 -11.61.232307 1055 4n2.22 007 ACH0 Boise City Canal 18 SMP 43.65181 -11.61.23264 1056 4n2.22 007 ACH0 Boise City Canal 0 Drop Intel 43.68477 -11.61.23373 1058 4n2.22 001 ACH0 Boise City Canal 0 Open Intel 43.68477 -11.61.23854 1059 4n2.22 001 ACH0 Boise City Canal 12 PVC 43.65139 -11.62.38632 1061 4n2.29 003 ACH0 Serward Guich 15 CMP 43.65713 -11.62.38632 1063 4n2.29 004 ACH0 Serward Guich 12 CMP 43.65028 -11.62.38632 1064 4n2.29 005 Iririgaton Farm								
1958 AnDe22 OE ACHD Stewarf Guich 12 CM 43.56056 116.23227 1955 4n2e22 006 ACHD Boise City Canal 18 SMP 43.651301 -11.62.23247 1955 4n2e22 008 ACHD Boise City Canal 18 SMP 43.651301 -11.62.2367 1957 4n2e22 009 ACHD Boise City Canal 0 Drep Inith 43.663707 -11.62.2367 1958 4n2e22 001 ACHD Boise City Canal 10 OMP 43.65317 -11.62.3862 1959 4n2e29 001 ACHD Boise City Canal 12 PVC 43.65317 -11.62.3862 1950 4n2e29 003 ACHD Stewari Guich 15 CMP 43.65717 -11.62.3862 1951 4n2e29 004 ACHD Farmers Unice Canal 12 CMP 43.65781 -11.62.48618 1952 4n2e29 005 ACHD Farmers Unice Canal						•		
1056 4n2.25 005 4n2.25 007 ACHD Boise City Canl 18 NP 43.651311 11.62.23849 1056 4n2.22 008 ACHD Boise City Canl 18 NP 43.651303 -11.62.23874 1057 4n2.22 009 ACHD Boise City Canl 0 Derg Init 43.661307 -11.62.23874 1058 4n2.22 010 ACHD Boise City Canl 10 Open (m) 43.662377 -11.62.23874 1061 4n2.22 001 ACHD Boise City Canl 12 PVC 43.651397 -11.62.34734 1061 4n2.29 003 ACHD Sequer Guich 15 CMP 43.65233 -11.62.34634 1063 4n2.29 005 Irigaton Famer Union Canal 12 CMP 43.650297 -11.62.34634 1064 4n2.29 006 ACHD Famer Union Canal 12 CMP 43.650294 -116.248634 1065 4n2.29 006								
1955 An2e28 007 ACHD Boise City Canal 18 SMP 44.551811 -116.230849 1956 An2e28 098 ACHD Boise City Canal 0 Drop Inlet 43.664877 -116.223373 1958 An2e28 001 ACHD Stewart Guich 0 Orge Inlet 43.66297 -116.238374 1959 An2e29 O01 ACHD Boise City Canal 10 CMP 43.65197 -116.23824 1960 An2e29 O02 ACHD Boise City Canal 10 CMP 43.65197 -116.238631 1961 An2e29 O03 ACHD Exemant Guich 15 CMP 43.652971 -116.2486331 1962 An2e29 O04 ACHD Exemant Guich 12 CMP 43.652847 -116.2486331 1964 An2e29 O04 Arrigation Farmers Union Cnall 18 CMP 43.651815 -116.2484817 1906 An2e29 O14 ArcHD Exemant Gu								
1956 nh.28 0.08 ACHD Boise City Canal 18 R/P 43.568477 116.2237764 1957 nh.282,010 ACHD Stewart Guich 0 open ditch 43.668477 116.223871 1958 nh.222,001 ACHD Boise City Canal 12 PVC 43.651837 116.2354821 1960 nh.222,002 ACHD Boise City Canal 12 PVC 43.651197 116.234524 1961 nh.222,003 ACHD Eige Drain 24 CMP 43.652137 116.2429634 1963 dh.229,006 ACHD Eige Drain 24 CMP 43.652038 116.249631 1964 dh.229,006 ACHD Farmers Union Canal 12 CMP 43.65504 116.249631 1964 dh.229,006 ACHD Barrer Union Canal 18 CMP 43.65604 116.249631 1964 dh.229,010 Arther Union Canal 18 PCV 43.65614 116.249631 1974 dh.229,012				· · · · · · · · · · · · · · · · · · ·				
1958 Anzel2 0.09 ACHD Bose Circ Canal 0 Drop Inlet 43.662477 -116.2128372 1959 Anzel2 001 ACHD Bose Circ Canal 10 CMP 43.661247 -116.2128372 1960 dnzel2 001 ACHD Bose Circ Canal 10 CMP 43.66127 -116.2128372 1961 dnzel2 004 ACHD Espector 24 CMP 43.66223 -116.249638 1964 dnzel2 004 ACHD Farmers Union Canal 12 CMP 43.65233 -116.249638 1964 dnzel2 005 impation Farmers Union Canal 12 CMP 43.55642 -116.249638 1966 dnzel2 007 impation Farmers Union Canal 12 CMP 43.555161 -116.249638 1966 dnzel2 007 impation Farmers Union Canal 12 CMP 43.556151 -116.249689 1966 dnzel2 007 impation Farmate Union Canal 12 CMP		_						
1938 An.222 010 ACHD Stewart Gulch 0 open dtch 43 561897 -116.218991 1959 An.229 001 ACHD Boise Ciry Canal 12 PVC 43 561897 -116.238622 1960 An.292 004 ACHD Stewart Gulch 15 CMP 43 567119 -116.2478431 1903 An.222 004 ACHD Eagle Drain 24 CMP 43 56973 -116.248431 1904 An.222 005 ACHD Formest Union Canal 12 CMP 43 56973 -116.248631 1905 dn.223 007 ACHD Enter Hoin Canal 18 PMC 43 568029 -116.248632 1906 An.229 003 ACHD Enter Hoin Canal 12 RCP 43 56873 -116.248633 1906 An.229 013 ACHD Enter Hoin Canal 12 RCP 43 56873 -116.248633 1907 An.229 013 ACHD Stewart Gulch <				•				
1900 4n2c29 OID ACHD Bolgs City Canl 12 PVC 43.65175 116.23622 1061 4n2c29 OIA ACHD Eagle Drain 24 CMP 43.65233 -116.248633 1063 4n2c29 OIA ACHD Farmers Union Canal 12 CMP 43.652078 -116.248633 1064 4n2c29 OIA ACHD Farmers Union Canal 12 CMP 43.652084 -116.24861 1064 4n2c29 OIA ACHD Bole Valley Canal 18 CMP 43.655684 -116.24861 1066 4n2c29 OIA ACHD Bole Valley Canal 18 CMP 43.65562 -116.23864 1066 4n2c29 OIA ACHD Farmers Union Canal 12 CMP 43.65563 -116.23864 1070 4n2c29 OIA ACHD Stewart Gulch 12 ASTM 43.65575 -116.234854 1071 4n2c29 OIA ACHD Stewart Gulch <td< td=""><td>1058</td><td>4n2e28_010</td><td>ACHD</td><td>Stewart Gulch</td><td>0</td><td>open ditch</td><td>43.662507</td><td>-116.218091</td></td<>	1058	4n2e28_010	ACHD	Stewart Gulch	0	open ditch	43.662507	-116.218091
1061 4n2e29 003 ACHD Stewart Guch 15 CMP 43.65719 116.44738 1062 4n2e29 004 ACHD Eagle Drain 24 CMP 43.65719 -116.248633 1064 4n2e29 005 trigation Farmers Union Canal 12 CMP 43.655268 -116.248633 1065 4n2e29 007 Trigation Farmers Union Canal 12 CMP 43.655648 -116.249817 1066 4n2e29 007 Trigation Farmers Union Canal 18 CMP 43.655648 -116.249817 1067 4n2e29 011 ACHD Lateral 49 12 CMP 43.655761 -116.2498633 1070 4n2e29 013 ACHD Stewart Guch 12 ASTM 43.6557451 -116.243858 1071 4n2e29 014 ACHD Stewart Guch 12 ASTM 43.655740 -116.243858 1071 4n2e29 014 ACHD Boise City Canal	1059	4n2e29_001	ACHD	Boise City Canal	10	CMP	43.651837	-116.23524
1002 4n2c29 004 ACHD Eagle Drain 24 CMP 43.6223 116.249633 1063 4n2c29 005 Irrigation Farmers Union Canal 12 CMP 43.655283 -116.249633 1064 4n2c29 007 Irrigation Farmers Union Canal 30 RCP 43.655644 -116.249631 1066 4n2c29 008 Antot D Bote Valley Canal 18 CMP 43.65564 -116.249631 1066 4n2c29 011 ACHD Beteral 49 12 CMP 43.65561 -116.249631 1070 4n2c29 11 ACHD Stewart Gutch 12 ASTM 43.655761 +116.249631 1071 4n2c29 13 ACHD Stewart Gutch 12 ASTM 43.655761 +116.249631 1072 4n2c29 015 ACHD Boise City Canal 0 Drop Initel 43.65543 +116.249634 1074 4n2c29 016 ACHD Unnamed		-		•				
1063 412:229 ODF Irrigation Farmers Union Canal 12 CMP 43:659078 -116:249631 1064 412:229 067 ACHD Farmers Union Canal 30 RCP 43:655684 -116:249817 1066 412:229 008 ACHD Bolse Valley Canal 18 CMP 43:655684 -116:249837 1067 412:229 009 Private, Irrigation Farmers Union Canal 18 PVC 43:658862 -116:249839 1068 412:229 011 ACHD Lateral 49 12 CAP 43:655861 -116:239484 1070 412:229 013 ACHD Stewart Guich 12 ASTM 43:655761 -116:234548 1071 412:229 014 ACHD Bolse City Canal 0 Drop Intelt 43:655403 -116:234854 1074 412:229 016 ACHD Bolse City Canal 0 Drop Intelt 43:65541 -116:234451 1074 412:229 016 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-						
1064 4n2c29_006 ACHD Farmers Union Canal 12 CMP 43.65828.8 -116.24849 1065 4n2c29_007 Irrigation Farmers Union Canal 30 RCP 43.655165 -116.251442 1067 4n2c29_009 Private, Irrigation Farmers Union Canal 18 CMP 43.656029 -116.251442 1068 4n2c29_011 ACHD Lateral 49 12 CMP 43.65602 -116.239844 1068 4n2c29_013 ACHD Stewart Guich 12 ASTM 43.6557361 -116.234854 1071 4n2c29_013 ACHD Bewart Guich 12 ASTM 43.655735 -116.238541 1072 4n2c29_015 ACHD Boise City Canal 18 PVC 43.655402 -116.238541 1074 4n2c29_015 ACHD Unnamed 12 CMP 43.655402 -116.238541 1074 4n2c29_015 ACHD Unnamed 12 CMP 43.655402 -116.238942 1074 4n				-				
1055 4n2e29 007 Irrigation Farmers Union Canal 30 RCP 43 655643 -116.249817 1066 4n2e29 008 ACHD Boise Valley Canal 18 CMP 43 651615 -116.249817 1067 4n2e29 011 ACHD Lateral 49 12 CMP 43 656029 -116.239843 1068 4n2e29 013 ACHD Stewart Gulch 12 ASTM 43 655736 -116.239834 1071 4n2e29 013 ACHD Stewart Gulch 12 ASTM 43 655503 -116.238561 1072 4n2e29 015 ACHD Boise City Canal 0 Drop Inlet 43 655503 -116.238454 1073 4n2e29 016 ACHD Unnamed 12 CMP 43 655540 -116.238454 1074 4n2e29 017 ACHD Unnamed 12 RCP 43 6555434 -116.238454 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>			-					
1066 4n2e29_008 ACHD Boise Valley Canal 18 CMP 43 651615 -116 231442 1067 4n2e29_009 Private, Irrigation Farmers Union Canal 18 PVC 43 660029 -116 234689 1068 4n2e29_011 ACHD Lateral 49 12 CMP 43 565761 -116 234653 1070 4n2e29_013 ACHD Stewart Gutch 12 ASTM 43 655735 -116 234358 1071 4n2e29_014 ACHD Boise City Canal 0 Drop Inlet 43 655503 -116 238544 1073 4n2e29_015 ACHD Boise City Canal 0 Drop Inlet 43 655540 -116 238544 1074 4n2e29_017 ACHD Unnamed 12 CMP 43 655402 -116 238544 1076 An2e29_019 ACHD Unnamed 12 CMP 43 655414 -116 234054 1076 An2e29_021 ACHD Unnamed 12 RCP 43 655434 -116 243054 1078 4n2e29								
1068 4n2e29 011 ACHD Lateral 49 12 CMP 43.658761 -116.239444 1069 4n2e29 012 Irrigation Farmers Union Canal 12 RCP 43.655761 -116.234543 1070 4n2e29 014 ACHD Stewart Guich 12 ASTM 43.655761 -116.234543 1071 4n2e29 015 ACHD Boise City Canal 0 Drop Inlet 43.655740 -116.234543 1073 4n2e29 015 ACHD Boise City Canal 0 Drop Inlet 43.655409 -116.234541 1074 4n2e29 017 ACHD Unnamed 12 CMP 43.655411 -116.239623 1076 4n2e29 013 ACHD Unnamed 12 RCP 43.655414 -116.240639 1076 4n2e29 021 ACHD Unnamed 12 RCP 43.655447 -116.240239 1077 4n2e29 021 ACHD Unnamed 12 PVC 43.655447 -116.240391 1080 4n2e29 023 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>			-					
1069 4n2c29 012 Irrigation Farmers Union Canal 12 RCP 43.65751 1116.24953 1070 4n2c29 013 ACHD Stewart Gulch 12 ASTM 43.655761 1116.24953 1071 4n2c29 015 ACHD Boise CIV Canal 0 Drop Inlet 43.655303 1116.23854 1073 4n2c29 015 ACHD Boise CIV Canal 18 PVC 43.655409 -1116.23854 1074 4n2c29 017 ACHD Unnamed 12 CMP 43.655411 -116.24968 1076 4n2c29 013 ACHD Unnamed 12 RCP 43.655414 -116.24988 1076 4n2c29 021 ACHD Unnamed 12 RCP 43.655443 -116.249881 1077 4n2c29 022 ACHD Unnamed 12 PVC 43.655443 -116.249878 1078 4n2c29 022 ACHD Unnamed 12 PVC	1067	4n2e29_009	Private, Irrigation	Farmers Union Canal	18	PVC	43.660029	-116.249689
1070 4n2e29_013 ACHD Stewart Gulch 12 ASTM 43.655761 -116.234358 1071 4n2e29_015 ACHD Boise City Canl 0 Drop Intel 43.655735 -116.23458 1073 4n2e29_015 ACHD Boise City Canl 0 Drop Intel 43.655603 -116.238561 1073 4n2e29_017 ACHD Unnamed 12 CMP 43.655402 -116.239462 1075 4n2e29_018 ACHD Unnamed 12 CMP 43.655411 -116.239623 1076 4n2e29_019 ACHD Unnamed 12 RCP 43.655415 -116.240981 1077 4n2e29_021 ACHD Unnamed 12 RCP 43.655441 -116.240981 1078 4n2e29_021 ACHD Unnamed 12 PVC 43.655441 -116.244972 1080 4n2e29_023 ACHD Unnamed 12 PVC 43.655474 -116.244972 1081 4n2e29_024 ACHD Unnamed 12 PVC 43.655437 -116.244975 1082	1068	4n2e29_011	ACHD	Lateral 49	12	CMP	43.658862	-116.239844
1071 4n2e29 014 ACHD Stewart Gulch 12 ASTM 43.655735 -116.234358 1073 4n2e29 015 ACHD Boise City Canal 0 Drop Inlet 43.65503 -116.238594 1074 4n2e29 017 ACHD Boise City Canal 18 PVC 43.655402 -116.239464 1075 4n2e29 018 ACHD Unnamed 12 CMP 43.655415 -116.239464 1076 4n2e29 018 ACHD Unnamed 12 RCP 43.655415 -116.24098 1077 4n2e29 020 ACHD Unnamed 12 RCP 43.655434 -116.24098 1078 4n2e29 021 ACHD Unnamed 12 PVC 43.655434 -116.24097 1084 4n2e29 022 ACHD Unnamed 12 PVC 43.655434 -116.24672 1084 4n2e29 025 ACHD Farmers Union Canal 12 PVC								
1072 4n2e39_015 ACHD Boise City Canal 0 Drop Inlet 43.655503 -1.16.238561 1073 4n2e29_016 ACHD Boise City Canal 18 PVC 43.655402 -1.16.238451 1074 4n2e29_017 ACHD Unnamed 12 CMP 43.655409 -1.16.239463 1075 4n2e29_018 ACHD Unnamed 12 RCP 43.655413 -1.16.242039 1076 4n2e29_020 ACHD Unnamed 12 RCP 43.655413 -1.16.242039 1078 4n2e29_021 ACHD Unnamed 12 RCP 43.655437 -1.16.244053 1081 4n2e29_023 ACHD Unnamed 12 PVC 43.655589 -116.244985 1082 4n2e3_025 ACHD Farmers Union Canal 12 PVC 43.655589 -116.244976 1082 4n2e30_001 Private Dry Creek Canal 12 PVC 43.655131 -116.24975 1084 4n2e30_003 Priva		_						
1073 4n2e29_016 ACHD Boise City Canal 18 PVC 43.655402 -116.238594 1074 4n2e29_017 ACHD Unnamed 12 CMP 43.655409 -116.239446 1075 4n2e29_019 ACHD Unnamed 12 CMP 43.655411 -116.239446 1076 4n2e29_020 ACHD Unnamed 12 RCP 43.655424 -116.242039 1078 4n2e29_021 ACHD Unnamed 12 RCP 43.655434 -116.243039 1079 4n2e29_021 ACHD Unnamed 12 PVC 43.655437 -116.243672 1080 4n2e29_023 ACHD Unnamed 12 PVC 43.655331 -116.243672 1080 4n2e29_024 ACHD Unnamed 12 PVC 43.655331 -116.243671 1081 4n2e29_025 ACHD Unnamed 12 PVC 43.655333 -116.243671 1083 4n2e30_001 Private Stewart Gulch 12 PVC 43.655131 -116.246911 1086 4n2e30_								
1074 4n2e29_017 ACHD Unnamed 12 CMP 43.655409 -116.239446 1075 4n2e29_019 ACHD Unnamed 12 CMP 43.655411 -116.239628 1076 4n2e29_019 ACHD Unnamed 12 RCP 43.655415 -116.24098 1077 4n2e29_020 ACHD Unnamed 12 RCP 43.655434 -116.24098 1079 4n2e29_021 ACHD Unnamed 12 PVC 43.655434 -116.24098 1084 4n2e29_023 ACHD Unnamed 12 PVC 43.655531 -116.246972 1082 4n2e29_024 ACHD Unnamed 12 PVC 43.655539 -116.246975 1083 4n2e29_026 ACHD Unnamed 12 PVC 43.655131 -116.246976 1084 4n2e30_001 Private Stewart Gulch 12 PVC 43.651315 -116.248943 1086 4n2e30_004 ACHD Dry Creek Canal 12 PVC 43.651315 -116.263835 1086 4n2e30_006<				,	-	· · ·		
1076 4n2e29_019 ACHD Unnamed 12 RCP 43.655415 -116.24098 1077 4n2e29_021 ACHD Unnamed 12 RCP 43.655424 -116.24098 1078 4n2e29_021 ACHD Unnamed 12 RCP 43.655438 -116.24039 1079 4n2e29_022 ACHD Unnamed 12 PVC 43.655543 -116.24498 1081 4n2e29_024 ACHD Unnamed 12 PVC 43.655589 -116.24498 1082 4n2e29_025 ACHD Unnamed 12 PVC 43.655589 -116.24976 1083 4n2e29_026 ACHD Unnamed 12 PVC 43.655437 -116.24976 1084 4n2e30_001 Private Stewart Gulch 12 PVC 43.655415 -116.24978 1084 4n2e30_004 ACHD Dry Creek Canal 15 CMP 43.65448 -116.25894 1086 4n2e30_007 ACHD Stewart Gulch								
1077 4n2e29_020 ACHD Unnamed 12 RCP 43.655424 -116.242039 1078 4n2e29_021 ACHD Unnamed 12 RCP 43.655438 -116.243597 1079 4n2e29_023 ACHD Unnamed 12 PVC 43.655438 -116.244985 1081 4n2e29_023 ACHD Unnamed 12 PVC 43.655538 -116.244985 1081 4n2e39_024 ACHD Unnamed 12 PVC 43.655589 -116.246611 1082 4n2e39_026 ACHD Farmers Union Canal 12 PVC 43.655593 -116.248611 1084 4n2e30_001 Private Stewart Gulch 12 PVC 43.655112 -116.248243 1085 4n2e30_004 ACHD Dry Creek Canal 15 CMP 43.65412 -116.248354 1086 4n2e30_007 ACHD Dry Creek Canal 18 ADDS 43.65488 -116.26771 1088 4n2e30_009 ACHD <td< td=""><td></td><td></td><td></td><td></td><td>12</td><td>CMP</td><td></td><td></td></td<>					12	CMP		
1078 4n2e29_021 ACHD Unnamed 12 RCP 43.655438 -116.243597 1079 4n2e29_022 ACHD Unnamed 12 PVC 43.655437 -116.244672 1080 4n2e29_023 ACHD Unnamed 12 PVC 43.655531 -116.244672 1081 4n2e29_024 ACHD Unnamed 12 PVC 43.655589 -116.248951 1082 4n2e29_025 ACHD Unnamed 12 PVC 43.655437 -116.249243 1084 4n2e30_001 Private Stewart Gulch 12 PVC 43.655439 -116.249243 1084 4n2e30_003 Private Dry Creek Canal 12 PVC 43.655629 -116.263835 1086 4n2e30_004 ACHD Dry Creek Canal 18 CMP 43.654486 -116.255944 1087 4n2e30_007 ACHD Boise Valey Canal 18 ADS 43.654486 -116.255768 1089 4n2e30_009 ACHD	1076	4n2e29_019	ACHD	Unnamed	12	RCP	43.655415	-116.24098
1079 4n2e29 022 ACHD Unnamed 12 PVC 43.655447 -116.244672 1080 4n2e29 023 ACHD Unnamed 12 PVC 43.655589 -116.244681 1081 4n2e29 024 ACHD Unnamed 12 PVC 43.655589 -116.244681 1082 4n2e29 025 ACHD Farmers Union Canal 12 CMP 43.6553437 -116.248756 1083 4n2e30 001 Private Stewart Gulch 12 PVC 43.6551315 -116.248243 1084 4n2e30 003 Private Dry Creek Canal 12 CMP 43.6551315 -116.261311 1085 4n2e30 004 ACHD Dry Creek Canal 18 CMP 43.654112 -116.263835 1086 4n2e30 006 Private Dry Creek Canal 18 CMP 43.654486 -116.255588 1088 4n2e30 008 ACHD Dry Creek Canal 12								
1080 4n2e29_023 ACHD Unnamed 12 PVC 43.655531 -116.244985 1081 4n2e29_024 ACHD Unnamed 12 PVC 43.655589 -116.244981 1082 4n2e29_025 ACHD Farmers Union Canal 12 CMP 43.653437 -116.249756 1083 4n2e29_026 ACHD Unnamed 12 PVC 43.655593 -116.248243 1084 4n2e30_001 Private Stewart Gulch 12 PVC 43.655529 -116.261911 1085 4n2e30_004 ACHD Dry Creek Canal 15 CMP 43.654112 -116.261911 1087 4n2e30_006 Private Dry Creek Canal 18 CMP 43.65489 -116.263935 1088 4n2e30_007 ACHD Dry Creek Canal 18 ADS 43.65489 -116.263751 1089 4n2e30_008 ACHD Dry Creek Canal 12 PVC 43.656609 -116.263751 1090 4n2e30_010 Pr								
1081 4n2e29_024 ACHD Unnamed 12 PVC 43.655589 -116.246611 1082 4n2e29_025 ACHD Farmers Union Canal 12 CMP 43.653437 -116.249756 1083 4n2e30_001 Private Stewart Gulch 12 PVC 43.6551315 -116.249724 1084 4n2e30_003 Private Dry Creek Canal 12 CMP 43.6541315 -116.261911 1085 4n2e30_004 ACHD Dry Creek Canal 15 CMP 43.65489 -116.263935 1086 4n2e30_006 Private Dry Creek Canal 18 CMP 43.65489 -116.263934 1087 4n2e30_006 Private Dry Creek Canal 18 CMP 43.65489 -116.263934 1088 4n2e30_008 ACHD Dry Creek Canal 18 ADS 43.658480 -116.255768 1099 4n2e30_010 Private Dry Creek Canal 12 PVC 43.656609 -116.263956 1092 4n2e								
1082 4n2e29_025 ACHD Farmers Union Canal 12 CMP 43.653437 -116.249756 1083 4n2e29_026 ACHD Unnamed 12 PVC 43.653437 -116.249756 1084 4n2e30_001 Private Stewart Gulch 12 PVC 43.651315 -116.261911 1085 4n2e30_003 Private Dry Creek Canal 12 CMP 43.651315 -116.263835 1086 4n2e30_006 Private Dry Creek Canal 15 CMP 43.65448 -116.258944 1087 4n2e30_006 Private Dry Creek Canal 18 CMP 43.65448 -116.255844 1089 4n2e30_007 ACHD Stewart Gulch 24 PVC 43.65448 -116.255788 1090 4n2e30_009 ACHD Dry Creek Canal 12 PVC 43.65609 -116.263952 1091 4n2e30_010 Private Dry Creek Canal 12 PVC 43.65669 -116.263952 1092 4n2e30_011								
10834n2e29_026ACHDUnnamed12PVC43.655593-116.24824310844n2e30_001PrivateStewart Gulch12PVC43.651315-116.26191110854n2e30_003PrivateDry Creek Canal12CMP43.655129-116.26383510864n2e30_004ACHDDry Creek Canal15CMP43.654112-116.25894410874n2e30_006PrivateDry Creek Canal18CMP43.65489-116.26077110884n2e30_007ACHDStewart Gulch24PVC43.654486-116.25578810894n2e30_008ACHDDry Creek Canal18ADS43.65609-116.26479110914n2e30_009ACHDBoise Valley Canal12PVC43.656618-116.25576810924n2e30_010PrivateDry Creek Canal12PVC43.656609-116.26395210914n2e30_011ACHDDry Creek Canal12PVC43.65566-116.26395910924n2e30_013ACHDDry Creek Canal12PVC43.655127-116.26395910944n2e30_013ACHDDry Creek Canal12PVC43.652127-116.2639310954n2e30_014ACHDBoise River12PVC43.652127-116.2639310964n2e30_015PrivateDry Creek Canal12PVC43.652127-116.2639310964n2e30_016Ada CountyEureka Canal30RCP </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1085 4n2e30_003 Private Dry Creek Canal 12 CMP 43.655629 -116.263835 1086 4n2e30_004 ACHD Dry Creek Canal 15 CMP 43.654112 -116.258944 1087 4n2e30_006 Private Dry Creek Canal 18 CMP 43.65489 -116.260771 1088 4n2e30_007 ACHD Stewart Gulch 24 PVC 43.65486 -116.255588 1089 4n2e30_008 ACHD Dry Creek Canal 18 ADS 43.655029 -116.264791 1090 4n2e30_010 Private Dry Creek Canal 12 PVC 43.656518 -116.255768 1091 4n2e30_010 Private Dry Creek Canal 12 PVC 43.65656 -116.263952 1092 4n2e30_011 ACHD Boise Valley Canal 12 PVC 43.655609 -116.263952 1093 4n2e30_012 ACHD Boise River 18 PVC 43.655127 -116.263959 1095 4n2e30								
10864n2e30_004ACHDDry Creek Canal15CMP43.654112-116.25894410874n2e30_006PrivateDry Creek Canal18CMP43.65489-116.26077110884n2e30_007ACHDStewart Gulch24PVC43.654866-116.25558810894n2e30_008ACHDDry Creek Canal18ADS43.658009-116.26479110904n2e30_009ACHDBoise Valley Canal12PVC43.656618-116.25576810914n2e30_010PrivateDry Creek Canal12PVC43.656666-116.26395210924n2e30_011ACHDDry Creek Canal12PVC43.656669-116.26395210934n2e30_011ACHDDry Creek Canal12PVC43.656609-116.26395910944n2e30_013ACHDDry Creek Canal12CMP43.655127-116.26329310954n2e30_014ACHDBoise River18PVC43.657922-116.26329310954n2e30_015PrivateDry Creek Canal12PVC43.652024-116.26486610974n2e30_016Ada CountyEureka Canal30RCP43.652185-116.26132510984n2e30_017PrivateStewart Gulch24PVC43.652486-116.26132510994n2e30_018Ada CountyEureka Canal30RCP43.652448-116.27069911004n2e30_019Ada CountyEureka Canal	1084	4n2e30_001	Private	Stewart Gulch	12	PVC	43.651315	-116.261911
10874n2e30_006PrivateDry Creek Canal18CMP43.65489-116.26077110884n2e30_007ACHDStewart Gulch24PVC43.65486-116.25558810894n2e30_008ACHDDry Creek Canal18ADS43.658009-116.26479110904n2e30_009ACHDBoise Valley Canal12PVC43.656218-116.25576810914n2e30_010PrivateDry Creek Canal12PVC43.65656-116.26395210924n2e30_011ACHDDry Creek Canal12PVC43.656569-116.26395210934n2e30_012ACHDBoise River18PVC43.65519-116.26395110944n2e30_013ACHDDry Creek Canal12CMP43.655127-116.26329310954n2e30_014ACHDBoise River12PVC43.655225-116.26679810964n2e30_015PrivateDry Creek Canal12PVC43.655135-116.26679810964n2e30_016Ada CountyEureka Canal30RCP43.650204-116.26486610974n2e30_018Ada CountyEureka Canal4PVC43.651435-116.27176911004n2e30_019Ada CountyEureka Canal4PVC43.653659-116.27176911014n2e30_020Ada CountyEureka Canal4PVC43.653659-116.27128811024n2e30_021Ada CountyEureka Canal4 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>				1				
10884n2e30_007ACHDStewart Gulch24PVC43.654486-116.25558810894n2e30_008ACHDDry Creek Canal18ADS43.658009-116.26479110904n2e30_009ACHDBoise Valley Canal12PVC43.656218-116.25576810914n2e30_010PrivateDry Creek Canal12PVC43.65656-116.26395210924n2e30_011ACHDDry Creek Canal12PVC43.655609-116.26395210934n2e30_012ACHDBoise River18PVC43.655719-116.27165510944n2e30_013ACHDDry Creek Canal12CMP43.655127-116.26329310954n2e30_014ACHDBoise River12PVC43.65792-116.26679810964n2e30_015PrivateDry Creek Canal12PVC43.65792-116.266486610974n2e30_016Ada CountyEureka Canal30RCP43.650204-116.26894610984n2e30_017PrivateStewart Gulch24PVC43.651435-116.26132510994n2e30_018Ada CountyEureka Canal4PVC43.651435-116.27176911004n2e30_019Ada CountyEureka Canal4PVC43.653248-116.27128811014n2e30_020Ada CountyEureka Canal4PVC43.653743-116.27134311024n2e30_021Ada CountyEureka Canal4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
10894n2e30_008ACHDDry Creek Canal18ADS43.658009-116.26479110904n2e30_009ACHDBoise Valley Canal12PVC43.656218-116.25576810914n2e30_010PrivateDry Creek Canal12PVC43.65656-116.26395210924n2e30_011ACHDDry Creek Canal12PVC43.656609-116.26395210934n2e30_012ACHDBoise River18PVC43.655109-116.26396910944n2e30_013ACHDDry Creek Canal12CMP43.655127-116.26329310954n2e30_014ACHDBoise River12PVC43.655127-116.26679810964n2e30_015PrivateDry Creek Canal12PVC43.657922-116.26689610974n2e30_016Ada CountyEureka Canal30RCP43.651435-116.26689610984n2e30_017PrivateStewart Gulch24PVC43.651435-116.26132510994n2e30_018Ada CountyEureka Canal4PVC43.651465-116.27176911004n2e30_019Ada CountyEureka Canal4PVC43.653248-116.27128811014n2e30_020Ada CountyEureka Canal4PVC43.653248-116.27134311034n2e30_021Ada CountyEureka Canal4PVC43.653659-116.27134311034n2e30_023Ada CountyEureka Canal								
1090 4n2e30_009 ACHD Boise Valley Canal 12 PVC 43.656218 -116.255768 1091 4n2e30_010 Private Dry Creek Canal 12 PVC 43.65656 -116.263952 1092 4n2e30_011 ACHD Dry Creek Canal 12 PVC 43.656609 -116.263952 1093 4n2e30_012 ACHD Boise River 18 PVC 43.657519 -116.263293 1094 4n2e30_013 ACHD Dry Creek Canal 12 CMP 43.655127 -116.263293 1095 4n2e30_014 ACHD Boise River 12 PVC 43.652925 -116.263293 1095 4n2e30_015 Private Dry Creek Canal 12 PVC 43.652925 -116.266798 1096 4n2e30_016 Ada County Eureka Canal 30 RCP 43.651435 -116.264886 1097 4n2e30_017 Private Stewart Gulch 24 PVC 43.651435 -116.261325 1098 4n2e30_0								
10914n2e30_010PrivateDry Creek Canal12PVC43.65656-116.26395210924n2e30_011ACHDDry Creek Canal12PVC43.656609-116.26396910934n2e30_012ACHDBoise River18PVC43.657519-116.27165510944n2e30_013ACHDDry Creek Canal12CMP43.655127-116.26329310954n2e30_014ACHDBoise River12PVC43.652925-116.26679810964n2e30_015PrivateDry Creek Canal12PVC43.657922-116.26468610974n2e30_016Ada CountyEureka Canal30RCP43.650204-116.26894610984n2e30_017PrivateStewart Gulch24PVC43.654165-116.27176911004n2e30_018Ada CountyEureka Canal4PVC43.653248-116.27096911014n2e30_020Ada CountyEureka Canal4PVC43.653659-116.27128811024n2e30_021Ada CountyEureka Canal4PVC43.653743-116.27134311034n2e30_023Ada CountyEureka Canal4PVC43.653743-116.27134311034n2e30_023Ada CountyEureka Canal4PVC43.653743-116.27134311034n2e30_023Ada CountyEureka Canal4PVC43.653743-116.271343								
1092 4n2e30_011 ACHD Dry Creek Canal 12 PVC 43.656609 -116.263969 1093 4n2e30_012 ACHD Boise River 18 PVC 43.657519 -116.271655 1094 4n2e30_013 ACHD Dry Creek Canal 12 CMP 43.655127 -116.263293 1095 4n2e30_014 ACHD Boise River 12 PVC 43.652925 -116.266798 1096 4n2e30_016 Ada County Eureka Canal 30 RCP 43.650204 -116.264866 1097 4n2e30_016 Ada County Eureka Canal 30 RCP 43.651435 -116.264866 1098 4n2e30_017 Private Stewart Gulch 24 PVC 43.651435 -116.264866 1099 4n2e30_018 Ada County Eureka Canal 4 PVC 43.651435 -116.271769 1100 4n2e30_019 Ada County Eureka Canal 6 ADS 43.653248 -116.271288 1101 4n2e30_02								
1094 4n2e30_013 ACHD Dry Creek Canal 12 CMP 43.655127 -116.263293 1095 4n2e30_014 ACHD Boise River 12 PVC 43.652925 -116.266798 1096 4n2e30_015 Private Dry Creek Canal 12 PVC 43.657922 -116.264686 1097 4n2e30_016 Ada County Eureka Canal 30 RCP 43.650204 -116.264686 1098 4n2e30_017 Private Stewart Gulch 24 PVC 43.651435 -116.261325 1099 4n2e30_018 Ada County Eureka Canal 4 PVC 43.651435 -116.271769 1100 4n2e30_019 Ada County Eureka Canal 6 ADS 43.653248 -116.271288 1101 4n2e30_020 Ada County Eureka Canal 4 PVC 43.653559 -116.271288 1102 4n2e30_021 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1102 4								
1095 4n2e30_014 ACHD Boise River 12 PVC 43.652925 -116.266798 1096 4n2e30_015 Private Dry Creek Canal 12 PVC 43.657922 -116.264686 1097 4n2e30_016 Ada County Eureka Canal 30 RCP 43.650204 -116.264686 1098 4n2e30_017 Private Stewart Gulch 24 PVC 43.651435 -116.261325 1099 4n2e30_018 Ada County Eureka Canal 4 PVC 43.651435 -116.271769 1100 4n2e30_019 Ada County Eureka Canal 6 ADS 43.653248 -116.271288 1101 4n2e30_020 Ada County Eureka Canal 4 PVC 43.653559 -116.271288 1102 4n2e30_021 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1102 4n2e30_023 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1103 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
1096 4n2e30_015 Private Dry Creek Canal 12 PVC 43.657922 -116.264686 1097 4n2e30_016 Ada County Eureka Canal 30 RCP 43.650204 -116.264686 1098 4n2e30_017 Private Stewart Gulch 24 PVC 43.651435 -116.261325 1099 4n2e30_018 Ada County Eureka Canal 4 PVC 43.651435 -116.271769 1100 4n2e30_019 Ada County Eureka Canal 6 ADS 43.653248 -116.270969 1101 4n2e30_020 Ada County Eureka Canal 4 PVC 43.653659 -116.271288 1102 4n2e30_021 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1103 4n2e30_023 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1103 4n2e30_023 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1103								
1097 4n2e30_016 Ada County Eureka Canal 30 RCP 43.650204 -116.268946 1098 4n2e30_017 Private Stewart Gulch 24 PVC 43.651435 -116.261325 1099 4n2e30_018 Ada County Eureka Canal 4 PVC 43.651435 -116.271769 1100 4n2e30_019 Ada County Eureka Canal 6 ADS 43.653248 -116.270969 1101 4n2e30_020 Ada County Eureka Canal 4 PVC 43.653659 -116.271288 1102 4n2e30_021 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1103 4n2e30_023 Ada County Eureka Canal 4 PVC 43.653743 -116.271343								
1098 4n2e30_017 Private Stewart Gulch 24 PVC 43.651435 -116.261325 1099 4n2e30_018 Ada County Eureka Canal 4 PVC 43.654165 -116.271769 1100 4n2e30_019 Ada County Eureka Canal 6 ADS 43.653248 -116.271289 1101 4n2e30_020 Ada County Eureka Canal 4 PVC 43.653659 -116.271288 1102 4n2e30_021 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1103 4n2e30_023 Ada County Eureka Canal 4 PVC 43.653743 -116.271343				,				
1099 4n2e30_018 Ada County Eureka Canal 4 PVC 43.654165 -116.271769 1100 4n2e30_019 Ada County Eureka Canal 6 ADS 43.653248 -116.270969 1101 4n2e30_020 Ada County Eureka Canal 4 PVC 43.653659 -116.271288 1102 4n2e30_021 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1103 4n2e30_023 Ada County Eureka Canal 4 PVC 43.653807 -116.271397								
1100 4n2e30_019 Ada County Eureka Canal 6 ADS 43.653248 -116.270969 1101 4n2e30_020 Ada County Eureka Canal 4 PVC 43.653548 -116.271288 1102 4n2e30_021 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1103 4n2e30_023 Ada County Eureka Canal 4 PVC 43.653807 -116.271397		—						
1101 4n2e30_020 Ada County Eureka Canal 4 PVC 43.653659 -116.271288 1102 4n2e30_021 Ada County Eureka Canal 4 PVC 43.653743 -116.271343 1103 4n2e30_023 Ada County Eureka Canal 4 PVC 43.653807 -116.271397								
1103 4n2e30_023 Ada County Eureka Canal 4 PVC 43.653807 -116.271397								
	1102	4n2e30_021		Eureka Canal	4	PVC	43.653743	-116.271343
1104 4n2e30_024 Ada County Eureka Canal 4 PVC 43.654021 -116.271622		_						
	1104	4n2e30_024	Ada County	Eureka Canal	4	PVC	43.654021	-116.271622

1105 40283_001 AC10 Thorna MC (cal) 12 COP 43.87270 -115.22899 1107 40283_001 AC10 Bex (Dain) 38 RCP 43.5620 -115.22899 1107 40283_001 AC10 Dawn (Dain) 11 RCP 43.5620 -115.22899 1101 40283_001 AC100 Dawn (Dain) 12 CVC 44.5640 -115.28979 1111 40283_001 AC100 Dawn (Dain) 13 RCP 43.55405 -115.28791 1112 40281_011 AC100 David Dain 14 RVC 43.55408 -115.25784 1114 40281_013 Priote Thornam MC Canl 24 SVP 43.55604 -115.25744 1115 40281_013 Priote Dawn Dain 10 CVP 43.55334 -115.25744 1115 40281_013 Priote Dawn Dain 10 CVP 43.55334 -115.25744 1116 40281_013 Priote Dawn Dain	#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
1979 44228.005 AC+D Davis Davis 18 RCP 43.8383 118.25857 110 44228.107 AC+D Davis Davis 12 CMP 43.8383 118.20001 111 44228.107 AC+D Davis Davis 12 CMP 43.8483 118.2001 1111 44228.100 Impaction Setter Caral 0 0.864.60h 0.43.84384 118.2001 1111 44228.100 Impaction A 0.864.60h 43.84384 118.22598 1114 44228.101 Private Turman MI Cotal 2.4 ADF 43.84384 114.22598 1115 447.61.101 Private Davis Davis 1.3 43.643.4434 114.25081 1118 44261.012 Private Davis Davis 1.3 43.643.4434 114.25083 1118 44261.017 Private Davis Davis 1.3 44.643.811 114.25083 1118 44261.017 Private Davis Davis 1.3 44.763.107 1	1105	4n2e31_001	ACHD	Thurman Mill Canal	12	CMP	43.647731	-116.27426
1106 Achel Davis Dam 18 KC 41.84803 1110.25807 1106 467241,085 ACHO Davis Dam 12 KVC 43.540055 110.25807 1111 467241,085 ACHO Davis Dam 12 KVC 43.54005 110.25907 1111 467241,085 ACHO Davis Dam 15 KCP 44.64613 110.25971 1111 467241,015 ACHO Davis Dam 15 KCP 44.646145 110.25964 1111 46721,015 ACHO Davis Dam 4 PKC 44.545484 111.25864 1111 46721,015 ACHO Davis Dam 10 CKP 44.545473 110.29057 1111 46721,017 Prinete Davis Dam 10 CKP 44.545473 110.29051 1112 46721,027 ACHO Davis Dam 10 CKP 44.545473 110.25954 1112 46721,027 Prinete Davis Dam 10 Drap Intet	1106	4n2e31_003	ACHD	Settlers Canal	8	RCP	43.643047	-116.269596
1109 44/21,007 Actio Davis Deni 12 CMP 44/34085 -118-2001 1111 44/21,008 Artio Davis Deni 12 PC 44/34085 -118-2001 1111 44/21,013 Artio Davis Deni 15 K/F 44/34085 -118-2001 1113 44/21,013 Printet Thurman MIC and 13 PVC 44/340843 -116-2304 1114 44/21,013 Printet Thurman MIC and 14 Statis -116-2304 1114 44/21,015 Printet Davis Deni 1 Artis 44/3414 -116-2304 1114 44/21,015 Printet Davis Deni 1 CMF 44/34497 -116-2304 1114 44/21,016 Printet Davis Deni 10 CMF 44/343497 -116-2304 1114 44/21,012 Printet Davis Deni 10 CMF 44/343881 -116-23047 1114 44/21,012 Ariot Davis Davis	1107	4n2e31_004		Davis Drain			43.64297	-116.258834
1101 44/201,003 ACHD Down Derin 12 PVC 44.54/343 -111.2412.23773 1111 44/201,011 ACHD Davin Derin 13 RCF 44.55/5491 -111.25773 1113 44/201,011 ACHD Davin Derin 12 PVC 44.55/551 -111.25784 1113 44/201,011 Private Davin Derin 41 ACHD 45.5556 -111.25784 1113 44/201,012 Private Davin Derin 13 ACHD 45.5557 -111.257943 1113 44/201,012 Private Davin Derin 10 CMP 43.54578 -111.257943 1113 44/201,013 Private Davin Derin 10 CMP 44.55338 -111.257943 1113 44/201,013 Private Davin Derin 10 CMP 44.553383 -112.257943 1113 44/201,013 Private Davin Derin 10 CMP 44.553383 -112.257943 1112 44/201,013 Priva								
1111 4n2e1.010 Irrigation Setter Canal 0 open dith. 110.4007 110.257273 1113 4n2e1.012 ACKD, Private Thurman Mil Canal 12 PVC 41.535853 116.257373 1114 4n2e1.013 Private Thurman Mil Canal 12 PVC 41.535863 116.255974 1115 4n2e1.014 Private Davis Drain 4 PVC 44.53514 116.255974 1116 4n2e1.015 ACCD Babic Ever 11 ADS 44.64514 116.255974 1119 4n2e1.016 ACCD Babic Drain 12 ADS 44.645133 116.255977 1110 4n2e1.018 Private Davis Drain 10 CMP 44.65333 116.255977 1110 4n2e1.027 Private Davis Drain 10 CMP 44.65333 116.255977 1120 4n2e1.027 Private Davis Drain 10 CMP 44.65333 116.255977 1121 4n2e1.027 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
1113 4+2031,011 Achton Davis Davis Davis Davis Diff PC 44.56569 1116.257916 1114 4+2031,013 Private Turrana Mil Canal 24 SMP 44.56568 115.25504 1114 4+2031,015 Action Bake River 12 AdS 44.645814 -115.25504 1114 4+2031,015 Action Bake River 12 AdS 44.645814 -115.25504 1114 4+2031,017 Private Davis Drain 10 CMP 44.845813 -116.255743 1114 4+2031,017 Private Davis Drain 10 CMP 44.845861 -116.255743 1112 4+2031,022 Action Davis Drain 10 CMP 44.845868 -116.255741 1122 4+2031,023 Action Davis Drain 12 RCP 44.845868 -116.255743 1124 4+2031,024 Private Davis Drain 12 RCP 44.845868 -116.255743 1124 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
1111 4n2e1,012 Artb, Private Thurman MII Canal 12 PVC 43.89893 -112.29849 1114 4n2e1,034 Private Davis Davin 4 PVC 43.69346 -116.255504 1114 4n2e1,015 ACH0 Bote River 12 ADS 43.648374 -116.255704 1114 4n2e1,017 Private Davis Drain 10 CMP 43.638311 -116.257543 1112 4n2e1,017 Private Davis Drain 10 CMP 43.638311 -116.257543 1121 4n2e1,021 Private Davis Drain 11 NCP 43.638331 -116.257847 1122 4n2e1,021 Private Davis Drain 11 NCP 43.638363 -116.255844 1123 4n2e1,021 Private Davis Drain 11 NCP 43.638363 -116.255747 1124 4n2e1,023 Private Davis Drain 12 NCP 43.63887 -116.255748 1125 4n2e1,028								
1116 4+203.014 Private Thurman MII Canl 24 5MP 41.623.015 41.625.054 1116 442.01.015 ACHD Bole River 12 ADS 43.643.014 -116.2567.04 1118 442.03.016 ACHD Davis Drain 12 ADS 43.643.01 -116.257.04 1118 442.03.017 Private Davis Drain 10 CMP 44.553.03 -116.257.03 1120 442.03.018 Private Davis Drain 10 CMP 44.553.03 -116.258.03 1121 442.03.021 ACHD Davis Drain 13 RCP 44.358.03 -116.258.03 1124 442.03.021 ACHD Davis Drain 13 RCP 44.358.03 -116.258.04 1124 442.03.023 ACHD Davis Drain 10 Drap Infet 43.658.03 -116.258.04 1124 442.03.020 Private Davis Drain 10 Drap Infet 43.658.04 -116.259.04 1124 442.01.020		-						
1315 4ra281,014 Private Davis Damin 4 PPC 44,64556 115,28714 1316 4ra281,015 ACHD Baste River 12 ADS 41,645474 -116,20053 1317 4ra281,017 Private Davis Drain 10 CMP 41,6453511 -116,257857 1318 4ra281,018 Private Davis Drain 10 CMP 41,655311 -116,257857 1312 4ra281,021 Private Davis Drain 10 CMP 44,635631 -116,258434 1312 4ra281,021 Private Davis Drain 11 Rep 44,63563 -116,258434 1313 4ra281,023 ACHD Davis Drain 11 Rep 44,635838 -116,258434 1314 4ra281,023 ACHD Davis Drain 11 Rep 44,635838 -116,258434 1315 4ra281,023 ACHD Davis Drain 11 Davis Drain 110 Davis Drain 112 Priva14,635838 -116,259344			,					
1116 4u721_015 AcHO Boles River 12 ADS 43,44314 115,25032 1118 4u721_016 AcHO Davis Drain 10 CMP 43,64473 116,25783 1118 4u721_018 Private Davis Drain 10 CMP 43,64573 116,25783 112 4u721_021 Private Davis Drain 8 CMP 43,65831 116,25783 1124 4u721_023 ACHO Davis Drain 8 CMP 43,65861 116,258134 1124 4u721_023 ACHO Davis Drain 12 RCP 43,65863 116,258514 1124 4u721_026 Private Thurman Mill Canal 12 CMP 43,65863 116,258514 1126 4u721_027 Private Thurman Mill Canal 12 CMP 43,64863 116,258514 1124 4u721_027 Private Davis Drain 12 More 43,645834 116,258514 1126 4u721_027 Private <td< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		_						
111 4n283_016 ACH0 Devis Drain 12 ADS 43,644374 -118,2527543 1119 4n283_017 Private Davis Drain 10 CMP 43,85373 -116,257543 1110 4n283_013 Private Davis Drain 10 CMP 43,853533 -116,258733 112 4n281_021 Private Davis Drain 8 CMP 43,858561 -116,25874 112 4n263_023 ACH0 Davis Drain 12 RCP 43,68858 -116,25857 112 4n263_024 Private Davis Drain 0 Drop Intt 43,68858 -116,25857 112 4n263_027 Private Davis Drain 0 Drop Intt 43,68859 -116,257947 112 4n263_102 ACH0, Friggtion Thurman Mill Canl 24 SMP 43,648471 -116,25851 113 4n263_201 Private Basis River 10 CMP 43,64817 -116,25867 1131 4n263_2013 A								
1118 4u7c31_018 Private Dwis Drain 10 CMP 43.63475 116.27583 1120 4u7c31_018 Private Dwis Drain 10 CMP 43.635331 116.27683 1121 4u7c31_021 Private Dwis Drain 10 CMP 43.635303 116.256334 1124 4u7c31_023 ACHO Dwis Drain 12 RCF 43.638581 116.256318 1124 4u7c31_023 ACHO Dwis Drain 12 RCF 43.638581 116.255518 1125 4u7c31_026 Private Thurman Mil Canal 0 Drop Intel 43.638551 116.255934 1124 4u7c31_027 Private Dwis Drain 0 Drop Intel 43.638531 116.255934 1124 4u7c31_028 Au7c31_028 Private Dwis Drain 12 Dwis Mill 43.64827 116.255934 1124 4u7c31_028 Au7c31_028 Private Boise River 10 Dwop Intel 43.648353 116.255934		-						
1110 4n281_019 Private Davis Drain 10 CMP 43.85331 11.16.27837 1121 4n281_021 Private Davis Drain 8 CMP 43.858903 11.02.58433 1121 4n281_022 ACHD Davis Drain 12 RCP 43.858585 11.02.58434 1124 4n281_024 Private Davis Drain 12 RCP 43.058558 11.02.55844 1124 4n281_027 Private Davis Drain 0 Drop Intel 43.058557 11.62.55947 1125 4n281_029 ACHD Davis Drain 0 Drop Intel 43.05857 11.62.57348 1126 4n281_029 ACHD, Irrigation Thurman Mill Canl 24 SMP 43.058587 11.62.5697 1131 4n2821_020 Arhots Bose River 10 CMP 43.05857 11.62.3697 1132 4n2821_020 Arhots Bose River 10 CMP 43.059125 11.16.26987 1134 4n282_001								
1121 Anzest Drivate Davis Drain 8 CMP 43.659500 1-16.25842 1122 Anzest 0.22 ACHO Davis Drain 12 RCP 43.639583 1-16.25867 1124 Anzest 0.23 ACHO Davis Drain 12 RCP 43.639583 1-16.25854 1126 Anzest 0.23 Private Davis Drain 0 Drog Inlet 43.63555 1-16.25854 1126 Anzest 0.23 Private Davis Drain 0 Drog Inlet 43.63643 1-16.25854 1128 Anzest 0.23 Private Davis Drain 0 Drog Inlet 43.63842 1-16.25867 1128 Anzest 0.23 ACHO Davis Brain 0 Drog Inlet 43.63867 1-16.25867 1131 Anzest 0.03 ACHO Davis Brain 10 CMP 43.64173 1-16.25867 1132 Anzest 0.03 ACHO Boise River 10 CMP<		-						
1122 Ancel Devis Drain 12 RCP 44.848866	1120		Private	Davis Drain	10	CMP	43.635233	-116.258133
1123 Ancell Davis Drain 12 RP 43.63898 -116.25514 1124 Ancell 0.24 Private Davis Drain 0 Drog Iniet 43.63655 -116.25554 1126 Ancell 0.27 Private Davis Drain 0 Drog Iniet 43.63655 -116.25594 1127 Ancell 0.27 Private Davis Drain 0 Drog Iniet 43.63657 -116.25594 1128 Ancell 0.27 Private Davis Drain 0 Drog Iniet 43.63867 -116.25687 1128 Ancell 0.23 OACHO, Private Bolse River 10 CAM 43.64173 -116.25087 1131 Ancell 2.003 ACHO, Private Bolse River 12 SMP 43.65044 -116.25088 1132 Ancell 2.003 ACHO Bolse River 18 CMP 43.65064 -116.25088 1134 Ancell 2.007 ACHO Bolse River 18 CMP 43.65064 -116.240811 1134 Ancell 2.007	1121	4n2e31_021	Private	Davis Drain	8	CMP	43.635903	-116.258424
1124 An2e31 Q24 Private Thurman Mill Canal 122 CMP 43.58555.4 1126 An2e31.027 Private Duran Mill Canal 0 Drog Intel: 43.58555.4 -116.258004 1127 An2e31.027 Private Davis Drain 0 Drog Intel: 43.58515.3 -116.25657.4 1128 An2e31.028 Private Davis Drain 12 PVC 43.5819.15 -116.25667.1 1129 An2e32.001 APD-Intragation Thurman Mill Canal 24 SMP 43.5619.15 -116.25687.1 1131 An2e32.001 APD-Inte Boise River 10 CMP 43.6619.3 -116.25697.1 1131 An2e32.000 ACHD Boise River 10 CMP 43.6619.3 -116.25697.1 1132 An2e32.000 ACHD Boise River 10 CMP 43.6619.3 -116.25697.1 1133 An2e32.000 ACHD Boise River 10 CMP 43.6519.4 -116.25697.1 1134	1122	4n2e31_022	ACHD	Davis Drain	12	RCP	43.638661	-116.25867
1126 Anzèsi Que Private Davis Drain 0 Drog Inlet 48.86555 116.259094 1127 Anzèsi Que Private Davis Drain 0 Drog Inlet 48.66543 116.257947 1128 Anzèsi Que Actel Davis Drain 0 Drog Inlet 48.66867 116.257342 1128 Anzèsi Que Actel Davis Drain 12 PVC 48.66877 116.257842 1130 Anzèsi Que Actel Boise River 10 CAMP 43.661427 116.250858 1131 Anzèsi Que Actel Boise River 10 CAMP 43.661427 116.250858 1132 Anzèsi Que Actel Boise River 10 CAMP 43.661424 116.242549 1133 Anzèsi Que Actel Boise River 18 CAMP 43.661424 116.240056 1134 Anzèsi Que Actel Farmers Union Cranl 12 RCMP 43.661424 116.240056 1136 Anzèsi Que	1123	4n2e31_023	ACHD	Davis Drain	12	RCP	43.638588	-116.258518
1126 Anzell 027 Private Thurman Nill Canal 0 Drog Inlet 43.68434 -116.258734 1127 Anzell 029 ACHD Davis Drain 12 PVC 43.68839 -116.2585734 1128 Anzell 030 ACHD, Irrigation Thurman Nill Canal 24 SMP 43.68139 -116.25607 1130 Anzell 030 ACHO, Private Boise River 6 SMP 43.641829 -116.25087 1131 Anzell 033 Private Boise River 10 CMP 43.641829 -116.250888 1133 Anzell 007 ACHD Boise River 12 SMP 43.63004 -116.240839 1134 Anzell 007 ACHD Boise River 36 CMP withid 43.63008 -116.240081 1135 Anzell 010 ACHD Farmers Union Canal 12 CMP 43.63078 -116.240064 1137 Anzell 010 ACHD Farmers Union Canal 12 CMP 43.63077 116.240064 1138	1124	4n2e31_024	Private	Thurman Mill Canal	12	CMP	43.638983	-116.265554
1127 An2e31 O29 Private Davis Drain 0 Drop Intel 43.888539 -116.2538571 1128 An2e31 O20 ACHD Drais Drain 12 PV Ce 43.68887 -116.25734 1130 An2e32 O21 Private Boise River 10 CMP 43.64173 -116.250878 1131 An2e32 O23 ACHD Private Boise River 10 CMP 43.64127 -116.250878 1132 An2e32 O20 ACHD Boise River 12 SMP 43.61267 -116.24059 1134 An2e32 O20 ACHD Boise River 13 CMP 43.63263 -116.24059 1135 An2e32 O3 ACHD Formers Union Cnail 12 RCP 43.631678 -116.24059 1139 An2e32 O3 ACHD Formers Union Cnail 12 RCP 43.63164 116.235774 1141 An2e32 O1 ACHD Formers Union Cnail<	1125	4n2e31_026	Private	Davis Drain	0	Drop Inlet	43.636555	-116.258094
1128 402+31 029 ACHD Dawls Drain 122 PWC 43.63867 -116.25748 1129 472e32 001 Private Bole River 10 CMP 43.641737 -116.2567 1131 472e32 002 ACHD Private Bole River 6 SMP 43.641737 -116.250888 1131 472e32 003 Private Bole River 10 CMP 43.641737 -116.250885 1134 472e32 003 ACHD Bole River 12 SMP 43.660644 -116.242549 1135 472e32 009 ACHD Bole River 36 CMP with Idl 43.660083 -116.24066 1136 472e32 009 ACHD Farmers Union Canal 12 CMP 43.638154 -116.240661 1138 472e32 011 ACHD Farmers Union Canal 12 CMP 43.638254 -116.240671 1141 472e32 013 ACHD Farmers Union Ca		-				•		
1129 472-81 030 ACHD, Irrigation Thurman Mill Canal 24 SMP 43.839125 1-116.2562 1130 472-82 001 Private Bolse River 6 SMP 43.641829 -116.25087 1131 472-82 003 Private Bolse River 10 CMP 43.641829 -116.25083 1134 472-82 006 ACHD Bolse River 12 SMP 43.652044 -116.24053 1134 472-82 007 ACHD Bolse River 18 CMP 43.653263 -116.24063 1135 472-82 008 ACHD Farmers Union Canal 12 CMP 43.633243 -116.240664 1138 472-82 010 ACHD Farmers Union Canal 12 CMP 43.638244 -116.240676 1138 472-82 010 ACHD Farmers Union Canal 12 CMP 43.638244 -116.240674 1138 472-82 014 ACHD Farmers Union Canal						•		
1130 4n2e32 001 Private Boile River 10 CMP 43.641737 116.2508 1131 4n2e32 002 ACHD, Private Boile River 10 CMP 43.66127 -116.25088 1133 4n2e32 006 ACHD Boile River 10 CMP 43.66024 -116.25088 1134 4n2e32 OOF ACHD Boile River 18 CMP 43.65008 -116.242549 1135 4n2e32 OOF ACHD Boile River 36 CMP with IId 43.65008 -116.24067 1136 4n2e32 OOF ACHD Formers Union Canal 12 CMP 43.638154 -116.24060 1137 4n2e32 OOF ACHD Formers Union Canal 12 CMP 43.638154 -116.24061 1139 4n2e32 OIF ACHD Formers Union Canal 12 CMP 43.641737 -116.238774 1141 4n2e32 OIF ACHD Formers Union Canal		-						
1111 4n262 002 ACHD, Private Boise River 0 CMP 43.64182 -11.6.25088 1132 4n2632 003 Private Boise River 12 SMP 43.63004 -11.6.24023 1134 4n2632 007 ACHD Boise River 16 CMP 43.63004 -11.6.24224 1135 4n2632 008 ACHD Boise River 36 CMP with IId 43.63004 -11.6.24024 1136 4n2632 000 ACHD Farmers Union Canal 12 CMP 43.537678 -11.6.24061 1137 4n2632 011 ACHD Farmers Union Canal 12 CMP 43.538154 -11.6.24061 1138 4n2632 013 ACHD Farmers Union Canal 12 CMP 43.538154 -11.6.24061 1139 4n2632 014 ACHD Farmers Union Canal 12 CMP 43.634027 -11.6.240513 1144 4n2632 017 ACHD Farmers Union								
1112 4n2e32 003 Private Bolse River 10 CMP 43.64187 116.24081 1133 4n2e32 007 ACHD Bolse River 18 CMP 43.635263 -116.242549 1134 4n2e32 008 ACHD Bolse River 36 CMP with lid 43.635763 -116.24051 1136 4n2e32 009 ACHD Farmers Union Canal 12 RCP 43.63778 -116.24051 1137 4n2e32 010 ACHD Farmers Union Canal 12 CMP 43.638154 -116.24005 1138 4n2e32 011 ACHD Farmers Union Canal 12 CMP 43.6384954 -116.24051 1140 4n2e32 014 ACHD Farmers Union Canal 12 CMP 43.64358 -116.24351 1141 4n2e32 014 ACHD Farmers Union Canal 10 CMP 43.64358 -116.24631 1144 4n2e32 016 ACHD Farmers Union Canal </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1113 4n2e32 006 ACHD Boise River 12 SMP 43.636044 116.24339 1134 4n2e32 007 ACHD Boise River 36 CMP with lid 43.636008 -116.240817 1135 4n2e32 009 ACHD Farmers Union Canal 12 RCP 43.638154 -116.240061 1137 4n2e32 011 ACHD Farmers Union Canal 12 CMP 43.638154 -116.240061 1138 4n2e32 011 ACHD Farmers Union Canal 12 CMP 43.634954 -116.240061 1139 4n2e32 013 ACHD Farmers Union Canal 12 CMP 43.643854 -116.248511 1141 4n2e32 015 ACHD Boise River 24 RCP 43.643855 -116.248512 1143 4n2e32 016 ACHD Farmers Union Canal 12 CMP 43.643781 -116.248512 1144 4n2e32 016 ACHD Farmers Union C			· · ·					
1134 4n2e32_007 ACHD Boixe River 18 CMP 43.632633 -116.242549 1135 4n2e32_008 ACHD Farmers Union Canal 12 RCP 43.635008 -116.240017 1136 4n2e32_010 ACHD Farmers Union Canal 12 RCP 43.6337678 -116.240064 1138 4n2e32_011 ACHD Farmers Union Canal 12 CMP 43.633924 -116.240064 1138 4n2e32_012 ACHD Farmers Union Canal 12 CMP 43.634924 -116.235776 1140 4n2e32_014 ACHD Farmers Union Canal 12 CMP 43.643984 -116.245774 1141 4n2e32_015 ACHD Boixe River 24 RCP 43.643984 -116.245791 1142 4n2e32_016 ACHD Farmers Union Canal 12 CMP 43.643983 -116.248791 1144 4n2e32_017 ACHD Farmers Union Canal 12 CMP 43.641044 -116.248731 1144								
1135 4n2e32_008 ACHD Boice River 36 CMP with lid 43.63008 -116.240017 1136 4n2e32_009 ACHD Farmers Union Canal 12 RCP 43.637678 -116.240061 1137 4n2e32_011 ACHD Farmers Union Canal 12 CMP 43.638154 -116.240061 1138 4n2e32_012 ACHD Farmers Union Canal 12 CMP 43.634954 -116.24071 1140 4n2e32_013 ACHD Farmers Union Canal 12 CMP 43.634954 -116.243774 1141 4n2e32_015 ACHD Boice River 24 RCP 43.644824 -116.243714 1144 4n2e32_015 ACHD Farmers Union Canal 10 CMP 43.644824 -116.243311 1144 4n2e32_017 ACHD Farmers Union Canal 12 CMP 43.644784 -116.243764 1144 4n2e32_017 ACHD Farmers Union Canal 12 CMP 43.647633 -116.24703 1144 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1136 4n2e32 009 ACHD Farmers Union Canal 12 RCP 43.637678 -116.24006 1137 4n2e32 010 ACHD Farmers Union Canal 12 CMP 43.638154 -116.240064 1138 4n2e32 011 ACHD Farmers Union Canal 12 CMP 43.638954 -116.240811 1140 4n2e32 013 ACHD Farmers Union Canal 12 CMP 43.634957 -116.235774 1141 4n2e32 014 ACHD Farmers Union Canal 10 CMP 43.643585 -116.24892 1142 4n2e32 014 ACHD Farmers Union Canal 10 CMP 43.643705 -116.24892 1143 4n2e32 017 ACHD Farmers Union Canal 12 CMP 43.643705 -116.24891 1144 4n2e32 021 Private Boise Viley Canal 10 PVC 43.647841 -116.24892 1144 4n2e32 023 Private <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
1137 4n2e32 010 ACHD Farmers Union Canal 12 CMP 43.638154 -116.240064 1138 4n2e32 011 ACHD Farmers Union Canal 15 CMP 43.638294 -116.24081 1139 4n2e32 013 ACHD Farmers Union Canal 12 CMP 43.634027 -116.235776 1140 4n2e32 013 ACHD Farmers Union Canal 12 CMP 43.643484 116.16.235774 1141 4n2e32 015 ACHD Farmers Union Canal 10 CMP 43.643585 -116.245821 1144 4n2e32 017 ACHD Farmers Union Canal 12 CMP 43.644824 -116.243311 1144 4n2e32 018 Private Boise River 12 CMP 43.64404 -116.24331 1144 4n2e32 021 Private Boise Valley Canal 12 CMP 43.64763 -116.24793 1144 4n2e32 024 Private B								
1138 4n2e32 011 ACHD Farmers Union Canal 15 CMP 43.639234 -116.240811 1139 4n2e32 012 ACHD Farmers Union Canal 12 CMP 43.634954 -116.235774 1140 4n2e32 013 ACHD Farmers Union Canal 12 CMP 43.634027 -116.235774 1142 4n2e32 015 ACHD Boise River 24 RCP 43.643643 -116.248512 1143 4n2e32 016 ACHD Farmers Union Canal 10 CMP 43.643644 -116.24609 1144 4n2e32 011 Private Boise River 12 CMP 43.647841 -116.24609 1145 4n2e32 021 Private Boise Valley Canal 10 PVC 43.647841 -116.24603 1144 4n2e32 023 Private Boise Valley Canal 10 CMP 43.647633 -116.24603 1144 4n2e32 024 Private Boise Va		_						
1139 4n2e32 012 ACHD Farmers Union Canal 12 CMP 43.634954 -116.235774 1140 4n2e32 013 ACHD, Private Crane Creek 8 CMP 43.634027 -116.235774 1141 4n2e32 014 ACHD Farmers Union Canal 12 CMP 43.643585 -116.235774 1142 4n2e32 015 ACHD Boise River 24 RCP 43.643585 -116.248592 1143 4n2e32 016 ACHD Farmers Union Canal 12 CMP 43.647305 -116.248593 1144 4n2e32 017 ACHD Farmers Union Canal 12 CMP 43.6476741 -116.248039 1146 4n2e32 021 Private Boise Valley Canal 10 PVC 43.647631 -116.248035 1149 4n2e32 024 Private Boise Valley Canal 10 CMP 43.647631 -116.248035 1149 4n2e32 026 ACHD B								
1140 4n2e32_013 ACHD, Private Crane Creek 8 CMP 43.634027 -116.235774 1141 4n2e32_015 ACHD Farmers Union Canal 12 CMP 43.322844 116.143352 1142 4n2e32_016 ACHD Farmers Union Canal 10 CMP 43.644325 -116.243571 1144 4n2e32_017 ACHD Farmers Union Canal 12 CMP 43.647365 -116.243609 1145 4n2e32_012 Private Boise Valley Canal 12 CMP 43.647632 -116.24609 1144 4n2e32_021 Private Boise Valley Canal 10 PVC 43.647632 -116.24603 1144 4n2e32_024 Private Boise Valley Canal 10 CMP 43.647632 -116.248795 1144 4n2e32_025 Private Boise Valley Canal 10 CMP 43.647632 -116.248795 1154 4n2e32_025 ACHD Boise Valley Canal 10 CMP 43.647653 -116.248105								
1141 4n2e32_014 ACHD Farmers Union Canal 12 CMP 43.38284 116.143352 1142 4n2e32_015 ACHD Boise River 24 RCP 43.64358 -116.248592 1143 4n2e32_017 ACHD Farmers Union Canal 10 CMP 43.644824 -116.248092 1144 4n2e32_017 ACHD Farmers Union Canal 12 CMP 43.647050 -116.248093 1145 4n2e32_021 Private Boise Valley Canal 12 CMP 43.647631 -116.248233 1147 4n2e32_023 Private Boise Valley Canal 12 Metal 43.647653 -116.247955 1148 4n2e32_026 ACHD Boise Valley Canal 12 Metal 43.647653 -116.248105 1150 4n2e32_026 ACHD Boise City Canal 10 CMP 43.64753 -116.248105 1151 4n2e33_001 ACHD Boise City Canal 12 Metal 43.64753 -116.21811 1152								
1142 4n2e32_015 ACHD Boise River 24 RCP 43.643585 -116.248592 1143 4n2e32_017 ACHD Farmers Union Canal 10 CMP 43.644824 -116.248592 1144 4n2e32_017 ACHD Farmers Union Canal 12 CMP 43.647305 -116.2480311 1146 4n2e32_021 Private Boise Valley Canal 12 CMP 43.647841 -116.248233 1147 4n2e32_023 Private Boise Valley Canal 10 PVC 43.647632 -116.247995 1148 4n2e32_025 Private Boise Valley Canal 12 Metal 43.647633 -116.24799 1150 4n2e32_026 ACHD Boise Valley Canal 12 Metal 43.647632 -116.248105 11515 4n2e33_001 ACHD Boise City Canal 12 Metal 43.647632 -116.248105 1152 4n2e33_001 ACHD Boise City Canal 12 Metal 43.647733 -116.248105 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
1143 4n2e32_016 ACHD Farmers Union Canal 10 CMP 43.644824 -116.243311 1144 4n2e32_017 ACHD Farmers Union Canal 12 CMP 43.647305 -116.2463 1145 4n2e32_012 Private Boise River 12 CMP 43.647841 -116.24823 1146 4n2e32_021 Private Boise Valley Canal 12 CMP 43.647632 -116.24823 1144 4n2e32_023 Private Boise Valley Canal 12 Metal 43.647632 -116.24795 1148 4n2e32_025 Private Boise Valley Canal 10 CMP 43.647632 -116.24795 1150 4n2e33_001 ACHD Boise City Canal 8 RCP 43.635137 -116.24811 1152 4n2e33_002 ACHD Boise City Canal 24 CMP 43.647679 -116.24617 1153 4n2e33_003 Private Boise City Canal 12 CMP 43.643877 -116.210613 1154								
1145 4n2e32_018 Private Boise River 12 CMP 43.641044 -116.250131 1146 4n2e32_023 Private Boise Valley Canal 10 PVC 43.647841 -116.248233 1147 4n2e32_023 Private Boise Valley Canal 12 Metal 43.647653 -116.248235 1148 4n2e32_025 Private Boise Valley Canal 12 Metal 43.647732 -116.248105 1150 4n2e32_026 ACHD Boise Valley Canal 10 CMP 43.85161 -116.145314 1151 4n2e33_001 ACHD Boise City Canal 24 CMP 43.642679 -116.218411 1152 4n2e33_002 ACHD Boise City Canal 12 CMP 43.642679 -116.219023 1154 4n2e33_003 Private Boise City Canal 12 CMP 43.642679 -116.220061 1155 4n2e33_005 ACHD Boise City Canal 12 CMP 43.647359 -116.221008 1165		4n2e32 016	ACHD	Farmers Union Canal	10	CMP		
1146 4n2e32_021 Private Boise Valley Canal 12 CMP 43.647841 -116.248233 1147 4n2e32_023 Private Boise Valley Canal 10 PVC 43.647632 -116.247955 1148 4n2e32_025 Private Boise Valley Canal 12 Metal 43.647633 -116.24795 1150 4n2e32_026 ACHD Boise Valley Canal 10 CMP 43.385162 -116.248105 1151 4n2e33_001 ACHD Boise Valley Canal 10 CMP 43.642679 -116.248016 1152 4n2e33_002 ACHD Boise City Canal 24 CMP 43.642679 -116.210811 1153 4n2e33_003 Private Boise City Canal 12 CMP 43.6437359 -116.210161 1154 4n2e33_005 ACHD Boise City Canal 12 CMP 43.6437359 -116.220367 1155 4n2e33_005 ACHD Boise City Canal 12 CMP 43.6437539 -116.220361 <td< td=""><td></td><td></td><td>ACHD</td><td>Farmers Union Canal</td><td>12</td><td>CMP</td><td></td><td></td></td<>			ACHD	Farmers Union Canal	12	CMP		
1147 4n2e32 023 Private Boise Valley Canal 10 PVC 43.647632 -116.247955 1148 4n2e32 024 Private Boise Valley Canal 12 Metal 43.647632 -116.24795 1149 4n2e32 025 Private Boise Valley Canal 10 CMP 43.847732 -116.248105 1150 4n2e32 026 ACHD Boise Valley Canal 10 CMP 43.636137 -116.248104 1151 4n2e33 001 ACHD Boise City Canal 24 CMP 43.642679 -116.218411 1152 4n2e33 003 Private Boise City Canal 12 CMP 43.643773 -116.21061 1153 4n2e33 004 ACHD Boise City Canal 12 CMP 43.643759 -116.221061 1154 4n2e33 005 ACHD Boise City Canal 12 CMP 43.643694 -116.221643 1155 4n2e33 006 Irrigation	1145	4n2e32_018	Private	Boise River	12	CMP	43.641044	-116.250131
1148 4n2e32_024 Private Boise Valley Canal 12 Metal 43.647653 -116.24799 1149 4n2e32_025 Private Boise Valley Canal 12 Metal 43.647653 -116.248105 1150 4n2e32_026 ACHD Boise Valley Canal 10 CMP 43.385162 -116.145314 1151 4n2e33_001 ACHD Boise City Canal 8 RCP 43.648613 -116.220667 1153 4n2e33_002 ACHD Boise City Canal 12 CMP 43.648779 -116.22067 1154 4n2e33_004 ACHD Boise City Canal 12 CMP 43.648775 -116.221601 1155 4n2e33_005 ACHD Boise City Canal 12 CMP 43.647753 -116.221601 1155 4n2e33_006 Irrigation Crane Creek 18 RCP 43.6437359 -116.221631 1157 4n2e33_008 Irrigation Boise City Canal 12 CMP 43.644763 -116.21923 1158<	1146	4n2e32_021	Private	Boise Valley Canal	12	CMP	43.647841	-116.248233
1149 4n2e32_025 Private Boise Valley Canal 12 Metal 43.647732 -116.248105 1150 4n2e32_026 ACHD Boise Valley Canal 10 CMP 43.636137 -116.145314 1151 4n2e33_001 ACHD Boise City Canal 24 CMP 43.646137 -116.218411 1152 4n2e33_002 ACHD Boise City Canal 24 CMP 43.642679 -116.219123 1154 4n2e33_004 ACHD Boise City Canal 12 CMP 43.647753 -116.219123 1155 4n2e33_005 ACHD Boise City Canal 12 CMP 43.647753 -116.219123 1155 4n2e33_006 Irrigation Crane Creek 18 RCP 43.63596 -116.221008 1157 4n2e33_008 Irrigation Boise City Canal 12 CMP 43.64565 -116.21923 1158 4n2e33_009 ACHD Boise City Canal 6 PVC 43.645894 -116.219234 1159	1147	4n2e32_023	Private	Boise Valley Canal	10	PVC	43.647632	-116.247955
1150 An2e32_026 ACHD Boise Valley Canal 10 CMP 43.385162 -116.145314 1151 4n2e33_001 ACHD Boise City Canal 8 RCP 43.636137 -116.218411 1152 4n2e33_002 ACHD Boise City Canal 24 CMP 43.642679 -116.201067 1153 4n2e33_003 Private Boise City Canal 12 CMP 43.642679 -116.201073 1154 4n2e33_004 ACHD Boise City Canal 12 CMP 43.647753 -116.210108 1155 4n2e33_005 ACHD Boise City Canal 12 CMP 43.64755 -116.21008 1156 4n2e33_006 Irrigation Crane Creek 18 RCP 43.64365 -116.21923 1158 4n2e33_007 ACHD Boise City Canal 2 CMP 43.64565 -116.21923 1159 4n2e33_010 ACHD Boise City Canal 6 PVC 43.64564 -116.219231 1160 4n2e33_	1148	4n2e32_024	Private	Boise Valley Canal	12	Metal	43.647653	-116.24799
1151 4n2e33_001 ACHD Boise City Canal 8 RCP 43.636137 -116.218411 1152 4n2e33_002 ACHD Boise City Canal 24 CMP 43.642679 -116.220067 1153 4n2e33_003 Private Boise City Canal 12 CMP 43.64279 -116.220067 1154 4n2e33_004 ACHD Boise City Canal 12 CMP 43.647753 -116.221001 1155 4n2e33_005 ACHD Boise City Canal 12 CMP 43.647753 -116.221008 1156 4n2e33_006 Irrigation Crane Creek 18 RCP 43.6433696 -116.226463 1157 4n2e33_008 Irrigation Boise City Canal 12 CMP 43.64455 -116.21923 1158 4n2e33_009 ACHD Boise City Canal 6 PVC 43.64456 -116.219245 1159 4n2e33_010 ACHD Boise City Canal 6 PVC 43.643694 -116.219871 1161 <td< td=""><td>1149</td><td>4n2e32_025</td><td>Private</td><td>Boise Valley Canal</td><td>12</td><td>Metal</td><td>43.647732</td><td></td></td<>	1149	4n2e32_025	Private	Boise Valley Canal	12	Metal	43.647732	
1152 4n2e33_002 ACHD Boise City Canal 24 CMP 43.642679 -116.220067 1153 4n2e33_003 Private Boise City Canal 12 CMP 43.638072 -116.219123 1154 4n2e33_004 ACHD Boise City Canal 12 CMP 43.647359 -116.21008 1155 4n2e33_005 ACHD Boise City Canal 12 CMP 43.647359 -116.221008 1156 4n2e33_006 Irrigation Creek 18 RCP 43.647359 -116.226463 1157 4n2e33_007 ACHD Boise City Canal 12 CMP 43.64565 -116.219233 1158 4n2e33_008 Irrigation Boise City Canal 24 CMP 43.64565 -116.219234 1159 4n2e33_010 ACHD Boise City Canal 24 CMP 43.64565 -116.219234 1160 4n2e33_010 ACHD Boise City Canal 24 CMP 43.643694 -116.219784 1161 4n2	1150	4n2e32_026	ACHD	Boise Valley Canal	10	CMP	43.385162	-116.145314
1153 4n2e33_003 Private Boise City Canal 12 CMP 43.638072 -116.219123 1154 4n2e33_004 ACHD Boise City Canal 12 CMP 43.647753 -116.221601 1155 4n2e33_005 ACHD Boise City Canal 12 CMP 43.647359 -116.221601 1155 4n2e33_006 Irrigation Crane Creek 18 RCP 43.633696 -116.21008 1157 4n2e33_007 ACHD Boise City Canal 12 CMP 43.64655 -116.219728 1158 4n2e33_008 Irrigation Boise City Canal 24 CMP 43.64698 -116.219728 1159 4n2e33_010 ACHD Boise City Canal 6 PVC 43.646988 -116.219718 1160 4n2e33_010 ACHD Unnamed 12 PVC 43.63694 -116.21973 1161 4n2e33_011 ACHD Unnamed 12 PVC 43.63697 -116.224564 1162 4n2e33_013								
1154 4n2e33_004 ACHD Boise City Canal 12 CMP 43.647753 -116.221601 1155 4n2e33_005 ACHD Boise City Canal 12 CMP 43.647759 -116.221008 1156 4n2e33_006 Irrigation Crane Creek 18 RCP 43.633696 -116.226463 1157 4n2e33_007 ACHD Boise City Canal 12 CMP 43.64565 -116.219233 1158 4n2e33_009 ACHD Boise City Canal 6 PVC 43.64565 -116.219234 1159 4n2e33_009 ACHD Boise City Canal 24 CMP 43.646988 -116.219641 1160 4n2e33_010 ACHD Boise City Canal 24 CMP 43.643694 -116.219871 1161 4n2e33_011 ACHD Unnamed 12 PVC 43.636371 -116.224564 1162 4n2e33_013 ACHD Unnamed 12 PVC 43.636371 -116.220391 1164 4n2e33_013				,				
1155 4n2e33_005 ACHD Boise City Canal 12 CMP 43.647359 -116.221008 1156 4n2e33_006 Irrigation Crane Creek 18 RCP 43.633696 -116.226463 1157 4n2e33_007 ACHD Boise City Canal 12 CMP 43.64565 -116.226463 1157 4n2e33_008 Irrigation Boise City Canal 6 PVC 43.6445 -116.219728 1159 4n2e33_009 ACHD Boise City Canal 6 PVC 43.64568 -116.219718 1160 4n2e33_010 ACHD Boise City Canal 6 PVC 43.645988 -116.219611 1161 4n2e33_011 ACHD Boise City Canal 6 PVC 43.645944 -116.219871 1161 4n2e33_011 ACHD Unnamed 12 PVC 43.636371 -116.224564 1162 4n2e33_013 ACHD Unnamed 12 PVC 43.636371 -116.20391 1164 4n2e33_015								
1156 4n2e33_006 Irrigation Crane Creek 18 RCP 43.633696 -116.226463 1157 4n2e33_007 ACHD Boise City Canal 12 CMP 43.64565 -116.219233 1158 4n2e33_008 Irrigation Boise City Canal 6 PVC 43.6445 -116.219728 1159 4n2e33_009 ACHD Boise City Canal 24 CMP 43.646988 -116.219728 1160 4n2e33_010 ACHD Boise City Canal 6 PVC 43.646988 -116.21971 1161 4n2e33_011 ACHD Unnamed 12 PVC 43.63697 -116.223673 1162 4n2e33_013 ACHD Unnamed 12 PVC 43.636371 -116.220371 1163 4n2e33_013 ACHD Unnamed 12 PVC 43.636371 -116.220391 1164 4n2e33_014 ACHD Unnamed 12 PVC 43.636374 -116.203675 1165 4n2e34_001 ACHD				,				
11574n2e33_007ACHDBoise City Canal12CMP43.64565-116.21923311584n2e33_008IrrigationBoise City Canal6PVC43.6445-116.21972811594n2e33_009ACHDBoise City Canal24CMP43.646988-116.21964111604n2e33_010ACHDBoise City Canal6PVC43.646948-116.21987111614n2e33_011ACHDUnnamed12PVC43.636394-116.22456411624n2e33_012ACHDUnnamed12PVC43.636371-116.22347311634n2e33_013ACHDUnnamed0Drop Inlet43.636371-116.22039111644n2e33_014ACHDUnnamed12PVC43.638048-116.21693811654n2e33_015ACHDBoise City Canal12PVC43.638048-116.21693811664n2e34_001ACHDCrane Creek15CMP43.64581-116.20367511674n2e34_002ACHDCrane Creek19CMP43.643581-116.20367511684n2e34_003ACHDCrane Creek0Drop Inlet43.645603-116.2031611704n2e34_004ACHDCrane Creek10RCP43.645603-116.2031611704n2e34_005ACHDCrane Creek10RCP43.646353-116.2031611714n2e34_006ACHDCrane Creek10CMP43.646353-116.20316<				,				
11584n2e33_008IrrigationBoise City Canal6PVC43.6445-116.21972811594n2e33_009ACHDBoise City Canal24CMP43.646988-116.21964111604n2e33_010ACHDBoise City Canal6PVC43.646988-116.21987111614n2e33_011ACHDUnnamed12PVC43.63694-116.22456411624n2e33_012ACHDUnnamed12PVC43.636397-116.22347311634n2e33_013ACHDUnnamed0Drop Inlet43.636371-116.22039111644n2e33_014ACHDUnnamed12PVC43.638048-116.21693811654n2e33_015ACHDBoise City Canal12PVC43.638048-116.21693811664n2e34_001ACHDCrane Creek15CMP43.645042-116.20367511674n2e34_002ACHDCrane Creek19CMP43.645581-116.2031511684n2e34_003ACHDCrane Creek0Drop Inlet43.645603-116.2031611704n2e34_004ACHDCrane Creek10RCP43.647506-116.19876311714n2e34_006ACHDCrane Creek10CMP43.646353-116.20170711724n2e34_007ACHDCrane Creek10CMP43.646353-116.201707								
1159 4n2e33_009 ACHD Boise City Canal 24 CMP 43.646988 -116.219641 1160 4n2e33_010 ACHD Boise City Canal 6 PVC 43.643694 -116.219871 1161 4n2e33_011 ACHD Unnamed 12 PVC 43.6339147 -116.224564 1162 4n2e33_012 ACHD Unnamed 12 PVC 43.636397 -116.223473 1163 4n2e33_014 ACHD Unnamed 0 Drop Inlet 43.636371 -116.223473 1164 4n2e33_014 ACHD Unnamed 0 Drop Inlet 43.636371 -116.20391 1164 4n2e33_015 ACHD Unnamed 12 PVC 43.643848 -116.216938 1165 4n2e33_015 ACHD Boise City Canal 12 PVC 43.6439448 -116.216938 1166 4n2e34_001 ACHD Crane Creek 15 CMP 43.645042 -116.203675 1167 4n2e34_002 ACHD				,				
1160 4n2e33_010 ACHD Boise City Canal 6 PVC 43.643694 -116.219871 1161 4n2e33_011 ACHD Unnamed 12 PVC 43.6339147 -116.224564 1162 4n2e33_012 ACHD Unnamed 12 PVC 43.636397 -116.224733 1163 4n2e33_013 ACHD Unnamed 0 Drop Inlet 43.636371 -116.223473 1164 4n2e33_014 ACHD Unnamed 0 Drop Inlet 43.636371 -116.220391 1164 4n2e33_015 ACHD Unnamed 12 PVC 43.638048 -116.216938 1165 4n2e33_015 ACHD Boise City Canal 12 PVC 43.643048 -116.216938 1166 4n2e34_001 ACHD Crane Creek 15 CMP 43.645042 -16.203675 1167 4n2e34_002 ACHD Crane Creek 19 CMP 43.643581 -116.203675 1168 4n2e34_003 ACHD <			-					
1161 4n2e33_011 ACHD Unnamed 12 PVC 43.639147 -116.224564 1162 4n2e33_012 ACHD Unnamed 12 PVC 43.636397 -116.224733 1163 4n2e33_013 ACHD Unnamed 0 Drop Inlet 43.636371 -116.220391 1164 4n2e33_014 ACHD Unnamed 12 PVC 43.636371 -116.220391 1164 4n2e33_014 ACHD Unnamed 12 PVC 43.638048 -116.216938 1165 4n2e33_015 ACHD Boise City Canal 12 PVC 43.639448 -116.216938 1166 4n2e34_001 ACHD Crane Creek 15 CMP 43.645042 -116.203675 1167 4n2e34_002 ACHD Crane Creek 19 CMP 43.643581 -116.203675 1168 4n2e34_003 ACHD Crane Creek 36 CMP 43.643586 -116.203675 1169 4n2e34_004 ACHD Crane C				,				
1162 4n2e33_012 ACHD Unnamed 12 PVC 43.636397 -116.223473 1163 4n2e33_013 ACHD Unnamed 0 Drop Inlet 43.636371 -116.223473 1164 4n2e33_014 ACHD Unnamed 12 PVC 43.636371 -116.220391 1164 4n2e33_014 ACHD Unnamed 12 PVC 43.638048 -116.216938 1165 4n2e33_015 ACHD Boise City Canal 12 PVC 43.639448 -116.216938 1166 4n2e34_001 ACHD Crane Creek 15 CMP 43.645042 -116.203675 1167 4n2e34_002 ACHD Crane Creek 19 CMP 43.645081 -116.204911 1168 4n2e34_003 ACHD Crane Creek 19 CMP 43.64386 -116.203159 1169 4n2e34_003 ACHD Crane Creek 0 Drop Inlet 43.645603 -116.20316 1170 4n2e34_005 ACHD <td< td=""><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td></td<>				,				
11634n2e33_013ACHDUnnamed0Drop Inlet43.636371-116.22039111644n2e33_014ACHDUnnamed12PVC43.638048-116.21693811654n2e33_015ACHDBoise City Canal12PVC43.639448-116.219911664n2e34_001ACHDCrane Creek15CMP43.645042-116.20367511674n2e34_002ACHDCrane Creek19CMP43.643581-116.20491111684n2e34_003ACHDCrane Creek36CMP43.643386-116.20515911694n2e34_004ACHDCrane Creek0Drop Inlet43.645603-116.2031611704n2e34_005ACHDCrane Creek10RCP43.647506-116.19876311714n2e34_006ACHDCrane Creek10CMP43.646949-116.19885811724n2e34_007ACHDCrane Creek10CMP43.646353-116.201707								
1164 4n2e33_014 ACHD Unnamed 12 PVC 43.638048 -116.216938 1165 4n2e33_015 ACHD Boise City Canal 12 PVC 43.639448 -116.216938 1165 4n2e34_001 ACHD Crane Creek 15 CMP 43.645042 -116.203675 1167 4n2e34_002 ACHD Crane Creek 19 CMP 43.643581 -116.204911 1168 4n2e34_003 ACHD Crane Creek 36 CMP 43.643386 -116.205159 1169 4n2e34_004 ACHD Crane Creek 0 Drop Inlet 43.645603 -116.20316 1170 4n2e34_005 ACHD Crane Creek 10 RCP 43.647506 -116.198763 1171 4n2e34_006 ACHD Crane Creek 10 RCP 43.646949 -116.198763 1171 4n2e34_007 ACHD Crane Creek 10 CMP 43.646353 -116.201707		—						
1165 4n2e33_015 ACHD Boise City Canal 12 PVC 43.639448 -116.2199 1166 4n2e34_001 ACHD Crane Creek 15 CMP 43.645042 -116.203675 1167 4n2e34_002 ACHD Crane Creek 19 CMP 43.643581 -116.204911 1168 4n2e34_003 ACHD Crane Creek 36 CMP 43.643386 -116.205159 1169 4n2e34_004 ACHD Crane Creek 0 Drop Inlet 43.645603 -116.20316 1170 4n2e34_005 ACHD Crane Creek 10 RCP 43.647506 -116.198763 1171 4n2e34_006 ACHD Crane Creek 12 CMP 43.646949 -116.198785 1172 4n2e34_007 ACHD Crane Creek 10 CMP 43.646353 -116.201707		—				-		
1166 4n2e34_001 ACHD Crane Creek 15 CMP 43.645042 -116.203675 1167 4n2e34_002 ACHD Crane Creek 19 CMP 43.643581 -116.203675 1168 4n2e34_003 ACHD Crane Creek 36 CMP 43.643386 -116.203159 1169 4n2e34_004 ACHD Crane Creek 0 Drop Inlet 43.645603 -116.20316 1170 4n2e34_005 ACHD Crane Creek 10 RCP 43.647506 -116.198763 1171 4n2e34_006 ACHD Crane Creek 12 CMP 43.646949 -116.198588 1172 4n2e34_007 ACHD Crane Creek 10 CMP 43.646353 -116.201707		_						
1167 4n2e34_002 ACHD Crane Creek 19 CMP 43.643581 -116.204911 1168 4n2e34_003 ACHD Crane Creek 36 CMP 43.643386 -116.205159 1169 4n2e34_004 ACHD Crane Creek 0 Drop Inlet 43.645603 -116.20316 1170 4n2e34_005 ACHD Crane Creek 10 RCP 43.647506 -116.198763 1171 4n2e34_006 ACHD Crane Creek 12 CMP 43.646949 -116.198785 1172 4n2e34_007 ACHD Crane Creek 10 CMP 43.646353 -116.201707				,				
1168 4n2e34_003 ACHD Crane Creek 36 CMP 43.643386 -116.205159 1169 4n2e34_004 ACHD Crane Creek 0 Drop Inlet 43.645603 -116.20316 1170 4n2e34_005 ACHD Crane Creek 10 RCP 43.647506 -116.198763 1171 4n2e34_006 ACHD Crane Creek 12 CMP 43.646949 -116.198588 1172 4n2e34_007 ACHD Crane Creek 10 CMP 43.646353 -116.201707								
1169 4n2e34_004 ACHD Crane Creek 0 Drop Inlet 43.645603 -116.20316 1170 4n2e34_005 ACHD Crane Creek 10 RCP 43.647506 -116.198763 1171 4n2e34_006 ACHD Crane Creek 12 CMP 43.646949 -116.19858 1172 4n2e34_007 ACHD Crane Creek 10 CMP 43.646353 -116.201707								
1170 4n2e34_005 ACHD Crane Creek 10 RCP 43.647506 -116.198763 1171 4n2e34_006 ACHD Crane Creek 12 CMP 43.646949 -116.199858 1172 4n2e34_007 ACHD Crane Creek 10 CMP 43.646353 -116.201707		-						
1171 4n2e34_006 ACHD Crane Creek 12 CMP 43.646949 -116.199858 1172 4n2e34_007 ACHD Crane Creek 10 CMP 43.646353 -116.201707		—				-		
1172 4n2e34_007 ACHD Crane Creek 10 CMP 43.646353 -116.201707								
1173 4n2e34_008 ACHD Crane Creek 12 PVC 43.646073 -116.202277					10			
	1173	4n2e34_008	ACHD	Crane Creek	12	PVC	43.646073	-116.202277

				PIPE			
#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE
1174	4n2e34_010	Boise City	Hulls Gulch	12	ADS	43.63602	-116.198382
1175	4n2e34_011	ACHD	Crane Creek	8	CMP	43.640155	-116.209498
1176	4n2e34_012	ACHD	Crane Creek	9	CMP	43.639417	-116.210681
1177	4n2e34_014	ACHD	Crane Creek	18	RCP	43.641257	-116.208423
1178	4n2e34_015	ACHD	Crane Creek	0	Drop Inlet	43.641371	-116.208107
1179	4n2e34_016	ACHD	Crane Creek	0	Drop Inlet	43.643544	-116.204956
1180	4n2e34_017	ACHD	Crane Creek	0	Drop Inlet	43.64343	-116.205057
1181	4n2e34_018	ACHD	Crane Creek	0	Drop Inlet	43.645752	-116.203057
1182	4n2e34_019	ACHD	Crane Creek	15	CMP	43.645694	-116.203098
1183	4n2e34_020	ACHD	Crane Creek	8	CMP	43.640202	-116.209448
1184	4n2e34_021	ACHD	Hulls Gulch	36	ADS	43.635971	-116.198607
1185	4n2e34_022	ACHD	Crane Creek	36	CMP	43.639443	-116.210806
1186	4n2e34_023	ACHD	Hulls Gulch	18	RCP	43.381297	-116.121417
1187	4n2e34_024	ACHD	Hulls Gulch	10	PVC	43.381667	-116.121802
1188	4n2e34_025	ACHD	Hulls Gulch	10	PVC	43.381715	-116.121917
1189	4n2e34_026	ACHD	Hulls Gulch	12	RCP	43.381735	-116.121877
1190	4n2e34_027	ACHD	Hulls Gulch	0	Drop Inlet	43.637718	-116.204771
1191	4n2e34_028	ACHD	Hulls Gulch	36	CMP	43.381264	-116.12138
1192	4n2e35_001	ACHD	Hulls Gulch	12	RCP	43.641117	-116.186856
1193	4n2e35_002	Boise City	Hulls Gulch	12	RCP	43.641233	-116.186699
1194	4n2e35_004	ACHD	Hulls Gulch-Lateral	15	CMP	43.647301	-116.177147

Phase I Dry Weather Irrigation and Groundwater Flows WY 2022

#	OUTFALL ID	OWNERSHIP	RECEIVING WATER	PIPE DIAMETER	PIPE TYPE	LATITUDE	LONGITUDE	SOURCE CONFIRMED
1	3n1e01_010	ACHD	North Slough	24	RCP	43.629421	-116.294095	Irrigation, 2009
2	3n1e15_001	ACHD, Irrigation	Ridenbaugh Canal	12	CMP	43.603942	-116.318706	Irrigation, 2012
3	3n1e15_008	ACHD	Ridenbaugh Canal	16	CMP	43.602428	-116.331167	Irrigation, 2009
4	3n2e05_001	ACHD	Davis Drain	24	SMP	43.62309	-116.245492	Irrigation, 2012
5	3n2e05_027	ACHD	Davis Drain	24	RCP	43.629319	-116.252786	Irrigation, 2015
6	3n2e06_019	ACHD	Davis Drain	24	RCP	43.629699	-116.253481	Irrigation, 2009
7	3n2e07_009	ACHD, Railroad	Ridenbaugh Canal	24	CMP	43.606069	-116.271601	Irrigation, 2008
8	3n2e08_019	ACHD, Private	Settlers Canal	24	RCP	43.617969	-116.234202	Irrigation, 2003
9	3n2e17_017	ACHD	Farmers Lateral	18	CMP	43.595719	-116.236695	Irrigation, 2018
10	3n2e18_013	ACHD	Farmers Lateral	15	SMP	43.595855	-116.261996	Irrigation, 2009
11	3n2e22_002	ACHD	Ridenbaugh Canal	15	RCP	43.588437	-116.201235	Irrigation, 2011
12	3n2e24_006	ACHD	Boise River	12	CMP	43.356875	-116.933662	Groundwater, 2008
13	4n1e13_010	ACHD	Eagle Drain	12	HDPE	43.683171	-116.28445	Groundwater, 2017
14	4n1e14_006	ACHD	Eagle Drain	30	RCP	43.684824	-116.301549	Groundwater, 2010
15	4n1e26_007	ACHD, Irrigation	Settlers Canal	0	open ditch	43.648756	-116.298262	Irrigation, 2012
16	4n1e34_019	ACHD	Karnes Lateral	15	RCP	43.639346	-116.3185	Irrigation, 2011
17	4n1e35_001	ACHD	Zinger Lateral	12	ADS	43.646554	-116.311207	Irrigation, 2016
18	4n1e36_006	ACHD	Settlers Canal	24	СМР	43.645105	-116.286541	Irrigation, 2007
19	4n1e36_014	ACHD	Settlers Canal	48	CMP	43.644154	-116.277753	Irrigation, 2008
20	4n2e19_010	ACHD	Eagle Drain	15	PVC	43.668754	-116.263258	Groundwater and Irrigation, 2010
21	4n2e32_014	ACHD	Farmers Union Canal	12	CMP	43.382884	116.143352	Irrigation, 2009

Appendix E: Compliance and Implementation Status

			Stormwater Management Program Com	nliance and l	nnlement	ation St	atus - P	hase L		
	[Inpremient		1113 - 1			ACHI
Stormwater Management Program Areas	Permit Reference	Stormwater Management Program Components	Permit Breakdown	Permit Compliance Date	Completed	Ongoing		2021-2022 ermit Year 1		2022-2023 ermit Year 2
							SWMP	Annual Report	SWMP	Annual Report
	2.5.5	Maintain updated SWMP Documents	The Permittees must maintain a written SWMP document or documents that describes in detail how the Permittee complies with the required stormwater management control measures in this Permit. Each Permittee must submit their updated SWMP Documents with the Permit Renewal Application.	4/3/2026		x				
	2.5.5	Post SWMP on Website	Each Permittee's current SWMP Document must be available through the website(s) required in Part 3.1.8 (Publicly Accessible Website).	10/1/2022	9/30/2022 Update as needed	х				
	5	Required Response to Excursions Above Idaho Water Quality Standards	The Permittees will be presumed to be in compliance with Idaho Water Quality Standards if in compliance with Permit. If a discharge from the MS4s causes or contributes to an excursion, the Permittees remain in compliance with the Permit as long as SWMP control measures are implemented and the Permittee provides notification within 30 days of becoming aware that a discharge from the Permittee's MS4 is causing or contributing to a known or likely excursion above the Idaho Water Quality Standards.			x				
Stormwater Management Program	5.2	Adaptive Management Response (if required)	Based on the notification provided, IDEQ may notify the Permittee that an adaptive management response is required. If required, the Permittee will be required to provide the following: Adaptive Management Report (within 60 days of receiving a response from EPA and IDEQ), Review and Approval of Adaptive Management Report by IDEQ, Implementation of additional BMPs, Reporting on implementation, and Permit Revisions (if necessary).	within 60 days if required		x				
. rogram	7.9	Twenty-Four Hour Notice of Noncompliance Reporting	The Permittee(s) must report to IDEQ the following occurrences of noncompliance by telephone within 24 hours from the time the Permittee becomes aware of the following circumstances: Any discharge to or from the MS4 which could result in noncompliance that may endanger human health or the environment; Any unanticipated bypass that results in or contributes to an exceedance of any effluent limitation in this Permit, Any upset that results in or contributes to an exceedance of any effluent limitation in this Permit. The Permittee(s) must also provide a written submission within five (5) business days of the time that the Permittee(s) becomes aware of a noncompliance event listed above.	24 hours		x				
	8.2	Permit Renewal Application	If the Permittees intend to continue operational control and management of discharges from the MS4, the Permittees must apply for and obtain a new permit. The following attachments must be submitted: Updated SWMP document, MS4 Map and Outfall Inventory, list of MS4 outfall locations with dry weather flows, Enforcement Response Policy for Construction Site Runoff Control, Green Infrastructure Strategy document, Enforcement Response Policy for Permanent Stormwater Management Controls, Permittee's adaptive management actions to date, Wet Weather Stormwater Outfall Monitoring Report, Subwatershed Monitoring Report, and Stormwater Controls Effectiveness Evaluation Report.	4/3/2026		x				
	3.1.2	Conduct Public Education, Outreach, and Involvement Program	The Permittees' joint education and outreach program must include coordination and educational efforts, targeting at least one of the four audiences listed in Part 3.1.4, that informs and engages interested stakeholders in Permittee's development and implementation of SWMP controls measures. Must include activities in 3.1.3 through 3.1.8.	4/3/2026		x				
	3.1.3	Stormwater Education Activities	Permittees must offer at least eight education messages or activities over the permit term to selected audience(s).	4/3/2026	9/30/2022	x				
	3.1.4	Target Audience(s) and Topics	The Permittees must select at least one audience from the following: General Public, Business/Industrial/Commercial/Institutions, Construction/Development, or Elected Officials, Land Use Policy and Planning Staff.	4/3/2026	9/30/2022	x	V			
	3.1.5	Assessment	The Permittees must begin to assess the understanding of the relevant messages and adoption of appropriate behaviors by their target audience(s). Resulting assessment must be used to direct future stormwater education.	4/3/2026		x				
PCM 1 Public Education and Outreach	3.1.6	Tracking	The Permittees must track and maintain records of their education, outreach, and public involvement activities.	4/3/2026	9/30/2022	x				
	3.1.7.1	Education on SWMPP Control Measures: Construction	At least once per year , the Permittees must provide training to local audiences on the requirements for construction operators working in their jurisdiction.	Annually	2/1/2022	x				
	3.1.7.2	Education on SWMPP Control Measures: Permanent Stormwater Controls	At least once per year , the Permittees must provide training to local audiences on the requirements for permanent stormwater management controls.	Annually	9/15/2022	x				
	3.1.8	Publicly Accessible Website	The Permittees must maintain and promote at least one publicly accessible website with information on the SWMP implementation, points of contact, and education materials. Minimum features: Phone numbers, and/or other direction to assist the public to report illicit discharges, Reports, plans, strategies, or documents generated in compliance with this Permit, Information regarding policies and/or guidance documents related to requirements for construction and permanent stormwater management control, and Permits contact information.	4/3/2026	9/30/2022	x	V			

	Ctatus			
HD	Status	Update		
		2023-2024 rmit Year 3	024-2025 rmit Year 4	025 -2026 rmit year 5
ort	SWMP	Annual Report	Annual Report	Annual Report
_				

			Stormwater Management Program Com	pliance and l	<u>mple</u> ment	<u>ation</u> Sta	<u>atus</u> - P	<u>hase l</u>		
										ACHI
Stormwater	Permit	Stormwater		Permit						
Management Program Areas	Reference	Management Program Components	Permit Breakdown	Compliance Date	Completed	Ongoing		2021-2022 ermit Year 1	2022-2023 Permit Year 2	
							SWMP	Annual Report	SWMP	Annual Report
	3.2.2	Municipal Separate Storm Sewer System Map and Outfall Inventory	The Permittees must update and maintain a map of their MS4(s) and all associated outfall locations under its operational control in the Permit Area. Must maintain an outfall and interconnection inventory to accompany the map(s) with outfall locations, physical condition, and a framework for inspections, dry weather discharge screenings, maintenance, and other activities. An electronic GIS version of the MS4 map, and the accompanying Outfall Inventory is to be submitted.	4/3/2026	9/30/2022	x	V			
	3.2.3	Ordinance and/or Other Regulatory mechanism	The Permittees must prohibit non-stormwater discharges into the MS4 (except those conditionally allowed by Part 2.4) through enforcement of a regulatory mechanism. The Permittees must implement appropriate enforcement procedures and actions, including a written policy of enforcement escalation procedures for recalcitrant or repeat offenders, to ensure compliance. The ordinance or regulatory mechanism must authorize the permittee to control and respond to the discharge of spills, prohibit illicit connections or dumping into the MS4, to prohibit/eliminate non stormwater discharges to the MS4.		9/30/2022	x	V			
	3.2.4 Illicit Discharge Complaint Report and Response Program The Permittees must respond in the following manner to reports of illicit discharges from the public: receipt of complaints or reports from the public (through a dedicated telephone number, email address, and/or other publicly available and accessible means), response to complaints or reports from the public (as soon as possible, but no later than within two (2) working days), and tracking of complaints or reports and actions taken (this information must be summarized for the relevant reporting period and included in each Annual Report).		4/3/2026	9/30/2022	x	Ø				
PCM 2 Illicit Discharge	3.2.5	Dry Weather Outfall Screening Program	The Permittees must conduct a dry weather analytical and field screening monitoring program to identity non-stormwater flows from MS4 outfalls during dry weather. The program must include the following: outfall identification and screening protocols, number of outfalls to be screened, monitoring of illicit discharges, and maintain records of dry weather outfall screening program.	4/3/2026	9/30/2022	x	V			
Detection and Elimination	3.2.6	Illicit Discharge Detection and Elimination Follow-up	Within thirty (30) days of its detection, the Permittees must investigate recurring illicit discharges identified as a result of complaints or identified as result of the dry weather screening investigations and sampling to determine the source of such discharge.	Within 30 days	9/30/2022	х				
	3.2.7	Prevention and Response to Spills	The Permittees must maintain written spill response procedures and must coordinate their own spill prevention containments, and response activities with the appropriate departments, programs, and agencies in the Permit Area.	4/3/2026	9/30/2022	х				
	3.2.7.1	Spill Reporting	The Permittees must immediately report all spills of hazardous material, deleterious material, or petroleum products which may impact waters (ground and surface) of the State, as directed in Part 7.9 (Twenty-Four Hour Notice of Noncompliance Reporting) and Appendix A.2 (Reporting of Discharges Containing Hazardous Materials or Deleterious Material).	4/3/2026	9/30/2022	х				
	3.2.8	Proper Disposal of Used Oil and Toxic Materials	The Permittees must continue to coordinate with appropriate local entities to educate the Permittee's employees and members of the public of the proper management, disposal, or recycling of used oil, vehicle fluids, toxic materials, and other household hazardous wastes in the Permittee's jurisdiction.	4/3/2026		x				
	3.2.9	Illicit Discharge Detection and Elimination Training for Staff	The Permittee's construction inspectors, maintenance field staff, and code compliance officers must be sufficiently trained to conduct dry weather screening activities and to response to reports of illicit discharges and spills into the MS4. The Permittee must provide orientation and training for new staff within the first six (6) months of employment. Existing Permittee staff may comply with this training requirement by attending relevant training courses at least every other year . Outside parties must be trained or otherwise qualified. Trainings may be combined with Construction Runoff Control, Permanent Stormwater Control Training, and Stormwater Pollution Prevention/Good Housekeeping Trainings.	4/3/2026	9/30/2022	x				
	3.3.1	Construction Site Stormwater Runoff Control	No later than April 3, 2026, the Permittees must update its existing construction site runoff control requirements, if necessary, to enact control measure components in Parts 3.3.2 through 3.3.7 below.	4/3/2026	ERP Updated 9/28/2022	х	V			
PCM 3 Construction Site Stormwater Runoff Control	3.3.2	Regulatory Mechanism	The Permittees must require erosion controls, sediment controls, and waste materials management controls to be used and maintained at construction projects. The Permittee's regulatory mechanism must require construction site operators to maintain effective controls to reduce pollutants in stormwater discharges. For construction projects in the Permittee's jurisdiction that disturb one or more acres (including projects that disturb less than one acre but are part of a common plan of development that disturbs one or more acres), the Permittee must refer project site operators to obtain NPDES permit coverage.	4/3/2026	9/30/2022	x	Ø			
	3.3.3	Construction Site Runoff Control Specifications	The Permittees must require construction site operators within their jurisdiction to use erosion, sediment, and waste material management controls as defined within manuals adopted by the Permittees. Construction site runoff control specifications must consist of: requirements for use of erosion controls, sediment control, and waste materials management/pollution prevention practices, sizing criteria, performance criteria, illustrations, design examples, and specifications for operation and maintenance, specifications for long term operation and maintenance of such construction site runoff control practices.	4/3/2026	9/30/2022	x	Ø			

HD	Status		_		_	
		Update				
		2023-2024 rmit Year 3		024-2025 rmit Year 4		025 -2026 rmit year 5
ort	SWMP	Annual Report	SWMP	Annual Report	SWMP	Annual Report

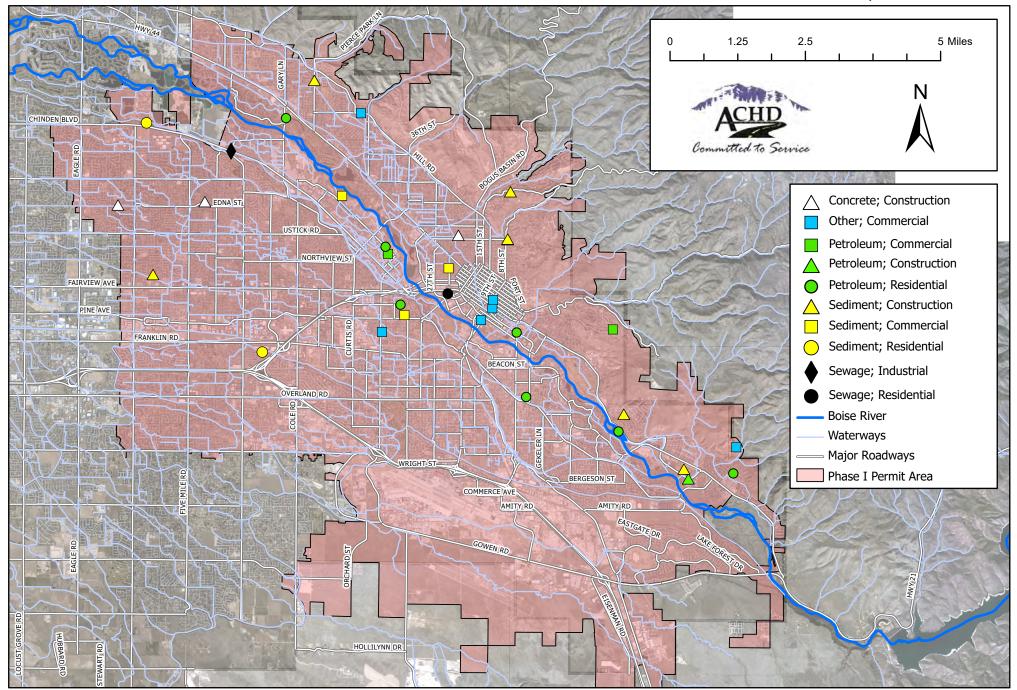
			Stormwater Management Program Com	pliance and l	mplement	ation Sta	atus - P	hase l		
										ACHI
Stormwater Management Program Areas	Permit Reference	Stormwater Management Program Components	Permit Breakdown	Permit Compliance Date	Completed	Ongoing		2021-2022 ermit Year 1		2022-2023 ermit Year 2
							SWMP	Annual Report	SWMP	Annual Report
	3.3.4	Pre-Construction Site Plan Review	The Permittees must review preconstruction site plans from construction project site activity within their jurisdictions. Permittees must ensure that the construction site operator is prohibited from commencing construction activity prior to receipt of written approval. Site plan review procedures must include consideration of the site's potential water quality impacts and must demonstrate compliance with the regulatory mechanism. Any preconstruction site plan contains site-specific measures that meet the Permittee's runoff control specifications. Permittees must document the review of each ESC plan and/or SWPPP using a checklist or similar process.	4/3/2026	9/30/2022	x				
PCM 3 Construction Site Stormwater Runoff Control	3.3.5	Construction Site Inspection and Enforcement	The Permittees must inspect construction sites in their jurisdiction to ensure compliance with the Permittee's applicable requirements. The Permittees must establish an inspection prioritization system to identify the minimum frequency and type of inspections. Follow-up actions must be taken to ensure compliance. Construction site inspections must include: As applicable, a check for coverage under the Construction General Permit, a review of the site plan to determine if the intended control measures were installed, implemented, and maintained, an assessment of the appropriateness of planned control measures and their effectiveness, an assessment of the site's compliance with the Permittee's requirements, visual observation of any existing or potential non-stormwater discharges, illicit connections, and/or discharge of pollutants from site, education or instruction to the construction site operator, and a written or electronic inspection report.	4/3/2026	9/30/2022	x	Ŋ			
	3.3.6	Enforcement Response Policy for Construction Site Runoff Control	Each Permittee must maintain and implement a written escalating enforcement response policy (ERP) or plan appropriate to its organization. The ERP must address enforcement of construction site runoff controls for all construction projects in their jurisdictions. Each ERP must address enforcement of construction site runoff controls for all construction projects in their jurisdictions and describe the Permittee's potential response to violations with appropriate educational or enforcement responses.	4/3/2026	9/30/2022	x				
	3.3.7	Construction Site Runoff Control Training for Staff	The Permittees must ensure that all persons responsible for preconstruction site plan review, site inspections, and enforcement of all the Permittee's requirements are trained. The Permittees must provide training for new staff working on construction runoff control issues in the first six (6) months of employment . If the Permittees use outside parties to review plans and/or conduct inspections outside parties must be trained or otherwise qualified. Trainings may be combined with Illicit Discharge, Permanent Stormwater Control Training, and Stormwater Pollution Prevention/Good Housekeeping Trainings.	4/3/2026	9/30/2022	x				
	3.4.1	Compliance Dates	No later than April 3, 2026, the Permittees must update their existing controls, if necessary, to impose the required SWMP control measure components in Parts 3.4.2 through 3.4.7 below.	4/3/2026		х				
	3.4.2	Regulatory Mechanism	At a minimum, the Permittees must implement and enforce a program to control stormwater runoff from new development and redevelopment projects that result in land disturbance of 5,000 square feet or more, excluding individual one- or two-family dwelling development or redevelopment and the infill or redevelopment of public pedestrian infrastructure projects. Each Permittee must continue to require the installation and long-term maintenance of permanent stormwater controls at new development and redevelopment project sites.	4/3/2026	9/30/2022	x				
PCM 4 Post- Construction Stormwater Management for	3.4.2.3	Green Infrastructure Strategy Implementation	The Permittees must continue the implementation of their Green Infrastructure Strategies, and report annually on progress to date. The Permittees must complete one update to the existing Strategy and incorporate consideration of options for additional innovative approaches to control stormwater quality and quantity. The Permittees must submit the updated document as part of the Permit Renewal Application	4/3/2026		x				
New and Redevelopment	3.4.3	Permanent Stormwater Controls Specifications	The Permittees must specify permanent stormwater controls for project sites in their jurisdictions and may define appropriate controls for different types and/or sizes of site development activity occurring in their jurisdiction. The written specifications must include: specification for the use of site-based practices suitable to local soils and hydrologic conditions, acceptable control practices, and specifications for proper long-term operation and maintenance.	4/3/2026		x	Ø			
	3.4.4	Permanent Stormwater Controls Plan Review and Approval	The Permittees must review and approve preconstruction plans for permanent stormwater controls at new development and redevelopment sites that result in land disturbance of 5,000 square feet or more, excluding individual one- or two-family dwelling development or redevelopment sites and the infill or redevelopment of public pedestrian infrastructure projects. The permittee must review plans for consistency with the regulatory mechanism and specifications.	4/3/2026	9/30/2022	x				
	3.4.5	Permanent Stormwater Controls Inspection and Enforcement	The Permittees must implement an inspection program and define and prioritize new development and redevelopment sites for inspections of permanent stormwater management controls. The Permittees must identify certain permanent stormwater controls at new development and redevelopment sites as "high priority", and schedule associated inspections to occur at least once annually . The Permittees must use inspection checklists and maintain records of actions taken in response to inspections. The individual Permittee must implement an enforcement response policy sufficient to ensure and maintain the functional integrity of permanent stormwater controls in their jurisdiction. Each Permittee must submit their ERP for permanent stormwater controls to IDEQ with the Permit Renewal Application .	4/3/2026		x				

HD	Status				
		Update			
		2023-2024 rmit Year 3	024-2025 rmit Year 4	2 Po	025 -2026 rmit year 5
ort		Annual Report	 Annual Report		Annual Report

			Stormwater Management Program Com	pliance and l	mplement	ation Sta	atus - P	hase l		
										ACHE
Stormwater Management	Permit	Stormwater Management Program	Permit Breakdown	Permit Compliance						
Program Areas	Reference	Components		Date	Completed	Ongoing	2021-2022 9 Permit Year 1		2022-2023 Permit Year 2	
							SWMP	Annual Report	SWMP	Annual Report
PCM 4 Post- Construction Stormwater Management for	3.4.6	Operations and Maintenance of Permanent Stormwater Controls	The Permittee must maintain a database inventory to track and manage the operational condition of permanent stormwater controls in its jurisdiction. All available data on existing permanent controls known to the Permittee must be included in the database inventory. The Permittee must begin tracking at the time the Permittee takes ownership, using a database that incorporated geographic information system (GIS) information and/or developed in conjunction with the MS4 Map. The tracking system must also include reference to the type and number of permanent stormwater controls; O&M requirements; activity and schedule; responsible party; and any applicable self-inspection schedule.	4/3/2026		x				
New and Redevelopment	3.4.6.1 & 3.4.6.2	Ownership by other parties	Where parties other than the Permittee are responsible for the O&M of permanent stormwater controls, the Permittee must require a legally enforceable and transferable O&M agreement with the responsible party, or other mechanism, that assigns permanent responsibility for maintenance of such permanent stormwater control practices. Where parties other than the Permittee are responsible for the O&M of permanent stormwater controls, the Permittee must schedule and complete inspections to evaluate the ongoing operation and maintenance of such practices. The Permittee may determine the regular intervals for conducting such inspections to ensure the effective long-term operation and maintenance of such controls.	4/3/2026		x				
	3.4.7	Permanent Stormwater Controls Training for Staff	The Permittees must ensure that all persons responsible for reviewing site plans for permanent stormwater controls, and/or for inspecting the installation and operation of permanent stormwater controls, are trained, or otherwise qualified to conduct such activities. The Permittee must provide training for new staff and outside parties in the first six (6) months of employment . Trainings may be combined with Construction Runoff Control, Illicit Discharge Training, and Stormwater Pollution Prevention/Good Housekeeping Trainings.	4/3/2026	9/30/2022	x				
	3.5.2	Inspection and Cleaning of Catch Basins and Inlets	The Permittee must inspect all Permittee-owned or operated catch basins and inlets in the MS4 at least once every two (2) years and take all appropriate maintenance or cleaning action based on those inspections to ensure the catch basins and inlets continue to function as designed. The Permittee may establish a catch basin inspection prioritization system, and establish alternate inspection frequency. Records reflecting catch basin and inlet inspection, and material removal/cleaning, must be maintained by the Permittee, and the actions taken during the latest reporting period must be summarized in each Annual Report.	4/3/2026		x				
PCM 5 Pollution Prevention & Good Housekeeping for Municipal Separate Storm Sewer		O&M Procedures for Roads and Parking Lots	Where the Permittee is responsible for the O&M of streets, roads, highways, and/or parking lots, the Permittee must ensure those procedures are conducted in a manner to protect water quality and reduce the discharge of pollutants through the MS4. The Permittees must continue to implement appropriate O&M procedures for all streets, roads, highways, and parking lots with more than 3,000 square feet of impervious surface that are owned, operated, or maintained by the Permittees. The Permittee must establish specific schedules for inspection and maintenance, include practices to reduce road and parking lot debris/pollutants from entering the MS4, and must consider water conservation measures for landscaped areas.	4/3/2026		x				
Storm Sewer System Operations	3.5.4	Inventory and Management of Road Maintenance Materials	Where the Permittee is responsible for the O&M of streets, roads, highways, and/or parking lots, the Permittee must reduce pollutants in discharges to the MS4 and waters of the U.S. from street/road maintenance material storage stockpiles. The Permittees must maintain an inventory of street/road maintenance materials stored at locations within the Permit Area that drain into the MS4. The Permittee must assess the physical adequacy of each Material Storage Location to prevent potential adverse water quality impacts and must make any structural or nonstructural improvements as necessary to eliminate any such impacts.	4/3/2026	2/1/2022	x				
	3.5.5	Street Sweeping	Each Permittee with street, road, highway and/or public parking lot maintenance responsibilities must maintain and update as needed their respective sweepings management plans. Each plan must designate all streets, roads, and/or public parking lots that are owned, operated or maintained by that Permittee as residential, arterial and all other, or as public parking lots and must implement the sweeping schedule provided in 3.5.5.1.	4/3/2026	2/1/2022	x				
	3.5.6	O&M Procedures for Other Municipal Areas and Activities	The Permittees must conduct their municipal O&M activities in a manner that reduces the discharge of pollutants through the MS4 to protect water quality. The Permittee must review, and update as necessary, existing procedures for inspection and maintenance schedules to ensure pollution prevention and good housekeeping practices are conducted for the following activities: grounds/park and open space maintenance; fleet maintenance and vehicle washing operations; building maintenance; snow management and snow disposal site O&M solid waste transfer activities; municipal golf course maintenance; materials storage; heavy equipment storage areas; hazardous materials storage; used oil recycling; and spill control and prevention measures for municipal refueling facilities.	4/3/2026	9/30/2022	x				
	3.5.7	Requirements for Pesticides, Herbicides, and Fertilizer Applications	The Permittees must implement practices to reduce the discharge of pollutants from the MS4 associated with the Permittee's application and storage of pesticides, herbicides, and fertilizer in the Permit Area. Such areas include the individual Permittee's public rights-of-way, and/or landscaped areas.	4/3/2026	9/30/2022	x				

HD	Status				
		Update			
		2023-2024 rmit Year 3	024-2025 rmit Year 4	2 Pe	025 -2026 rmit year 5
ort	SWMP	Annual Report	Annual Report		Annual Report

			Stormwater Management Program Com							
						[1			ACI
Stormwater Management	Permit	Stormwater Management Program	Permit Breakdown	Permit Compliance					T	
Program Areas	Reference	Components	Feinin Dieakuowii	Date	Completed	Ongoing		2021-2022 ermit Year 1		2022-2023 ermit Year 2
							SWMP	Annual Report		
PCM 5 Pollution Prevention & Good Housekeeping for Junicipal Separate	3.5.8	SWPPPs for Permittee Facilities	Each Permittee must develop and implement site-specific SWPPPs to manage stormwater discharges from all Permittee-owned material storage facilities, heavy equipment storage areas, and maintenance yards identified in the inventory. Permittee-owned facilities discharging stormwater associated with industrial activity must obtain separate NPDES permit coverage.	4/3/2026	Adams Updated 7/2021 Cloverdale Updated 11/2020	x	V			
Storm Sewer System Operations	3.5.9	Litter Control	Throughout the Permit term, the Permittees must implement methods to reduce litter in their jurisdiction. The Permittee must work to cooperatively with others to control litter on a regular basis, and after major public events.	4/3/2026		х	V			
	3.5.10	Pollution Prevention/Good Housekeeping Training for Staff	Each Permittee must ensure that all persons responsible for the stormwater infrastructure management and O&M activities as required by this Part are trained and otherwise qualified to conduct such activities. The Permittee must provide training for new staff working on infrastructure management and O&M activities in the first six (6) months of employment. Outside parties must be trained or otherwise qualified. Trainings may be combined with Construction Runoff Control, Permanent Stormwater Control Training, and Illicit Discharge trainings.	4/3/2026		x				
	3.6.2	Inventory of Industrial and Commercial Facilities/Activities	The Permittees must maintain an inventory of industrial and commercial facility/activity within the Permit Area. A narrative description of the inventory, and a summary of the compliance assistance and inspection activities and any follow-up actions, must be included as part of the SWMP Document	4/3/2026	9/30/2022	х	V			
	3.6.3	Inspection of Industrial and Commercial Facilities/Activities	The Permittees must work cooperatively throughout the Permit term to continue prioritizing and inspecting selected industrial and commercial facilities/activities which discharge to receiving waters or to the MS4.	4/3/2026	9/30/2022	х	V			
	4	Temperature Monitoring	To ensure the permitted discharges will comply with temperature criteria for the protection of aquatic life the Permittees must monitor temperature in stormwater discharges from the MS4 to the Boise River to quantify stormwater impacts to this waterbody.	4/3/2026		х	V			
	6.1	Compliance Evaluation	At least once per year, each Permittee must evaluate their compliance with the requirements of this Permit. This self-evaluation includes assessment of progress toward implementing the SWMP control measures in Part 3, and implementation of individual or collective actions to comply with any additional requirements identified pursuant to Part 6.2.	Annually		х	V			
	6.2	Stormwater Monitoring and Evaluation Program	The Permittees must continue to conduct a wet weather monitoring and evaluation program that meets quality assurance objectives (6.2.6), broadly estimates reduction in annual pollutant loads, assesses the effectiveness of permanent stormwater controls/GIS, and identifies and prioritizes locations where additional controls could be implemented to reduce the volume of stormwater discharged and/or reduce pollutants in MS4 discharges to waters of the U.S.	4/3/2026	9/30/2022	x	V			
	6.2.1	Wet Weather Stormwater Outfall Monitoring	The Permittees must continue to conduct wet weather stormwater outfall monitoring. A report summarizing all data collected during the permit term must be submitted with the Outfall Monitoring Report (6.4.3).	4/3/2026		х	V			
	6.2.1	Update Stormwater Outfall Monitoring Plan	Permittees must submit an updated Stormwater Outfall Monitoring Plan as part of the Year 1 Annual Report (6.4.2).	1/30/2023	Monitoring Plan Updated 08/2022		V			
Monitoring and Assessment	6.2.2	Subwatershed Monitoring	The Permittees must continue to conduct monitoring in the Americana Subwatershed to better define wet weather and dry weather flow volumes, sources, and pollutant loads. A report summarizing all data collected during the permit term must be submitted with Subwatershed Monitoring Report (6.4.4)	4/3/2026		х	V			
	6.2.3	Effectiveness Evaluation of Structural, Non-Structural and/or Green Stormwater Infrastructure Controls	The Permittees must continue to conduct effectiveness evaluations of at least two different types of structural, non-structural, and/or green infrastructure stormwater management controls to determine whether the technique is effective at treating or preventing the discharge of sediment, bacteria, and/or nutrients into receiving waters. The results of this effectiveness evaluation, and any recommendations for improved treatment performance, must be submitted to IDEQ with the Monitoring Report.	4/3/2026		x				
-	6.2.4	Representative Sampling	Samples, measurements and/or assessments conducted in compliance with this Permit must be representative of the nature of the monitored discharge or activity.	4/3/2026		х				
-	6.2.5	Additional Monitoring	The results of monitoring in excess to what is specified in the Permittees' Monitoring or Evaluation Plans must be included with the Monitoring Report submitted to IDEQ.	4/3/2026		х				
	6.2.6	Quality Assurance Requirements	The Permittees must maintain a Quality Assurance Project Plan (QAPP) for any monitoring or quantitative assessment activities conducted in compliance with this Permit. Any existing QAPP may be modified to meet the requirements of this Part.	4/3/2026	QAPP Updated 01/2022	x				
	6.2.7	Analytical Methods	Sample collection, preservation, and analysis must be conducted according to sufficiently sensitive methods/test procedures approved under 40 CFR Part 136.	4/3/2026	9/30/2022	х	\checkmark			
	6.3	Recordkeeping	The Permittees must retain records and information documenting implementation of all control measures required by this Permit for a period of at least five years in a format accessible to the EPA and IDEQ. Records should be made available to the public upon written request.	4/3/2026		х				


CHD	Status					
		Update				
		2023-2024 rmit Year 3		024-2025 rmit Year 4		025 -2026 rmit year 5
ort	SWMP	Annual Report	SWMP	Annual Report	SWMP	Annual Report

			Stormwater Management Program Com	pliance and Ir	nplementa	ation Sta	atus - P	hase l								
						ACHD Status										
Stormwater	Permit	Stormwater		Permit	Completed	Update										
Management Program Areas	Reference	Management Program Components	Permit Breakdown	Compliance Date		Ongoing	ng 2021-2022 Permit Year 1				2023-2024 2 Permit Year 3					
							SWMP	Annual Report	SWMP	Annual Report	SWMP	Annual Report	SWMP	Annual Report	SWMP	Annual Report
	6.4.2	Stormwater Management Program Annual Report	The Permitters must submit an Annual Report reflecting the status of the Permittee's implementation of the Permit requirements to IDEQ for the reporting periods specified in Table 6.4.2.	1/30 annually		х	Ø									
	6.4.3	Stormwater Outfall Monitoring Report	The Permittees must submit a final report summarizing all monitoring data collected during the permit term with the permit renewal application.	4/3/2026												
Reporting	6.4.4	Subwatershed Monitoring Report	The Permittees must submit a report summarizing the subwatershed monitoring activities with the permit renewal application.	4/3/2026												
	6.4.5	Nonstructural and/or Green Stormwater Infrastructure Controls Effectiveness	The Permittees must submit a report summarizing the evaluation of selected structural, non-structural or													

Appendix F: Phase I Illicit Discharge Map, Complaints Received and Follow-up

September 2022

Phase I - Complaint Response October 1, 2021 - July 1, 2022

List of Complaints* Received and Summary of Follow-up Action ACHD Phase I Permit Area, Idaho October 1, 2021 - July 1, 2022

1 29/000 Learner Ch 311 FBR 9: 41.0000 Convertal Personan No. Mod Construction for a loss of lo	#	Date	City	Location	Latitude	Longitude	Responsible Party Type	Pollutant Type	Illicit Discharge	Summary of Actions
Image: Construction	1	2/0/2022	Cordon City	211 E 20th Ct	42 628800	116 240015			No	ACHD conducted multiple site visits to determine the source of the spill.
1 209/202 Bissic 300 0.0 hard site 41.60273 41.60273 41.60273 41.60273 41.60273 41.60273 41.60273 41.602744 41.602744 41.602744 41.602744 41.602744 41.602744 41.602744 41.602744 41.602744 41.602744 41.602744 41.602744 41.602744 41.602744	1	2/9/2022	Garden City	511 E 56til 5t	43.028809	-110.240913	Commercial	Petroleum	INU	
III <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
1 1222020 Entry 4464 Besorders Or. 430233 1212204 Periodical Structure State Structure S	2	6/28/2022	Boise	320 N Orchard St	43.60791	-116.243007	Commercial	Other: Grey Water	Yes	
i Lange and a solution of the solutio										
412/2/023Setter5Envirol 3.440.0797115.13138PestionalPetriouYesACID coordinated with a contractor to change for change and dispost.512/6/203Setter7Setter115.2992.0GenerationGenerationSetterNoACID coordinated with a contractor to change for change f	3	12/28/2021	Boise	8456 Brookview Dr.	43.602333	-116.287044	Residential	Sediment	Yes	
Image: Proceeding of the provide provide of the provide				E Front St &						
b Structure Value No environmental constructor to address impacts (or to address (or to to address (or to address (or to address (or to addres (or to	4	12/22/2021	Boise	S Broadway Ave	43.607972	-116.193388	Residential	Petroleum	Yes	ACHD coordinated with an environmental contractor for cleanup and disposal.
Image: System Construct System Con	5	12/4/2021	Boise		43 569216	-116 129923	Construction	Diesel Fuel	No	
6 99/2002 None We have practices for contruction the private control. 7 59/2002 Bosis 5 Brookide Way 45.71397 116.11358 Contruction Selement No All Control and Way (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	_	, .,								
7 59/2022 Bolie S Booknew Wy 413/1230 -116.131378 Construction Sedment Mo Actio constructed with Cy of Bosic construction construct install a construction construst constrenent constenent constructin construction constructin c	6	3/29/2022	Boise		43.675336	-116.268499	Construction	Sediment	No	
1/2 2y/2022 Bose Strongel Met S As 21839 Construction Numerical Numerical Numerical Numerical Numerical Numerical Optimization Numerical										
8 11/12/2021 Bole V Mans 4.51442 115.0002 Commercial Other: Coding Great Yrs atomater education and best practices for food and greats watch. 9 11/15/0022 Bole 1505 4215 4.544428 116.34959 Construction	7	5/9/2022	Boise	S Brookride Way	43.571839	-116.131578	Construction	Sediment	No	
Image: space of the s	0	11/12/2021	Daina	S Capitol Blvd &	42 (14442	116 202402	Commencial	Other: Cooling Crosse	Vaa	City of Boise coordinated with appropriate parties to address cleanup and provided
9 11/15/202 Bole 12/15 (with a to 5k k 2) set of k3 k3048 11/6 3/005 Construction No education and best practices for concrete Jumy, The confractor cleaned up the gall. 1 61/07/202 Bole 12/24 NC/Bens St 48,83484 11/63/202 Construction Sediment Ves AC10 provides for contract Jumy during the confractor cleaned up the gall. 1 61/07/202 Bole 12/24 NC/Bens St 48,63484 11/63/202 Construction Sediment Ves AC10 provides general stormwater education and best practices for contract Jumy during the construction contractor galax 1 61/07/202 Bole 2115 Heights Dr 48,63329 -116.19221 Construction Sediment No AC10 contractor distruction contractor register AC10 provide general stormwater education and best practices for sediment 14 3/22/202 Bole 2.46 N Bh St 43,51633 -116.35289 Residential No AC10 provide general stormwater education and best practices for sediment film to address for sedim	8	11/12/2021	Boise	W Main St	43.014443	-116.202402	commercial	Other: Cooking Grease	res	
International and best practices for contract a function of the provide general atomaster decision and best practices for controct and units of contract of the information of the infor	9	11/15/2021	Boise	12715 W Edna Ct	43.641628	-116.340591	Construction	Concrete Slurry	No	
11 6/10/202 Boile 192.6 K CribbenSt 43.62.087 -1.6.327.69 Construction Sediment Yes ACM2 coordinated with the construction serregonable person to remove the sediment from the starts. A construction the construction contractor register from the starts. 12 11/23/2021 Boile 2115 Heights Dr 43.63305 -116.1992 Construction Sediment No ACM2 coordinated with City of Boile to request the construction contractor register recessary BMS and renove materials from the right-of-way and users the state. 14 3/27/2022 Boile 246 N Bin St. 43.656631 -116.1999 Construction Sediment No ACM2 coordinated with City of Boile to request the construction contractor register recessary BMS and renove materials from the right-of-way and users the state. 14 3/27/2022 Boile 246 N Bin St. 43.66631 -116.15569 Residential Rediator Fluid No ACM2 provide general tornward education and best practices for all devises the gail. 15 127/37/2022 Boile 2350 E Vanco Va GL 43.66681 116.15589 Residential Rediator Fluid No ACM2 provide general tornward education and best practices for alleforestor. 16	-									
11 6/.0/2022 Boise 192.6 N Cribbers 5: 43.632087 116.327.9 Construction Sediment Yes From the street. A construction entrane was discussed, however, paving of the driveway 12 11/32/2021 Boise 2115 Heights Dr 43.63305 -116.19692 Construction Sediment No ACH0 Coordinated with City of Boise to provide general stormwater education and best practices for sall ename and address the spall. 14 3/22/2021 Boise 246 N Bin St. 43.65533 -116.20215 Connercial Other: Cooking OI Yes ACH0 provided general stormwater education and best practices for sall ename and address the spall. 15 6/2/2022 Boise 246 N Bin St. 43.65633 -116.520215 Connercial Readitor Fluid No ACH0 provided general stormwater education and best practices for sall ename and best practices for sall en	10	10/14/2021	Boise	1505 N 21 St	43.634084	-116.21507	Construction	Concrete Washout	Yes	
View View <th< td=""><td>11</td><td>6/10/2022</td><td>Boise</td><td>1926 N Cribbens St</td><td>43 623087</td><td>-116 32749</td><td>Construction</td><td>Sediment</td><td>Ves</td><td></td></th<>	11	6/10/2022	Boise	1926 N Cribbens St	43 623087	-116 32749	Construction	Sediment	Ves	
12 11/23/2021 Boise 2115 Heights Dr 43.63005 -116.1992 Construction Sediment No ACID coordinated with City of Boise to provide general stormwater education and best provides general stormwater education and best provide general stormmater education and best p	11	0/10/2022	DOISE	1920 N CHIDDens St	43.023087	-110.52745	construction	Seument	163	
12 11/23/2021 Bosie 2115 Heights Dr. 43.633030 -116.1969 Construction Sediment No Practices for sediment trackot. 11 5/9/2022 Bosie 2115 Heights Dr. 43.633139 -116.1969 Construction Sediment No ACHO coordinated with City of Bosies to request the construction contractor replace meessary, BMPs and remove materials from the right of way and sweep the street. 14 3/222/202 Bosie 246 N 8h st. 43.616633 -116.1968 Residential Radiator Fluid No ACHO provided general stormwater education and best practices for gall ensure and values for sediment trackot. 15 12/3/2021 Bosie 2462 Starcrest Dr 43.81616 -116.155689 Residential Radiator Fluid No ACHO provided general stormwater education and best practices for general stormwater education and best practi										
115/9/2022Boise2115 Heights Ur4 3.6.1533-116.1599ConstructionSetimentNonecessary BMPs and remove materials from the right of-way and sweep the street.14 $3/22/2022$ Boise246 N Bth St43.616633-116.20213CommercialOther: Cooking OilYesACHO provided general stormwater education and best practices for guidence and outgreach.15 $12/3/2021$ Boise246 2 Starcest Dr43.51616-116.15568ResidentialRadiator FluidNoACHO provided the homeower with general atomwater education and best practices for whice maintenance. No decimp of yafer It his fluid baroberd the liquids.16 $6/29/2022$ Boise2550 E Varco Via Ct43.668932-116.15798CommercialPetroleumYesACHO provided general stormwater education and the commercial landscaping fact theet. The contract of yafer It his fluid aborded the liquids.18 $4/14/2022$ Boise2181 E Hard Rock Dr43.562568-116.215878CommercialSedimentYesACHO provided general stormwater education and best practices for storeguing fact the street.19 $10/8/2021$ Boise4164 N Marcliff Ave43.642690-116.236257CommercialSedimentYesACHO provided general stormwater education and best practices for stockpling in the right of way.21 $10/8/2021$ Boise4164 N Marcliff Ave43.642690-116.236257ResidentialTransmission OilNoACHO provided general stormwater education and best practices for stockpling in the right of way.21 $10/8/2021$ Boi	12	11/23/2021	Boise	2115 Heights Dr	43.633005	-116.19692	Construction	Sediment	No	
113/22/202Boise246 N 8th St43.616633-116.202111Commercial Other: Cooking OIOther: Cooking OIYesA Child provided general stormwater education and best practices for give full conducted to provide and and outer education and best practices for give full conducts of provide and and outer education and best practices for give full conducts of provide and and outer education and best practices for give full conducts of provide and and outer education and best practices for give full conducts of provide and and outer education and best practices for give full conducts of provide and short education and the Commercial Landscaping fact sheet. The contract of update full short way and short education and the Commercial Landscaping fact sheet. The contract of update full conducts of provide general stormwater education and best practices for update full short way and short education and the commercial Landscaping fact sheet. The contract of update full short way and short education and the commercial Landscaping fact sheet. The contract of update full short way and short education and the commercial Landscaping fact sheet. The contract of update full short way and short education and the commercial Landscaping fact sheet. The contract of update full short way and short education and best practices for short way and short education and best practices for short way and short education and best practices for short way and short education and best practices for short way and short education and best practices for short way and short education and best practices for short way and short education and best practices for short way and short education and best practices for short way and short education and best practices for short way and short education and best practices for short way and short education and best practices for short way and short education and best practices for short way and short education and best	13	5/9/2022	Boise	2115 Heights Dr	43 633159	-116 1969	Construction	Sediment	No	ACHD coordinated with City of Boise to request the construction contractor replace
14 3/22/2022 Boise 246 N 8th St. 43.616633 -'116.20219 Commercial Other: Cooking Oil Yes disposal. The business owner contracted with an environmental firm to address the spill. City of Boise was informed of the indetent to provide additional education and bust practices for environmental firm to address the spill. 15 12/3/2021 Boise 2462 Starcrest Dr. 43.581636 -116.155689 Residential Radiator Fluid No ACHD provided general stormwater education and best practices for entractors will be cleaning use general stormwater education and the formed all indexaping fast sheet. The contractor will be cleaning use the remaining used floor dry after it this fully absorbed the liquids. 17 2/28/2022 Boise 2813 E Hard Rock Dr. 43.586454 -116.153796 Construction Sediment No ACHD provided general stormwater education and heter propose to City of Boise. 18 4/14/2022 Boise 4116 N Mardilfe Ave 43.642691 -116.389579 Construction Grout wishout No ACHD provided general stormwater education and best practices for storm and referred follow up response to City of Boise. 20 10/12/201 Boise 4164 N Mardilfe Ave 43.642691 -116.389579 Commercial Transmission Oil No ACHD provided general stormwater education and bes	15	5/ 5/ 2022	DOISC	2115 Heights Di	43.033133	110.1505	construction	Scament	110	
Number Number Number Number City of Boles was informed of the incident to provide additional education and but vach. 15 12/3/2021 Boise 2462 Starcrest Dr 43.581646 -116.15569 Residential Radiator Fluid No ACHD provided the homeowner with general stormwater education and but practices for whick amatenance. No cleanup necessary. 16 6/29/2022 Boise 2550 E Varco Via Ct. 43.68932 -116.157941 Commercial Petroleum Yes ACHD provided general stormwater education and the Commercial Landscaping fact sheet. The contractor of whice denant the Sully aboother		2/22/2022	D		12 616622	116 202110	6	Other Continue Off	No.	
15 12/3/202 Bolse 2462 Starcrest Dr 43.58161 -116.15568 Residential Radiator Fluid No AChD provided the homeowner with general stormwater education and best practices for commercial landscaping fast sheet. The commercial landscaping fast sheet. The four commercial landscaping set fast sheet. The four landscaping set fast sheet. The four landscaping set fast sheet. The four landscaping set fast short watter education and best practices for sediment control. The homeowner conditation of more more metral strom watter education and best practices for sediment control. The homeowner conditation of the street. The four handling concrete slurry. The homeowner conditation dependent of the street. The four task of dependent stormwater education and best practices for shading concrete slurry. The homeowner conditation dependent control. The homeowner conditation dependent stormwater education and best practices for shading concrete slurry. The four handling concrete slury. The four handling concrete slurry. The	14	3/22/2022	Boise	240 N 811 SL	43.010033	-116.202119	commercial	Other: Cooking Oil	res	
15 1/1/3/2021 Boise 2462 Starters UP 43.58156 -116.155999 Residential Residential No webice maintenance. No decaup necessary. 16 6/29/2022 Boise 2550 E Varco Via Ct 43.608932 -116.157941 Commercial Petroleum Yes ACHD provided general stormwater education and the Commercial Landscaping fact sheet. The contractor will be cleaning up the remaining used floor dry after it has fully absorbed the liquids. 18 4/14/2022 Boise 411 N 23rd St 43.625068 -116.153796 Construction Sediment No ACHD provided general stormwater education and best practices for sediment control. The homeowner coordinated with the construction contractor to renow ematerials from the right of way. 19 10/8/2021 Boise 4164 N Marciffe Awe 43.642691 -116.236275 Residential Transmission III No ACHD provided general stormwater education and best practices for thanding concrete slurry. 10 10/8/2021 Boise 4164 N Marciffe Awe 43.642691 -116.236275 Residential Transmission IIII No ACHD provided general stormwater education and best practices for stockpling in the street. The contractor cleaned up the spill. 22 10/18/2021 Boise 56777 E Woodcroos Dr										
16 6/29/2022 80se 250 E VarO Via (V 43.08932 -116.13794 Commercial Perforeum Yes contractor will be cleaning up the remaining used floor dy after it has fully absorbed the liquids. 17 2/28/2022 Boise 2813 E Hard Rock Dr 43.586454 -116.13796 Construction Sediment No ACHD provided general stormwater education and best practices for sediment control. The homeowner coordinated with the construction contractor to remove materials from the right-of-way. 19 10/8/2021 Boise 4164 N Marcliffe Ave 3.642691 -116.38579 Construction Grout washout No ACHD provided general stormwater education and best practices for sediment control. The homeowner coordinated with the construction contractor to remove materials from the right-of-way. 20 10/21/2021 Boise 4164 N Marcliffe Ave 43.642691 -116.236225 Residential Transmission Oil No ACHD provided general stormwater education and best practices for cleanup of automobile fluids. No cleanup necessary. 21 10/18/2021 Boise 43264294 -116.257987 Commercial Sediment No ACHD provided general stormwater education and best practices for stochyling in the street. The contractor releaned up the spill. 22 11	15	12/3/2021	Boise	2462 Starcrest Dr	43.581616	-116.155689	Residential	Radiator Fluid	No	
17 2/28/202 Boise 283 E Hard Rock Dr 43.58645 -116.13296 Construction Sediment No ACHD provided general stormwater education and feremer following the remaining used floor dry after (ft as) Model 18 4/14/2022 Boise 411 N 23rd St 43.62506 -116.218595 Commercial Sediment Yes ACHD provided general stormwater education and best practices for sediment control. The homeowner coordinated with the construction contractor to remove materials from the right-of-way. 20 10/21/2021 Boise 4464 N Marcliffe Ave 43.642691 -116.236272 Residential Transmission Oil No ACHD provided general stormwater education and best practices for cleanup of automobile fluids. 20 10/21/2021 Boise 4402 W Irving St 43.642691 -116.257987 Commercial Sediment No ACHD provided general stormwater education and best practices for stockpiling in the street. The contractor must remove the material from the right-of-way. 21 10/12/2012 Boise 5577 E Woodcross Dr 43.564991 -116.257987 Commercial Sediment No ACHD provided general stormwater education and best practices for stockpiling in the street. The contractor must remove the	16	6/20/2022	Poiro	2EEO E Marco Mia Ct	42 608022	116 157041	Commorgial	Potroloum	Voc	ACHD provided general stormwater education and the Commercial Landscaping fact sheet. The
18 4/14/202 Boise 411 N 23rd St 43.625068 -116.218595 Commercial Sediment Yes ACHD provided general stormwater education and best practices for sediment control. The Inneowner coordinated with the construction contractor to remove materials from the right-of-way. 19 10/8/2021 Boise 4164 N Marcliffe Ave 43.642691 -116.308579 Construction Grout washout No ACHD provided general stormwater education and best practices for handling concrete slury. 20 10/21/2021 Boise 4402 W Irving St 43.61248 -116.236225 Residential Transmission Oil No ACHD provided general stormwater education and best practices for cleanup of automobile fluids. 21 10/18/2021 Garden City 433.00 W Mystic Cove Way 43.64295 -116.257987 Commercial Sediment No ACHD provided general stormwater education and best practices for stockpilling in the street. 23 110/18/2021 Boise 6577 E Woodcross Dr 43.6570547 -116.13363 Residential Transmission Fluid No ACHD provided general stormwater education and best practices for stockpilling in the street. 24 11/28/2022 Boise 6372 E Woodcross Dr 43.6570547 -116.278823 Resi										
18 4/14/202 Boise 411 N 2/rG St 43.62/08 -116.218/95 Commercial Sediment Yes homeowner coordinated with the construction contractor to remove materials from the right-of-way. 19 10/8/2021 Boise 4164 N Marcliffe Ave 43.642691 -116.308579 Construction Grout washout No ACHD provided general stormwater education and best practices for handling concrete slury. 20 10/21/2021 Boise 4402 W Irving St 43.642691 -116.2362/25 Residential Transmission Oil No ACHD provided general stormwater education and best practices for cleanup of automobile fluids. 21 10/18/2021 Garden City 4830 W Mystic Cove Way 43.644295 -116.257987 Commercial Sediment No ACHD provided general stormwater education and best practices for stockpiling in the street. The contractor wast remove the materials from the street. Contractor must remove the materials from the street. No 23 3/24/2022 Boise 6325 W Lucky Ln 46.662996 -116.257989 Construction Sediment No ACHD coordinated with the contractor to remove the material from the right-of-way. 24 1/28/2022 Boise Garden City 6730 N Glenwood St 43	17	2/28/2022	Boise	2813 E Hard Rock Dr	43.586454	-116.153796	Construction	Sediment	No	
19 10/8/2021 Boise 4164 N Marcliffe Ave 43.642691 -116.308579 Construction Grout washout No ACHD provided general stormwater education and best practices for handling concrete slury. The contractor cleaned up the spill. 20 10/21/2021 Boise 4402 W Irving St 43.615248 -116.235225 Residential Transmission Oil No ACHD provided general stormwater education and best practices for cleanup of automobile fluids. No cleanup necessary. 21 10/18/2021 Garden City 4830 W Mystic Cove Way 43.64295 -116.257987 Commercial Sediment No ACHD provided general stormwater education and best practices for stockpilling in the street. The contractor must remove the materials from the street. 22 11/2/2021 Boise 6577 E Woodcross Dr 43.570547 -116.13363 Residential Transmission Fluid No ACHD provided general stormwater education and best practices for stockpilling in the street. 23 3/2/2022 Boise 5677 E Woodcross Dr 43.61246 -116.27699 Construction Sediment No ACHD provided general stormwater education and best practices for stockpilling in the street. 24 1/28/2022 Boise 705 W Fulton St 43.61246 -116.20654 </td <td>18</td> <td>4/14/2022</td> <td>Boise</td> <td>411 N 23rd St</td> <td>43.625068</td> <td>-116.218595</td> <td>Commercial</td> <td>Sediment</td> <td>Yes</td> <td></td>	18	4/14/2022	Boise	411 N 23rd St	43.625068	-116.218595	Commercial	Sediment	Yes	
19 10/8/2021 Boise 4164 N Marchiffe Ave 43.642691 -116.3085/9 Construction Grout washout No The contractor cleaned up the spill. 20 10/21/2021 Boise 4402 W Irving St 43.615248 -116.236225 Residential Transmission Oil No ACHD provided general stormwater education and best practices for cleanup of automobile fluids. No cleanup necessary. 21 10/18/2021 Garden City 433.04 Wystic Cove Way 43.64295 -116.257987 Commercial Sediment No ACHD provided general stormwater education and best practices for cleanup necessary. 22 11/26/2021 Boise 5677 E Woodcross Dr 43.570547 -116.113363 Residential Transmission Fluid No ACHD coroinated with the contract or ensomes. No cleanup necessary. 24 1/28/2022 Boise 6325 W Ludxy Ln 46.662996 -116.278923 Residential Petroleum No ACHD coordinated with the contractor or ensome the materials from the right-of-way. 25 6/2/2022 Boise 705 W Fulton St 43.61246 -116.206554 Commercial Other: Leachate Yes City of Boise did not want to pursue cleanup and disposal of sediment and track-out mitigation.										
20 10/21/2021 Boise 4402 W Irving St 43.615248 -116.236225 Residential Transmission Oil No ACHD provided general stormwater education and best practices for cleanup of automobile fluids. No cleanup necessary. 21 10/18/2021 Garden City 4830 W Mystic Cove Way 43.64293 -116.257987 Commercial Sediment No ACHD provided general stormwater education and best practices for stockpiling in the street. The contractor must remove the materials from the street. 22 11/26/2021 Boise 5677 E Woodcross Dr 43.570547 -116.113303 Residential Transmission Fluid No ACHD attempted to contact the resident but no response. No cleanup necessary. 24 11/26/2021 Boise 6325 W Lucky Ln 46.662996 -116.278923 Residential Petroleum No ACHD coordinated with an environmental contract for cleanup and disposal. 24 11/28/2022 Garden City 730 N Glenwood St 43.645991 -116.278923 Residential Other: Leachate Yes ACHD coordinated with an environmental contract for cleanup and disposal. 25 6/2/2022 Boise 705 W Fulton St 43.645832 -116.123654 Construction Sediment No <t< td=""><td>19</td><td>10/8/2021</td><td>Boise</td><td>4164 N Marcliffe Ave</td><td>43.642691</td><td>-116.308579</td><td>Construction</td><td>Grout washout</td><td>No</td><td></td></t<>	19	10/8/2021	Boise	4164 N Marcliffe Ave	43.642691	-116.308579	Construction	Grout washout	No	
20 10/21/2021 Boise 4402 W Irving St 43.615248 -116.239225 Residential Irransmission Oil No No cleanup necessary. 21 10/18/2021 Garden City 4830 W Mystic Cove Way 43.644295 -116.257987 Commercial Sediment No ACHD provided general stormwater education and best practices for stockpilling in the street. 22 11/26/2021 Boise 5677 E Woodcross Dr 43.570547 -116.113363 Residential Transmission Fluid No ACHD coordinated with the contract for must remove the material from the right-of-way. 23 3/24/2022 Boise 6325 W Lucky Lin 43.6642991 -116.278923 Residential Petroleum No ACHD coordinated with the contract for network with the suspected party to get a lid for their dumpster. 24 1/28/2022 Garden City 6730 N Glenwood St 43.61246 -116.206554 Commercial Other: Leachate Yes City of Boise idid not want to pursue cleanup and disposal. 25 6/2/2022 Boise 725 W High & View Dr 43.645832 -116.195954 Construction Sediment No ACHD coordinated with a disposal. City of Boise idid not want to pursue cleanup and disposal of sediment										
11 10/18/2021 Garden City 4830 W Mystic Cove Way 43.644295 -116.25/987 Commercial Sediment No contractor must remove the materials from the street. 22 11/26/2021 Boise 5677 E Woodcross Dr 43.570547 -116.113363 Residential Transmission Fluid No ACHD attempted to contact the resident but no response. No cleanup necessary. 23 3/24/2022 Boise 6325 W Lucky Ln 46.662996 -116.278923 Residential Petroleum No ACHD coordinated with the contractor to remove the materials from the sign-of-way. 24 1/28/2022 Garden City 6730 N Glenwood St 43.664991 -116.278823 Residential Petroleum No ACHD coordinated with the contractor or enove the materials from the sign-of-way. 25 6/2/2022 Boise 705 W Fulton St 43.611246 -116.206554 Commercial Other: Leachate Yes City of Boise did not want to pursue cleanup and tisposal. 26 3/1/2022 Boise 725 W High & View Dr 43.645832 -116.112315 Commercial Other: Leachate No ACHD provided general stormwater education and best practices for cleanup and disposal of sediment and track-out mitigation. <td>20</td> <td>10/21/2021</td> <td>Boise</td> <td>4402 W Irving St</td> <td>43.615248</td> <td>-116.236225</td> <td>Residential</td> <td>Transmission Oil</td> <td>No</td> <td></td>	20	10/21/2021	Boise	4402 W Irving St	43.615248	-116.236225	Residential	Transmission Oil	No	
22 11/26/2021 Boise 5677 E Woodcross Dr 43.57054 -116.113315 Residential Transmission Fluid No ACHD attempted to contact must remove the materials from the street. 23 3/24/2022 Boise 6325 W Lucky Ln 43.662996 -116.27909 Construction Sediment No ACHD attempted to contact the resident but no response. No cleanup necessary. 24 1/28/2022 Garden City 6730 N Glenwood St 43.61246 -116.278823 Residential Petroleum No ACHD coordinated with the contractor to remove the material from the signest. 25 6/2/2022 Boise 705 W Fulton St 43.611246 -116.206554 Commercial Other: Leachate Yes City of Boise did not want to pursue cleanup with the suspected party to get all for their dumpster. 26 3/1/2022 Boise 725 W High & View Dr 43.645832 -116.112315 Commercial Other: Leachate No ACHD cordinated with Suspected party to get all disposal of sediment and track-out mitigation. 27 6/10/2022 Boise E Barber Dr & E Hootowi Dr 43.61245 -116.12315 Commercial Other: Leachate No ACHD coordinated with Suspected party to get allidisposal of sediment and	21	10/18/2021	Garden City	4830 W Mystic Cove Way	43 644295	-116 257987	Commercial	Sediment	No	ACHD provided general stormwater education and best practices for stockpiling in the street. The
23 3/24/2022 Boise 6325 W Lucky Ln 46.662996 -116.27909 Construction Sediment No ACHD coordinated with the contractor to remove the material from the right-of-way. 24 1/28/2022 Garden City 6730 N Glenwood St 43.664991 -116.278823 Residential Petroleum No ACHD coordinated with the contractor to remove the material from the right-of-way. 25 6/2/2022 Boise 705 W Fulton St 43.61246 -116.206554 Commercial Other: Leachate Yes City of Boise to work with the suspected party to get a lid for their dumpster. 26 3/1/2022 Boise 725 W Fulton St 43.654582 -116.195954 Construction Sediment No ACHD provided general stormwater education and best practices for cleanup and disposal of sediment and track-out mitigation. 27 6/10/2022 Boise E Barber Dr & E Hootowi Dr 43.612465 -116.112315 Commercial Other: Leachate No ACHD coordinated with Sucret or eanup the spill. 28 6/2/2022 Boise E Barber Dr & E Hootowi Dr 43.612485 -116.123175 Commercial Sediment No ACHD coordinated with Sucret or eanup the spill. 28 <td></td>										
24 1/28/2022 Garden City 6730 N Glenwood St 43.664991 -116.278823 Residential Petroleum No ACHD coordinated with an environmental contractor for cleanup and disposal. 25 6/2/2022 Boise 705 W Fulton St 43.611246 -116.206554 Commercial Other: Leachate Yes City of Boise did not want to pursue cleanup with the restaurant owner. ACHD Maintenance conducted cleanup and disposal. 26 3/1/2022 Boise 725 W High & View Dr 43.645832 -116.195954 Construction Sediment No ACHD provide general stormwater education and best practices for cleanup and disposal of sediment and track-out mitigation. 27 6/10/2022 Boise E Barber Dr & EBarber Dr & EBarber Dr & 43.612455 -116.12315 Commercial Other: Leachate No ACHD provide general stormwater education and best practices for cleanup and disposal of sediment and track-out mitigation. 28 6/2/2022 Boise Freemont St & 43.612485 -116.234765 Commercial Sediment No ACHD coordinated with Suez Company to cleanup the sediment from the right-of-way. 28 6/2/2022 Boise Implie Rd 43.612485 -116.33264 Residential Sediment No ACHD coordinat	_									
25 6/2/2022 Boise 705 W Fulton St 43.611246 -116.206554 Commercial Other: Leachate Yes ACHD coordinated with City of Boise to work with the suspected party to get a lid for their dumpster. 26 3/1/2022 Boise 725 W High & View Dr 43.645832 -116.195954 Construction Sediment No ACHD provided general stormwater education and best practices for cleanup and disposal of sediment and track-out mitigation. 27 6/10/2022 Boise E Barber Dr & EBarber Dr & 43.612455 -116.112315 Commercial Other: Leachate No ACHD provided general stormwater education and best practices for cleanup and disposal of sediment and track-out mitigation. 28 6/2/2022 Boise Freemont St & 43.612485 -116.234765 Commercial Sediment No ACHD coordinated with Susp Company to cleanup the sediment from the right-of-way. 29 10/13/2021 Boise Jonglin Rd 43.663484 -116.33264 Besidential Sediment No City of Boise responded. The homeowner must initiate site stabilization and cleanup sediment in				,						
25 6/2/2022 Boise 705 W Fulton St 43.61246 -116.206554 Commercial Other: Leachate Yes City of Boise did not want to pursue cleanup with the restaurant owner. ACHD Maintenance conducted cleanup and disposal. 26 3/1/2022 Boise 725 W High & View Dr 43.645832 -116.195954 Construction Sediment No ACHD provided general stormwater education and best practices for cleanup and disposal of sediment and track-out mitigation. 27 6/10/2022 Boise E Barber Dr & E Barber Dr & 43.577545 -116.112315 Commercial Other: Leachate No ACHD contacted Republic Services to cleanup the spill. 28 6/2/2022 Boise Freemont St & 43.612485 -116.234765 Commercial Sediment No ACHD cordinated with Suez Company to cleanup the sediment from the right-of-way. 29 10/13/2021 Boise Juin Add Add Add Add Add Add Add Add Add Ad	24	1/28/2022	Garden City	6730 N Glenwood St	43.664991	-110.278823	Residential	Petroleum	INO	
Image: Notice of the split	25	6/2/2022	Boise	705 W Fulton St	43.611246	-116.206554	Commercial	Other: Leachate	Yes	
26 3/1/2022 Boise 7/25 W High & View Dr 43.643832 -116.195954 Construction Sediment No sediment and track-out mitigation. 27 6/10/2022 Boise E Barber Dr & E Hootowl Dr 43.577545 -116.112315 Commercial Other: Leachate No ACHD contacted Republic Services to cleanup the spill. 28 6/2/2022 Boise Freemont St & N Wilson St 43.612485 -116.234765 Commercial Sediment No ACHD coordinated with Suez Company to cleanup the sediment from the right-of-way. 29 10/13/2021 Boise Joplin Rd 43.663484 -116.330264 Residential Sediment No City of Boise responded. The homeowner must initiate site stabilization and cleanup sediment in										
Arrow Arrow Arrow Arrow Arrow Sediment and track-out mitigation. 27 6/10/2022 Boise E Barber Dr & E Hootowl Dr 43.577545 -116.112315 Commercial Other: Leachate No ACHD contacted Republic Services to cleanup the spill. 28 6/2/2022 Boise Freemont St & N Wilson St 43.612485 -116.234765 Commercial Sediment No ACHD coordinated with Suez Company to cleanup the sediment from the right-of-way. 29 10/13/2021 Boise Joplin Rd 43.663484 -116.330264 Residential Sediment No City of Boise responded. The homeowner must initiate site stabilization and cleanup sediment in	26	3/1/2022	Boise	725 W High & View Dr	43 645832	-116 195954	Construction	Sediment	No	ACHD provided general stormwater education and best practices for cleanup and disposal of
27 6/10/2022 Boise E Hootowl Dr 43.57/545 -116.112315 Commercial Other: Leachate No ACHD contacted Republic Services to cleanup the spill. 28 6/2/2022 Boise Freemont St & N Wilson St 43.612485 -116.234765 Commercial Sediment No ACHD contacted Republic Services to cleanup the spill. 29 10/13/2021 Boise Joplin Rd 43.663484 -116.330264 Residential Sediment No City of Boise responded. The homeowner must initiate site stabilization and cleanup sediment in	20	5/1/2022	DOISE	5	-3.0+303Z	110.1555554	construction	Jeument	NU	sediment and track-out mitigation.
City of Boise Inclusion St 43.663484 -116.330264 Residential Sediment No ACHD coordinated with Suez Company to cleanup the sediment from the right-of-way. 29 10/13/2021 Boise Jonpin Rd 43.663484 -116.330264 Residential Sediment No City of Boise responded. The homeowner must initiate site stabilization and cleanup sediment in	27	6/10/2022	Boise		43.577545	-116.112315	Commercial	Other: Leachate	No	ACHD contacted Republic Services to cleanup the spill.
28 6/2/2022 Boise N Wilson St 43.612485 -116.234765 Commercial Sediment No ACHD coordinated with Suez Company to cleanup the sediment from the right-of-way. 29 10/13/2021 Boise Joplin Rd 43.663484 -116.330264 Residential Sediment No City of Boise responded. The homeowner must initiate site stabilization and cleanup sediment in										
29 10/13/2021 Boise Loplin Rd 43.663484 -116.330264 Residential Sediment No City of Boise responded. The homeowner must initiate site stabilization and cleanup sediment in	28	6/2/2022	Boise		43.612485	-116.234765	Commercial	Sediment	No	ACHD coordinated with Suez Company to cleanup the sediment from the right-of-way.
29 10/13/20/1 Boise L Joplin Rd 43.663484 -116.330/64 Residential Sediment No		10/10/007								City of Boise responded. The homeowner must initiate site stabilization and cleanup sediment in
	29	10/13/2021	Boise	Joplin Rd	43.663484	-116.330264	Residential	Sediment	No	

#	Date	City	Location	Latitude	Longitude	Responsible Party Type	Pollutant Type	Illicit Discharge	Summary of Actions
30	2/28/2022	Garden City	N Adams St & E 39th St	43.630731	-116.24187	Residential	Petroleum	No	ACHD investigated but discovered no issue. No additional follow-up actions needed.
31	3/25/2022	Boise	S 17th St & Shoreline Rd	43.618281	-116.218833	Residential	Other: Litter/Debris	No	ACHD observed an odor and larger debris/trash in the right-of-way. The debris/trash was removed by ACHD Maintenance.
32	5/26/2022	Boise	S Colorado Ave & Williams St	43.59074	-116.189772	Residential	Petroleum	No	ACHD contained the spill and hired an environmental contractor for cleanup and disposal.
33	4/17/2022	Garden City	W Chinden Blvd & N Maple Grove Rd	43.656041	-116.299019	Government	Sewage	Yes	ACHD provided City of Boise staff general stormwater education and best practices for cleanup and disposal of sewage. Impacted Phase I NPDES permittees were notified of the incident for additional education and ensure cleanup was properly addressed. The IDEQ and Central District Health were notified.
34	4/11/2022	Boise	W Hill Rd & N Point Ave	43.666435	-116.251204	Commercial	Other: Herbicide	Yes	ACHD provided the Boise Fire Department with general stormwater education and best practices for spill cleanup and disposal. An environmental contractor was hired to clean and dispose of waste materials from the storm drain system. ACHD reported the spill to IDEQ and State Comm.

* A complaint is any report of a potential pollutant discharge in the right of way that requires an ACHD staff member to respond. Reports can originate from ACHD staff, members of the public, or outside agencies/departments.

Appendix G: Dry Weather Outfall Screening Plan (version 1.2)

Dry Weather Outfall Screening Plan

Prepared for Ada County Highway District Boise, Idaho November 20, 2017 Version 1.2

950 West Bannock Street, Suite 250 Boise, Idaho 83702

Table of Contents

List	of Fig	gures		iii
List	of Ta	bles		iii
List	of Ab	breviatio	ns	iv
Exe	cutive	Summa	ry	1
			·	
	1.1	Basis fo	or Dry Weather Outfall Screening Plan	1-1
	1.2	Plan Ob	jectives	1-1
	1.3	Task Or	ganization	1-3
2.	Scree	ening Pro	cess Design	2-1
	2.1	Outfall	Screening Locations	2-1
	2.2	Outfall	Prioritization and Screening Schedule	2-1
3.	Monit	toring Eq	uipment	3-1
	3.1	Stormw	ater Test Kit	3-1
	3.2	Flow Pr	obe	3-1
	3.3		eld Field Parameter Instruments	
4.	Scree	ening and	d Sampling Procedures	4-1
	4.1	Weathe	r Information and Field Preparation	4-1
	4.2	Outfall	nvestigation	4-1
	4.3	Dischar	ge Monitoring	
		4.3.1	Discharge Parameter Analysis	
		4.3.2	Discharge Sample Collection	
		4.3.3	Discharge Flow Measurement	
	4.4		urce Tracing	
		4.4.1	Flow Source Tracing	
		4.4.2	Discharge Thresholds	
	4.5		ion and Elimination	
5.	-	•	ance/Quality Control	
	5.1	-	pling Schedule	
	5.2		ality Objectives (DQO)	
6.		_	ment and Reporting	
	6.1		quisition Requirements (Non-Direct Measurements)	
	6.2		anagement System	
	6.3		ganization and Reporting	
		6.3.1	Investigation Results Organization	
		6.3.2	Annual Reporting	
		6.3.3	Evaluation and Assessment	6-2

Brown *** Caldwell

7. References	REF-1
Figures	FIG-1
Tables	TAB-1
Appendix A: Five-Year Outfall Screening Schedule	A
Appendix B: Standard Operating Procedures for Dry Weather Outfall Screening	В
Appendix C: Field Data Sheets and Chain of Custody Forms	C
Appendix D: Source Tracing Flow Chart	D
Appendix E: Thresholds for Documented Flowing Outfalls	E

List of Figures

Figure 1-1. Dry weather outfall screening organization chart	1-3
Figure 2-2 Outfall screening schedule organization	2-2
Phase I ACHD/UK Outfall Inventory	FIG-2

List of Tables

Table 1-1. QAPP Element Document Reference	1-2
Table 4-1. Analytical Methods for Dry Weather Discharge Constituents	4-2
Table 5-1. Field QC Sample Collection Schedule	5-1
Table 5-2. Data Quality Indicator Targets	5-2
Table 2-1 Receiving Water Bodies and Number of Outfalls	TAB-2
Table 2-2 Clean Water Act §303 (d) listed Water Bodies and Pollutants of Concern	TAB-3

List of Abbreviations

ACHD	Ada County Highway District
BOD	Biological Oxygen Demand – 5 day
CFR	Code of Federal Regulations
COC	Chain of Custody
DO	Dissolved Oxygen
DQI	Data Quality Indicator
DQO	Data Quality Objective
EPA	Environmental Protection Agency
MDL	Method Detection Limit
mL	Milliliter
MS4	Municipal Separate Storm Sewer System
NPDES	National Pollutant Discharge Elimination System
NWS	National Weather Service
PMEP	Project Monitoring and Evaluation Plan
PRDL	Project Required Detection Limit
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Program Plan
RPD	Relative Percent Difference
SOP	Standard Operating Procedure
WQL	Boise City Water Quality Laboratory

Executive Summary

The National Pollutant Discharge Elimination System (NPDES) Phase I Permit No. IDS-027561 (Permit) was issued effective February 1, 2013, to Ada County Highway District (ACHD), Boise State University, City of Boise, City of Garden City, Drainage District #3, and the Idaho Transportation Department District #3, referred to as the "Permittees." Under this permit, the Permittees are required to implement and update as necessary, a dry weather analytical and field screening monitoring program consistent with the monitoring and evaluation program objectives as described in Permit Part IV.A.2 and the requirements outlined in Permit Part II.B.5.d "Dry Weather Outfall Screening Program". This Dry Weather Outfall Screening Plan has been developed to fulfill these permit requirements for outfalls owned by ACHD and outfalls of unknown ownership. The outfall inventory statistics and information documented in this plan are limited to outfalls under ACHD and unknown Ownership and do not account for all permittee owned outfalls.

This plan follows the general guidance of the Project Monitoring and Evaluation Plan (PMEP) (ACHD, 2013) and the Quality Assurance Program Plan for NPDES Storm Water Permit Monitoring (QAPP) (ACHD, 2014). The previous NPDES phase I permit, issued in 2000, focused on outfall identification, inventory development, and information verification. The current permit expands on that information to focus on analytical and field screening to detect and eliminate illicit discharges. This plan describes the overall approach to dry weather outfall screening and provides comprehensive guidance for outfall investigation efforts, including prioritization of outfalls, data collection efforts, recordkeeping, and reporting activities.

Certain Quality Assurance/Quality Control (QA/QC) procedures that have been identified using United States Environmental Protection Agency (EPA) guidance for QAPPs are also included in this plan. The QA/QC procedures are designed to ensure data collected meet specific data quality objectives developed specifically for Permit-required monitoring activities. The plan documents QC sampling procedures, data acceptance criteria, and data management details specific to the Dry Weather Outfall Screening Plan.

Section 1 Introduction

1.1 Basis for Dry Weather Outfall Screening Plan

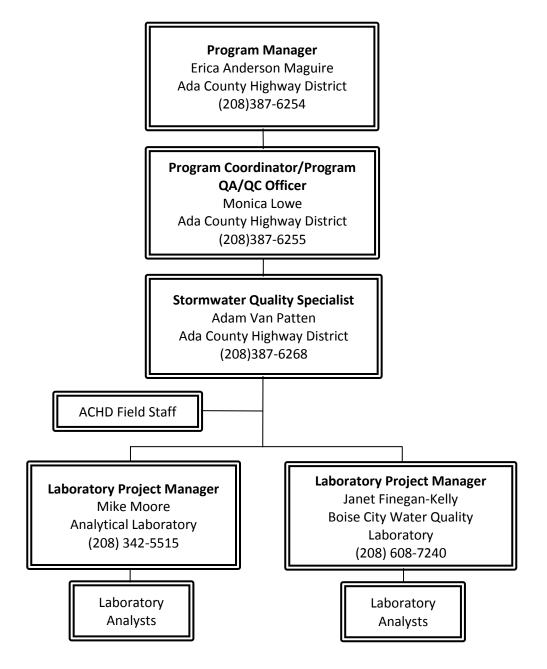
The Permit requires that the Permittees implement a dry weather analytical and field screening monitoring program that emphasizes frequent, geographically widespread monitoring to detect illicit discharges and illegal connections and to reinvestigate potentially problematic outfalls. The Dry Weather Outfall Screening Plan is designed to be consistent with the monitoring and evaluation program objectives described in the PMEP. Permit requirements specific to the dry weather outfall screening program include the following:

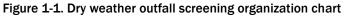
- Outfall Identification (Part II.B.5.d.i). Update the stormwater outfall identification and screening plan including reconnaissance activities, information used to prioritize outfalls for screening, ACHD's approach to conducting analyses on identified flows, and the trigger thresholds for follow-up action.
- Monitoring Illicit Discharges (Part II.B.5.d.ii). Conduct monitoring at least once annually following the criteria outlined in the Permit.
- Maintain Records of Dry Weather Screening (Part II.B.5.d.iii). Keep detailed records of dry weather outfall screening activities and results and document follow-up activities.

1.2 Plan Objectives

The Dry Weather Outfall Screening Plan addresses the minimum permit requirements for dry weather outfall screening and outfall identification as described in Permit Part II.B.5.d. In addition the plan has been developed considering the level of service goals and objectives identified in the PMEP. This plan provides guidance for field reconnaissance activities, monitoring, and recordkeeping efforts performed by ACHD. To standardize ACHD's approach to addressing quality assurance recommendations by the EPA for all monitoring programs under the Permit, each quality assurance element is addressed as either a program element or a screening plan element.

Dry Weather Outfall Screening Plan elements are described in full in this document, while elements applicable to all monitoring programs under the Permit are addressed in the QAPP. Plan organization, responsibilities, and objectives are derived from the PMEP, which serves as guidance to standardize stormwater management under this Permit as a whole, including the approach to quality assurance and screening plan implementation. Monitoring program elements consist of the standardized monitoring components that all individual monitoring or screening plans developed under the Permit reference. A list of program and screening plan elements is included in Table 1-1.




Table 1-1. QAPP Element Document Reference						
EPA-Recommended QAPP Elements	Monitoring Program Element (Addressed in the QAPP)	Dry Weather Outfall Screening Plan Element; Section				
Group A: Project Management						
A1 – Title and Approval Sheet	X					
A2 - Table of Contents	X					
A3 – Distribution List	X					
A4a - Project Organization	X					
A4b – Task Organization		X; 1.3				
A5 - Problem Definition/Background	X					
A6 - Project/Task Description		X; 1.2				
A7a - Quality Objectives and Criteria for Measurement Data	Х					
A7b – Method-Dependent Criteria for Measurement Data		X; 5.2				
A8 – Special Training Needs/Certification	Х					
A9 – Documents and Records	Х					
Group B: Data Generation	and Acquisition					
B1 - Sampling Process and Design		X; 2				
B2 – Sampling Methods		X; 3, 4.3				
B3 – Sample Handling and Custody		X; 4.3.2				
B4 – Analytical Methods		X; 4.3.1				
B5a – Quality Control	x					
B5b - QA/QC Sampling Schedule		X; 5.1				
B6 - Instrument/Equipment Testing, Inspection, and Maintenance		X; 3				
B7 – Instrument/Equipment Calibration and Frequency		X; 3				
B8 – Inspection/Acceptance of Supplies and Consumables	Х					
B9 - Non-direct Measurements	Х					
B10 – Data Management	X					
Group C: Assessment a	and Oversight					
C1 – Assessments and Response Actions	X					
C2 - Reports to Management	X					
Group D: Data Validation	n and Usability					
D1 - Data Review, Verification, and Validation	X					
D2 - Verification and Validation Methods	Х					
D3 - Reconciliation and User Requirements	X					

Brown NO Caldwell

1.3 Task Organization

Key roles and job functions are described in the QAPP. The dry weather outfall screening program organization chart is presented in Figure 1-1.

Section 2 Screening Process Design

The screening process design consists of the planned and consistent approach to screening the outfalls of the Municipal Separate Storm Sewer System (MS4) to detect illicit discharges and illegal connections. The screening process has been developed to enable ACHD to inspect all outfalls owned by ACHD over the course of a five year period. The screening process includes provisions for prioritizing and sorting the outfalls to be screened such that investigations conducted each year are distributed across the Permit area and that all major land uses are represented.

Data collection includes qualitative characteristics of the outfalls, flow measurements, water quality data, and information useful in tracing flow to the source and eliminating illicit discharges and illegal connections. Section 2.1 provides a description of the information currently available for outfalls owned by ACHD. Section 2.2 describes ACHD's approach to prioritizing outfall screening in each year and across the five year period during which all outfalls owned by ACHD will be screened. This allows ACHD to meet the permit requirement of screening 20 percent or more of the total outfalls each year. Project details addressing data collection efforts including monitoring equipment used, outfall assessment procedures, and flow monitoring methods are included in sections 3 and 4.

2.1 Outfall Screening Locations

Ada County Highway District owns a total of 742 documented outfalls across the NPDES Phase I Permit area. Outfalls drain all major land uses within the Permit area and have the potential to convey illicit discharges to receiving waters. Figure 2-1 shows all Permittee-owned outfalls within the Permit area (Figures Section).

ACHD outfalls discharge to a total of 68 different Waters of the U.S. within the Permit area. Table 2-1 (Tables Section) includes a list of receiving waters in the Permit area and the number of outfalls discharging to each. Specific reaches of a number of the receiving waters are listed as impaired waters on the Idaho Department of Environmental Quality 303d list. These waters and the pollutants of concern associated with impairment are included in Table 2-2 (Tables Section).

2.2 Outfall Prioritization and Screening Schedule

Planned prioritization of outfalls selected for screening helps to ensure that Permit requirements are met in the outfalls screened each year. The prioritization levels described below have been established for use in selecting outfalls for screening each year. The requirements described in Permit Part II.B.5.d.ii for monitoring illicit discharges have been compared with the information summarized in Section 2.1 to prioritize the targeted outfalls and develop a schedule to screen 20 percent of the outfalls annually.

Figure 2-2 represents a summary of the approach ACHD has developed to conduct screening in accordance with the requirements of Permit part II.B.5.d.ii. The outfall screening schedule includes 20 percent of the total ACHD-owned outfalls each year, of which, at least 20 percent the outfalls discharge to impaired waters. At least one third of the outfalls will be screened during the June 1 to September 30 time frame of each year.

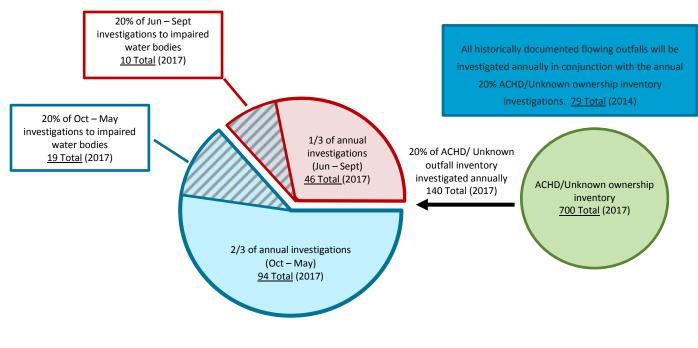


Figure 2-2 Outfall screening schedule organization

Prioritization

Outfalls given the highest priority include documented flowing outfalls and outfalls to impaired water bodies. Each year priority will be given to outfalls that are the subject of public complaints or that the ACHD personnel believe may have an increased illicit discharge potential whether or not they were originally scheduled for that given year. Examples of increased risk include identification of cross connections, problems with aging infrastructure, or activities and conditions in the drainage area likely to result in an illicit discharge. In these instances the outfalls originally scheduled for investigation will be rescheduled for a later date to maintain the goal of 20 percent of total outfalls screened each year.

Previously Documented Flows

Flowing outfalls discharging irrigation or groundwater seepage flows that have already been identified will be sampled annually to assess compliance with Permit Part I.D. ACHD has documented 79 outfalls discharging irrigation or groundwater flows within the Permit area. If analytical and field investigation results indicate that the flow is in compliance with Permit Part I.D, the outfall will be removed from the annual historical flow sampling list.

Investigations of previously documented flows are to be completed annually and are not limited to specific times of the year. However, ACHD has observed seasonal variation in these flows typically attributable to irrigation and high groundwater. The intent of ACHD's sampling approach is to address such flows by first assessing flow origin and date of observance.

Substantial flows that are believed to be continuous will be reinvestigated up to two times during the first year to collect additional flow measurements and to document the approximate duration of the year that the flows are present. Investigations will be scheduled in an attempt to determine the duration of the year the flows are present. Outfalls with lower flows or intermittent flows may be reinvestigated as time allows at a lower priority level. Previously documented flowing outfalls will only be counted as part of the 20 percent of total outfalls screened annually if there is an overlap between the flowing outfalls and the 20 percent selected for that year.

2-2

Each year, following preparation of the annual report, the schedule for investigation of flowing outfalls will be revised based on the previous year's results. This approach is described in greater detail in Section 6.3.2 Annual Reporting.

Screening Schedule

Appendix A is the screening schedule for all documented outfalls, which includes all ACHD-owned and unknown outfalls within the phase I Permit area. The screening schedule is based on geographic distribution and the prioritization methods described above. This schedule has been developed to ensure that Permit requirements for outfall screening are met for each year. The schedule will be updated at least once each year to reflect any changes in total number of outfalls and outfalls rescheduled due to prioritization needs during each year.

Section 3 Monitoring Equipment

This section provides an overview of the types of monitoring equipment planned for use in the dry weather outfall screening program. Standard Operating Procedures (SOPs) and procedure guidance documents are included in Appendix B and provide greater detail describing how equipment is used to accomplish the goals of the Dry Weather Outfall Screening Program. Manufacturers' recommendations for proper use and maintenance are either included in the SOPs or the equipment manuals referenced in the SOPs.

3.1 Stormwater Test Kit

ACHD utilizes the Hach Stormwater Test Kit for in-field chemical analysis of total chlorine, total copper, and total phenols. Chemical analyses are conducted according to the manufacturer's instructions (Appendix B) using colorimetric comparison of samples treated with reagents to estimate concentration of the constituents of concern. The test kit includes dissolvable, premeasured reagent packets specific to each chemical analysis, viewing tubes, and a color comparator, which holds the viewing tubes in line with a rotating color wheel. The kit also includes a long path viewing adaptor to accommodate the full range of targeted chemical analyses with an incremental accuracy of 0.1 mg/L.

Calibration and Maintenance

A check of reagent accuracy can be completed using a reagent specific standard solution. Accuracy will be tested for each packet of reagents used following the test procedures outlined in Appendix B. ACHD is responsible for calibration and maintenance and will keep a log in the monitoring shed for reference.

Color viewing tubes and containers and utensils used for mixing samples will be rinsed with deionized water immediately after sample results are recorded for each analysis. The stormwater test kit will be kept dry and reagent packets will be kept in water-resistant containers between uses.

3.2 Flow Probe

ACHD utilizes a Global Water FP111 Flow Probe for collecting velocity measurements used in estimating discharge volume of flowing outfalls. The velocity meter uses a propeller attached to a telescoping handle. The propeller is protected by a plastic shield that extends around the outer diameter of the propeller to avoid bumping the propeller against the bottom of the pipe/channel or other obstacles.

A small computer with an LCD screen is attached to the handle opposite the propeller. The computer displays velocity as an instantaneous measurement as well as the minimum, maximum, and average velocity readings. The flow probe computer is zeroed out immediately prior to collect new readings.

Discharge flow measurement using the Global Water Flow Probe is discussed in detail in Section 4.3.3. If another flow probe is substituted for the Global Water Flow Probe, the substitute will be verified to have the same or higher degree of sensitivity and accuracy.

Calibration and Maintenance

Per the manufacturer's recommendations the flow probe will be allowed to dry between uses and washed with soap as needed to maintain proper operation. The flow probe does not require routine maintenance or calibration other than being kept clean.

3.3 Handheld Field Parameter Instruments

During discharge sample collection, specific parameters will be measured directly in the field using a variety of handheld instruments to collect readings including: pH, conductivity, dissolved oxygen content, and temperature. Measurements of field parameters will be collected immediately after sample collection. If parameters are measured more than 15 minutes after sample collection the data will be qualified. Field parameter instruments will be rinsed with distilled water between measurements.

Handheld field parameter instruments may include the following specific instruments. If any other instrument is substituted for an instrument listed below, the substitute will be verified to have the same or higher degree of sensitivity to maintain data quality and program safety objectives. The following is a list of program approved instruments.

- Horiba D-51 pH/temperature meter
- YSI-85 DO/salinity/conductivity/temperature meter
- Hach 2100Q turbidity meter

Safety Monitoring Instruments:

• Hazardous vapor monitors including: Biosystems PhD Lite, Biosystems PHD6, and Sperian

Calibration and Maintenance

Maintenance will be conducted per manufacturers' recommendations and the procedures outlined in Appendix B, or more frequently as warranted by equipment performance. Instruments will be inspected and calibrated before each planned sampling event. ACHD is responsible for calibration and maintenance and will keep a log in the monitoring shed for reference.

Section 4

Screening and Sampling Procedures

4.1 Weather Information and Field Preparation

Permit requirements for dry weather outfall screening require an antecedent dry period of 72 hours or more of 0.10 inch or less of precipitation. In order to meet this criteria, staff will verify the antecedent dry period by accessing continuous weather observations published by the National Weather Service (NWS) for the weather monitoring station located at the Boise Airport. Observations may be obtained by visiting the NWS webpage for the local area or by calling the NWS Boise office. While confirming the antecedent dry period, staff will also check the forecast for the area where work is planned to ensure acceptable and safe weather conditions are present during screening.

Field equipment and supplies may vary based on the location and type of terrain expected to access outfall(s) planned for investigation. Prior to initiating investigation activities field staff will perform a cursory check of all equipment to be used to verify proper function and safe operation. Necessary supplies including field investigation forms and sampling and testing supplies will be restocked as necessary and kept in a clean and secure location between investigations.

4.2 Outfall Investigation

The dry weather outfall screening program is built around the information obtained during outfall investigation activities. Outfall screening and spill reporting are the main methods for discovery of illicit discharges to the MS4. A dry weather investigation consists of verification of the information ACHD has for the outfall and its conveyance as well as qualitative descriptions of the conditions present at the time of the investigation. Investigations also include a review of records from past visits to identify persistent or new conditions.

Upon arrival at the outfall, ACHD personnel will conduct physical observations in the order listed on the Dry Weather Outfall Investigation Form (Form DW1) included in Appendix C. Information to be collected for each outfall includes:

- Location in terms of a description of the nearby streets, receiving water, and other landmarks useful in identifying and locating the outfall.
- Description of major land uses in the outfall drainage area
- The configuration, construction, dimensions, material, and condition of the outfall
- Observations of the outfall and surrounding area including the staining, sedimentation, scour, and condition of vegetation
- Clarity, odor, color, floatables, and intensity of flow, where present
- Presence of trash in or from outfall (reference Form DW2 in Appendix C for trash assessment)
- Photographs of the outfall, surrounding area, flows, if present, and any other features or conditions useful or pertinent to the outfall inventory, screening activities, or reporting

If a discharge is present at the time of investigation, the flow volume will be measured as described in Section 4.3.3. Qualitative characteristics of the flow such as color, odor, and clarity will also be recorded. Sample collection will be scheduled for a later date due to advance notice requirements for the Boise City

Brown and Caldwell

Water Quality Laboratory (WQL). Sample collection and flow measurement methods are described in the discharge monitoring section below.

4.3 Discharge Monitoring

To accommodate holding time requirements for E. coli, advance notice is typically required before delivering samples to WQL. As such, discharges are not typically sampled at the time of first discovery. Following Permit requirements monitoring will be performed as described below at the earliest possible date, not to exceed 15 days from the time the new discharge was discovered.

4.3.1 Discharge Parameter Analysis

The analytical methods planned for use in discharge monitoring when flows are present are included in Table 4-1 below. The Permit requires that "sample collection, preservation, and analysis must be conducted according to sufficiently sensitive methods/test procedures approved under 40 Code of Federal Regulations [CFR] Part 136, unless otherwise approved by EPA. Where an approved 40 CFR Part 136 method does not exist, and other test procedures have not been specified, any available method may be used after approval from EPA." As such, the methods identified below are the selected and preferred options. However, sample, laboratory, or instrument conditions may require the substitution of an alternate Part 136 method.

The analytical requirements for dry weather discharge samples are listed in the Permit. Water quality data will be collected using a combination of field parameter measurements using handheld meters, field analysis conducted by field screening staff, and laboratory analysis. Table 4-1 identifies the constituents to be identified, analytical method, and type of analysis.

Table 4-1. Analytical Methods for Dry Weather Discharge Constituents				
Constituent	Sample Container	Analytical Method	Holding Time	Sample Analysis Type
рН		EPA 150.1		
Temperature		ntainerAnalytical MethodHolding TimeSample AnalysEPA 150.1EPA 150.1Field ParameterIassEPA 180.115 minutesField ParameterSM 4500 GEPA 120.115 minutesField Analytical TSticbicinchoninate hydrosulfide reduction60 minutesField Analytical Td plasticIDEXX Colliert8 hoursLaboratory Analytical TEPA 200.728 daysLaboratory Analytical T		
Turbidity	500 mL amber glass	EPA 180.1	15 minutes	
Dissolved oxygen (DO)		SM 4500 G		
Conductivity		EPA 120.1		
Total chlorine		DPD ¹	15 minutes	
Total copper	1 L sterilized plastic	hydrosulfide	60 minutes	Field Analytical Test
Total phenols		4-aminoantipyrine	60 minutes	
E. coli	250 mL sterilized plastic	IDEXX Colilert	8 hours	
Total suspended solids	4.3 L plastic	SM 2540 D	7 days	Laboratory Analytical Test
Total phosphorus	500 mL plastic	EPA 200.7	28 days	Laboratory Analytical Test
Dissolved orthophosphate	250 mL plastic	EPA 200.7	48 hours	
Surfactants (detergents)	1 L plastic	SM 5540 C	48 hours	

¹DPD = N,N Diethyl-1,4 Phenylenediamine Sulfate

4.3.2 Discharge Sample Collection

Samples of discharges documented during investigations will be collected using grab sampling methodologies. Sample collection at each outfall will be accomplished by filling the sample container for each analysis from a point near the center of the flow at the outfall. Depending on outfall configuration, access constraints, and flow volume, the grab samples will be collected using a swing sampler or by hand

and safely positioning the sample bottle in the discharge stream. SOPs for grab sample collection are included in Appendix B. Immediately following sample collection; the field personnel will record the collection date and time for each sample on Form DW1.

Field Analytical Samples

Field analyses including total chlorine, total copper, and total phenols will be conducted using the Hach Stormwater Test Kit. Analysis will be completed within 30 minutes of sample collection. Each analysis will be conducted following the procedures outlined in the Hach Stormwater Test Kit manual. The specific test procedures from the manual have been incorporated into Appendix B. Results of field analyses will be recorded on Form DW1.

Field Parameters

Field parameters including temperature, pH, conductivity, DO, and turbidity will be measured in the field using handheld instruments to avoid changes that may occur between the time when the sample is collected and the time of analysis at the laboratory. Measurements from these field tests will be recorded on Form DW1.

Laboratory Analytical Samples

Samples will be collected for each constituent or suite of constituents in the containers listed in Table 4-1. Preservation techniques in the field are limited to cooling samples to a target sample temperature of less than 6°C, but above freezing. After the samples are collected, sufficient ice will be placed in coolers with the samples to maintain the samples at a maximum temperature of 6°C during transport to WQL.

Chemical preservation measures required for EPA standard methods are accomplished by laboratory personnel after samples are submitted. The EPA standard method for measurement of dissolved orthophosphate requires samples to be filtered within 15 minutes of sample collection. Samples for dissolved orthophosphate will be filtered in the field using a peristaltic pump and laboratory-prepared filters and tubing. Sample filtration will be performed following the procedures outlined in the field filtering SOP in Appendix B.

Chain of Custody Procedures

Standard chain of custody (COC) procedures will be followed for all analytical laboratory samples. COC forms, shown in Appendix C, will be completed prior to submittal of samples to the laboratory. Information recorded on the COC includes the following:

- Name of sampler
- Sample identification (outfall identification number from which the sample was collected)
- Analyses requested
- Sample time
- Sample date

A sample is considered to be "in custody" if it is either in actual physical possession of authorized personnel or in a secured area that is restricted to authorized personnel. Such areas include laboratory refrigerators, the monitoring shed at ACHD, ACHD office space, and ACHD vehicles. All transfers of custody will be recorded by signature, date, and time by both the individual relinquishing custody and the one receiving custody. This information is placed in the designated area on the bottom of standard COC forms.

Samples may be stored for short periods of time in coolers with ice at the ACHD monitoring shed or offices while awaiting submittal to WQL. In these instances, the COC forms will be reviewed and signed by the custody holder listed on the COC form. The COC forms will be kept with the samples at all times.

In most cases, laboratory personnel will be notified with at least one day of notice when samples will be submitted. If samples are submitted to the laboratory during business hours, samples are relinquished to laboratory personnel in person for immediate receipt with signature, date, and time. ACHD has after-hour access to the laboratory to accommodate sample submittal. When sample delivery occurs after hours, samples are placed in a locked refrigerator and the signed COC form is left in the locked laboratory for morning receipt by laboratory personnel.

Sample collection times for QC samples will be recorded as 12:00 on the COC form to maintain duplicates as laboratory blind samples. The actual collection time will be recorded on the field form. The QAPP includes details on the approach to data validation as it pertains to holding times and laboratory qualifiers for QC samples.

4.3.3 Discharge Flow Measurement

Flow measurements will be collected when discharges are present to properly document flows and to aid in pollutant loading estimates. Anticipated flow measurement methodologies include use of a velocity probe in conjunction with pipe dimensions, bucket testing, and visual qualitative assessment. A full description of each flow measurement method is included in the flow measurement section of Appendix B.

For relatively small discharges, a bucket flow test may be used in which a five gallon bucket is placed under the outfall to capture all flow from the outfall for an appropriate duration. This information is then used to calculate flow in cubic feet per second.

For higher flows, the velocity probe is used to obtain an average velocity measurement for the flow. The average velocity is combined with measurements of the area of the flow profile to calculate discharge in cubic feet per second. The SOP includes the measurement and calculation approach for circular pipes, elliptical pipes, and natural or irregular channels.

In situations where flow is present and the outfall is not physically accessible, a qualitative assessment of flow will be recorded and accompanied by a comment stating that the outfall was inaccessible for flow measurement. Qualitative flow assessment will be described using three descriptive categories: trickle, moderate, or substantial. Guidance in the flow measurement section of Appendix B defines each of the qualitative flow measurement terms that will be used and provides guidance for selecting the most appropriate descriptive term.

4.4 Flow Source Tracing

After completing the outfall investigation, discharges from flowing outfalls will be traced to the source of the flow. Finding the source of the discharge often provides important information to help determine whether the discharge is allowable under Permit Part 1.D. Allowable non-stormwater discharges include the following:

- Discharges covered under a separate NPDES permit
- Discharges resulting from a spill or from unusual and severe weather or an emergency
- Discharges consisting of uncontaminated water and not sources of pollution to waters of the U.S.

All documentation collected as part of the evaluation of discharges is required to be included in the Stormwater Management Plan. This includes the documentation and support for the discontinuation of discharge monitoring for outfalls that have allowable discharges.

4.4.1 Flow Source Tracing

Sources will be traced by following drop inlets and manholes upstream of the outfall using field maps showing the drainage system. Smoke testing, dye testing, and closed circuit TV will be used as appropriate to determine the source of the discharge.

Discharge sampling results can often be used to assist in identifying potential sources of pollution. The source tracing flow chart in Appendix D will be used in conjunction with analytical results, field observations, and drainage area analysis to identify likely source(s) of illicit discharges or illegal connections.

4.4.2 Discharge Thresholds

Previously documented flowing outfalls as described in Section 2.2 may be removed from the annual historical flows sampling list if the flow can be characterized as an allowable discharge. Thresholds based on analytical results and receiving waters have been developed to help make this determination. Appendix E includes a description of the thresholds for each monitored constituent of concern and the decision points to be used in evaluating compliance with Permit Part 1.D.

4.5 Escalation and Elimination

If a discharge is found to be illicit based on source tracing and/or chemical analysis, ACHD is required to take appropriate action to address the source of the ongoing discharge within 45 days of detection. To meet this requirement ACHD has established interagency agreements with the City of Boise and Garden City for enforcement of stormwater ordinances in City codes Title 8, Chapter 15 and Title 4, Chapter 14, respectively. Copies of these agreements can be found in the Stormwater Management Plan.

The agreements address enforcement of these ordinances to eliminate illicit discharges and illegal connections and contain escalation measures for application as necessary. ACHD may at any time provide the appropriate jurisdictional authority with evidence of the discharge and the source of flow. Public or private discharges may require action by the city; other discharges may require involvement from the Ada County Sheriff's Office. If the source of the discharge cannot be determined, ACHD will provide available information to assist the jurisdictional authority in eliminating the discharge.

Section 5 Quality Assurance/Quality Control

5.1 QC Sampling Schedule

The QC sampling schedule developed for the dry weather outfall screening program consists of a combination of field QC samples and laboratory QC samples. QC sampling for this program is designed to assess field and laboratory analytical test procedures. QC sample types are fully described in the QAPP. QC sampling intervals will follow the schedule detailed in Table 5-1. Laboratory QC sample results are included in each analytical report.

Table 5-1. Field QC Sample Collection Schedule				
QC Sample Method	Sampling Frequency2	Percent of Total Data Represented		
Field Duplicate	1 suite per 20 samples	5%		
Field Blank	1 suite per 20 samples	5%		
¹ QC sample analysis will be performed on laboratory analytical samples only. Analyses				

conducted by ACHD in the field rely on calibration and accuracy check methods described in Section 3.

²Frequency is determined by number of screening program samples collected, regardless of result.

ACHD may choose to conduct additional QA/QC to address data discrepancies, potential sample contamination, or other QA/QC issues. These events will be handled on an as-needed basis, depending on the particular issue(s) involved.

5.2 Data Quality Objectives (DQO)

Field screening efforts will provide data of sufficient quality and quantity in accordance with Permit requirements to detect and eliminate illicit discharges and illegal connections, estimate pollutant concentrations and loading associated with dry weather flows including flows associated with groundwater infiltration and irrigation drainage in the MS4, and support mapping and outfall inventory efforts to maintain accurate records.

Data Quality Indicators (DQIs)

DQIs have been established to set measurable qualitative and quantitative goals for data acceptance that meet the program DQOs described above. Each DQI is described below. DQIs are the basis for addressing field and laboratory analytical instrument performance, as well as sample collection and handling procedures. QA/QC samples provide input for several of the DQIs. QA/QC sample collection procedures are included in Section 2.1 of the QAPP.

DQIs are fully described in Section 1.8.1 of the QAPP. A brief description of each DQI is included in the list below.

• **Project Required Detection Limits (PRDL).** Achieving appropriate reported constituent concentration results at values that allow for comparison to baseline data and water quality standards.

- Accuracy. The accuracy of the data is a measure of the extent to which a measured value represents the true value.
- **Precision.** Precision is a measurement of the reproducibility of the analytical data.
- **Bias.** Bias is minimized by using standard data collection and analytical methods and protocols, as well as standard sample preservation, transport, and storage procedures.
- **Representativeness.** Representativeness is a measure of the degree to which data accurately and precisely indicate environmental conditions.
- **Comparability.** The comparability of a data set is the extent to which data accurately and precisely indicate environmental conditions.
- **Completeness.** Completeness is a comparison between the amount of usable data collected versus the total amount of data collected.
- **Sufficiency.** Data set sufficiency is the amount of data required to perform the level or type of analysis necessary for each monitoring element.

Analysis-specific data quality indicators include PRDLs and precision evaluated as relative percent difference (RPD). The target values for these indicators are listed in Table 5-2 below.

Table 5-2. Data Quality Indicator Targets				
Constituent	Analytical Method	PRDL ^{1,2}	Units	Precision ^{3,4} (RPD)
Temperature	EPA 170.1	0.01	۰C	NA
рН	EPA 150.1	0.01	S.U.	NA
Dissolved oxygen	SM 4500 G	0.01	mg/L	NA
Conductivity	EPA 120.1	0.1	µS/cm	NA
Turbidity	EPA 180.1	0.1	NTU	20%
Total chlorine	DPD ⁵	0.1	mg/L	NA
Total copper	bicinchninate hydrosulfide reduction	0.1	mg/L	NA
Total phenols	4-aminoantipyrine	0.1	mg/L	NA
Total phosphorus	EPA 200.7	0.04	mg/L	20%
Dissolved orthophosphate	EPA 365.1 or SM 4500-P E	0.084	mg/L	20%
E. coli ⁶	IDEXX Colilert	1.8	MPN/100 mL	20%
Total suspended solids	SM 2540 D	1.0	mg/L	20%
Surfactants (detergents)	SM 5540C	0.014	mg/L	20%

¹Field instrument resolution values are listed in lieu of a PRDL for field parameter measurements.

²PRDL is defined as the effective method detection limit (MDL) as reported by the analytical laboratory.

³Precision calculations based on field duplicate samples.

⁴In cases where one value is reported at the MDL and the other value is less than five times the MDL, the samples will be considered within acceptable precision limits.

 5N,N Diethyl-1,4 Phenylenediamine Sulfate

⁶Assessment of precision for E. coli is evaluated using the RPD of logarithmic parent and duplicate values.

Dry Weather Outfall Screening Plan FINAL AVP Edits 171120 (version 1.2)

Section 6

Data Management and Reporting

6.1 Data Acquisition Requirements (Non-Direct Measurements)

Weather forecasts and hourly precipitation totals will typically be obtained from the NWS Boise airport station website and used for confirmation of antecedent dry periods. Additional forecasts or weather reports may be obtained from local media, community, or commercial weather services, ACHD and Permittee-owned rain gauges.

6.2 Data Management System

Data associated with the dry weather outfall screening program will be stored in the Microsoft Access Outfall Database on the secure ACHD network at V:\9DrainageDivision\VanPattenAdam\Outfalls.adp. Data stored in the Outfall Database includes the following elements:

- Time since most recent precipitation event greater than 0.1 inches of rain
- Quantity of most recent rain event greater than 0.1 inches of rain
- Site description (conveyance type, dominant watershed land uses)
- Flow estimation (width of water surface, depth of water, approximate flow velocity, approximate flow rate)
- Visual qualitative observations (odor, color, clarity, floatables, deposits/staining, biology, condition of vegetation, structural condition of outfall, qualitative flow)
- Sample analytical results
- QA/QC results
- Narrative description of flow tracing, determination of discharge authorization (allowable or illicit), and documentation of any corrective measures including stopping the discharge, disconnecting illegal connections or other enforcement and escalation activities

6.3 Data Organization and Reporting

6.3.1 Investigation Results Organization

Upon returning to the office, data that has been collected in the field will be filed according to data type.

- Photographs taken will be downloaded and stored in a word document photo log for the event. The photo log will include the date and outfall number and will be filed under the outfall file on the secure ACHD server at V:\92OutfallPictures\OutfallPhotos. A link to the photo log will be included in the Access database for each investigation. Each picture will include a caption with a description of the subject and location of the picture as well as the vantage point.
- GPS data will be checked against existing data for outfall locations and corrected in GIS as necessary.
 - Coordinates of new outfalls encountered will be entered into the outfalls layer in GIS and subsequently researched to determine drainage area and incorporated into the outfall inventory.
 - In the event that the outfall to be investigated no longer exists, the outfall as an attribute will be reassigned to a separate shapefile and removed from the outfall inventory. Records of the outfall

6-1

will be retained for at least five years or the duration of the Permit. Records may be retained longer at the discretion of ACHD.

- Newly identified outfalls will be numbered according to the township, range, and section in which the outfall occurs. Outfalls located in the same section are numbered sequentially beginning with 001. Additionally, an individual file will be created in the Access database and on the server.
- Field data sheets and photographs will be scanned and filed under the corresponding reporting year on the server, and the hardcopies will be stored in the corresponding hardcopy file. Data from the field sheets will be entered in to Access intermittently throughout the year. ACHD is currently in the process of researching electronic field form options to replace the use of hardcopy field data sheets.

6.3.2 Annual Reporting

The annual report will include an updated map of ACHD-owned outfalls as well as any changes in water body designations. The map will include all reported and documented illicit discharges and illegal connections. The map will be made available as an electronic map file and a pdf.

The annual report will also contain an evaluation of compliance for the illicit discharge detection and elimination program. That evaluation will include a summary of the activities and progress of the dry weather outfall screening program. The total number of outfalls screened, including a count of outfalls discharging to impaired waters (at least 20 percent required), the number of flowing outfalls screened, and the number of outfalls screened between June 1 and September 30 (at least one third required).

Discharge Monitoring Results

Results of samples collected from monitored discharges will be summarized with each annual report. Discharge monitoring results will be used to evaluate flows associated with irrigation and groundwater seepage to determine whether the flows comply with Permit Part 1.D. Flows that are found to be in compliance with Permit Part 1.D (flows that are not sources of pollution to waters of the US) will be identified in the annual report and removed from the annual flow screening schedule for subsequent years. The rationale for removing these flows from annual screening schedules will also be recorded in the stormwater management plan.

Pollutant Loading Estimates

Discharge monitoring results will be used in conjunction with flow measurements to calculate pollutant loading estimates associated with the observed flows. Estimates of the duration of the year that flows were present at each outfall will be provided with the pollutant loading estimates when available. The duration of each flow during the year will be refined as more data is collected each year. Pollutant loading estimates will also be used to prioritize flows for evaluation of feasible actions necessary to eliminate flows that are not in compliance with Permit Part 1.D.

6.3.3 Evaluation and Assessment

Evaluation and assessment of the dry weather outfall screening data and the overall effectiveness of the Dry Weather Outfall Screening Program will be conducted in compliance with the general guidance identified in the PMEP. For the Dry Weather Outfall Screening Program, data will be compiled with the objective to eliminate illicit discharges and illegal connections to the MS4 and to evaluate the effectiveness of stormwater management efforts at reducing pollutant loads from the MS4.

Advancing illicit discharge detection and elimination is an iterative process. The dry weather outfall screening program will be annually evaluated for compliance with Permit requirements. Evaluation efforts will also assess how well the dry weather outfall screening program aligns with the Level of Service goals outlined in the ACHD Phase I Stormwater management plan. Changes and revisions to the program including

updated methods or revised approaches will be integrated into the program as updates to this Dry Weather Outfall Screening Plan and/or the SOPs referenced herein.

Section 7 References

Ada County Highway District (ACHD), Project Monitoring and Evaluation Plan, 2013.

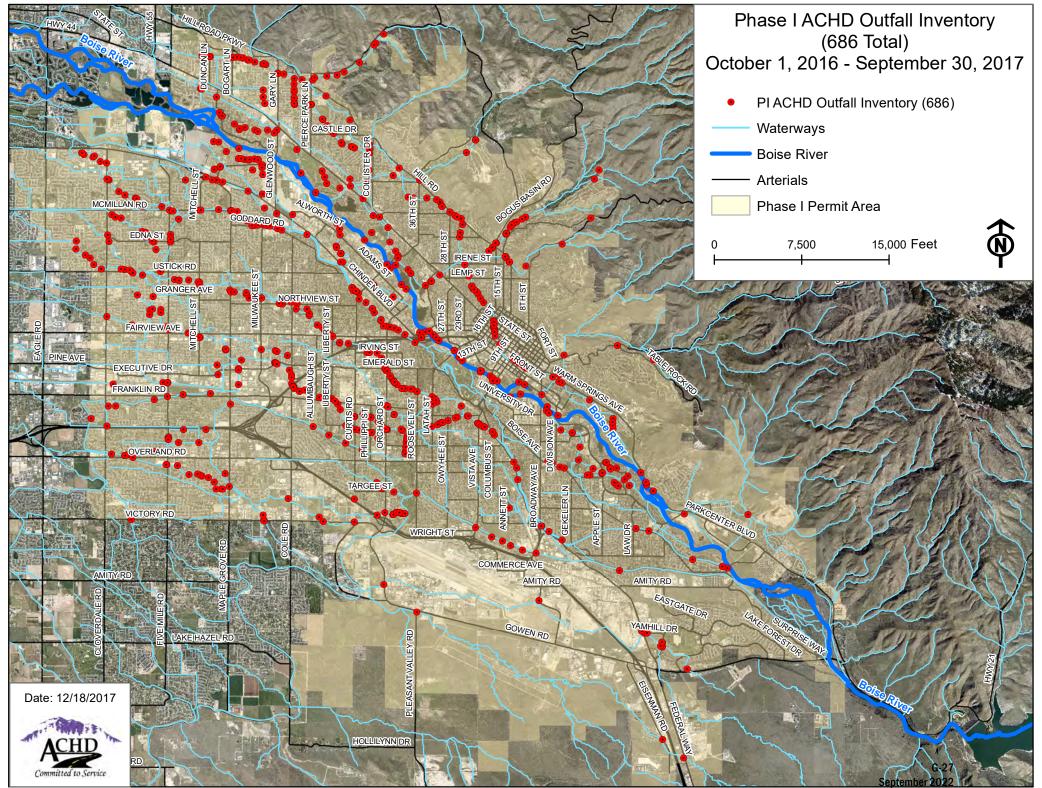
, Quality Assurance Program Plan for NPDES Storm Water Permit Monitoring Boise and Garden City, Idaho, 2014.

- Brown, Edward, Deb Caraco, and Robert Pitt. 2004. Illicit Discharge Detection and Elimination: A Guidance Manual for Program Development and Technical Assessments. Center of Watershed Protection. Ellicot City, MD.
- U.S. Environmental Protection Agency (EPA). *Methods for Chemical Analysis of Water and Wastes*, EPA-600/4-79-020, March 1983. Cincinnati, Ohio: U.S. Environmental Protection Agency Environmental Monitoring and Support Laboratory, 1983.

------, Guidance on Environmental Data Verification and Data Validation (EPA QA/G-8), EPA 240-R-02-004, Office of Environmental Information, 2002.

——, Guidance on Systematic Planning Using the Data Quality Objective Process, EPA Bulletin # EPA 240-B-06-001, 2006.

——, Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, Analysis and Sampling Procedures; Final Rule, Federal Register Vol. 77 No. 97. 40 CFR Parts 136, 260, et al., 2012.



Figures

G-26 September 2022

Dry Weather Outfall Screening Plan FINAL AVP Edits 171120 (version 1.2)

Tables

G-28 September 2022

Table 2-1	
Receiving Water Body	Number of Outfalls
Ash Lateral	2
Bennett Lateral	1
Boise City Canal	58
Boise City Canal-drain of	0
Boise River	36
Boise River-Trib to	1
Boise Valley Canal	3
Bubb Canal	6
Chaffin Drain	1
Cloverdale Lateral	1
Collis Lateral	3
Cottonwood Creek	3
Cottonwood Creek-Trib of	2
Crane Creek	24
Davis Drain	26
Drain A	0
Drain B	0
Drain E	0
Dry Creek	2
Dry Creek Canal	<u> </u>
Eagle Drain	3
Eagle Drain-lateral of	<u>5</u>
Eggers Lateral Eightmile Creek	 1
Elmore Drain	12
Eureka Canal	0
Farmer's Lateral	15
Farmer's Union Canal	12
Fitz Lateral	1
Fivemile Creek	30
Fivemile Creek-Trib. to	8
Gruber Lateral	1
Helm Lateral	1
Hulls Gulch	7
Hulls Gulch-Lateral of	1
Huntington Lateral	5
Julia Davis Pond	2
Karnes Lateral	11
Lake Elmore	1
Lake Heron	1
Lake Heron Creek-north fork	0
Lake Heron Creek-south fork	1
Lake Heron-lateral of	1
Logger Creek	13
Logger Creek-Lateral	1

Table 2-1 cont.			
Receiving Water Body	Number of Outfalls		
Lowell Drain	1		
McMillan Lateral	7		
Milk Lateral	5		
New York Canal	8		
North Slough	74		
Penitentiary Canal	1		
Penninger Lateral	2		
Penninger Secondary	1		
Pierce Creek	7		
Pierce Gulch	1		
Powell Lateral	4		
Ridenbaugh Canal	75		
Ridenbaugh Ditch	7		
Rust Lateral	4		
Settler's Canal	33		
Settler's Canal Lateral	6		
Shavrer Lateral	2		
South Slough	16		
Stewart Gulch	6		
Synder Lateral	2		
Threemile Creek	7		
Threemile Lateral	9		
Thurman Mill Canal	17		
Thurman Mill Canal-Lateral	4		
Tuttle Lateral	1		
Warm Springs Canal	18		
Watson Drain	2		
Watson Drain-Lateral	1		
Wilson Fruit Lateral	2		
Zinger Lateral	13		
Total	686		

Table 2-2 Clean Water Act §303 (d) listed Water Bodies and Pollutants of Concern					
Receiving Water Body	Assessment Unit Code	Pollutants of Concern Causing Impairments			
Boise River - Diversion Dam to River Mile 50	ID17050114SW011a_06	Temperature			
Boise River – River Mile 50 to Star Bridge	ID1705011SW005_06	Temperature, Sediment, E. coli			
Boise River – Star to Middleton	ID17050114SW005_06a	Temperature, Total Phosphorus, Sediment			
Boise River - Middleton to Indian Creek	ID17050114SW005_06b	Temperature, Total Phosphorus, Sediment (TSS), E. coli			
Boise River – Indian Creek to the mouth	ID17050114SW001_06	Temperature, Total Phosphorus, Sediment			
Tenmile Creek - 3rd order below Blacks Creek Reservoir	ID17050114SW008_03	Sediment (TSS), E. coli			
Fivemile Creek – 1st & 2nd order tributaries	ID17050114SW010_02	E. coli			
Fivemile Creek – 3rd order tributaries	ID1705114SW010_03	Sediment (TSS), E.Coli			

Appendix A: Five-Year Outfall Screening Schedule

Outfall Screening Schedule 2017-2018

#	Outfall ID	Ownership	Receiving Water
1	2n3e06_001	ACHD	Fivemile Creek
2	3n1e01_001	ACHD	North Slough
3	3n1e01_003	ACHD	North Slough
4	3n1e01_013	ACHD	North Slough
5	3n1e02_001	ACHD	North Slough
6	3n1e03_001	ACHD	North Slough
7	3n1e03_007	ACHD	Milk Lateral
8	3n1e03_008	ACHD	Milk Lateral
9	3n1e03_009	ACHD	Milk Lateral
10	3n1e03_016	ACHD	Milk Lateral
11	3n1e12_005	ACHD	South Slough
12	3n1e12_009	ACHD, Railroad	South Slough
13	3n1e12_021	ACHD	Ridenbaugh Canal
14	3n1e12_028	ACHD	Ridenbaugh Canal
15	3n1e13_002	ACHD	Farmer's Lateral
16	3n1e14_006	ACHD	Wilson Fruit Lateral
17	3n1e14_007	ACHD	Unnamed Ditch
18	3n1e15_008	ACHD	Ridenbaugh Canal
19	3n1e23_004	ACHD	Fivemile Creek
20	3n2e03_006	ACHD	Boise City Canal
21	3n2e04_018	ACHD	Boise City Canal
22	3n2e04_022	ACHD	Boise City Canal
23	3n2e05_017	ACHD, Private	Davis Drain
24	3n2e05_018	ACHD, Private	Davis Drain
25	3n2e05_025	ACHD	Thurman Mill Canal
26	3n2e06_001	ACHD	North Slough
27	3n2e06_011	ACHD	Davis Drain
28	3n2e06_015	ACHD	North Slough
29	3n2e07_006	ACHD	Ridenbaugh Canal
30	3n2e07_013	ACHD	Ridenbaugh Canal
31	3n2e07_014	ACHD	Ridenbaugh Canal

#	Outfall ID	Ownership	Receiving Water
32	3n2e07_016	ACHD	North Slough
33	3n2e07_021	ACHD	Ridenbaugh Canal
34	3n2e08_007	ACHD, Private	North Slough
35	3n2e08_011	ACHD	North Slough
36	3n2e08_014	ACHD	North Slough
37	3n2e08_015	ACHD	North Slough
38	3n2e08_019	ACHD, Private	Settler's Canal
39	3n2e08_020	ACHD	North Slough
40	3n2e08_026	ACHD, Private	North Slough
41	3n2e08_033	ACHD	North Slough
42	3n2e09_014	ACHD	North Slough
43	3n2e09_015	ACHD	North Slough
44	3n2e09_022	ACHD, ITD	Boise River
45	3n2e10_005	ACHD	Boise City Canal
46	3n2e10_006	ACHD	Boise City Canal
47	3n2e10_018	ACHD	Boise River
48	3n2e10_019	ACHD, Private	Boise River
49	3n2e10_020	ACHD	Boise River
50	3n2e10_022	ACHD	Boise River
51	3n2e10_031	ACHD, BSU	Boise River
52	3n2e10_043	ACHD	Boise City Canal
53	3n2e11_007	ACHD	Cottonwood Creek
54	3n2e11_008	ACHD	Cottonwood Creek
55	3n2e12_001	ACHD	Cottonwood Creek-Trib of
56	3n2e13_003	ACHD	Boise City Canal
57	3n2e14_003	ACHD	Logger Creek
58	3n2e14_016	ACHD	Boise River
59	3n2e14_017	ACHD, ITD	Boise River
60	3n2e14_027	ACHD, Boise City	Logger Creek
61	3n2e15_007	ACHD	Ridenbaugh Canal
62	3n2e16_002	ACHD	North Slough

This five-year outfall screening schedule has been developed to meet the Permit requirements according to the scheduling and prioritization approaches described in Section 2.2 of the Dry Weather Outfall G-33 G-33

Outfall Screening Schedule 2017-2018 cont.

#	Outfall ID	Ownership	Receiving Water
63	3n2e16_003	ACHD	Powell Lateral
64	3n2e16_016	ACHD	Ridenbaugh Canal
65	3n2e16_018	ACHD, Irrigation	Ridenbaugh Canal
66	3n2e16_019	ACHD	Ridenbaugh Canal
67	3n2e17_004	ACHD	Ridenbaugh Canal
68	3n2e17_013	ACHD	Rust Lateral
69	3n2e17_014	ACHD	Powell Lateral
70	3n2e17_016	ACHD, Irrigation	Ridenbaugh Canal
71	3n2e17_017	ACHD	Farmer's Lateral
72	3n2e17_019	ACHD	Farmer's Lateral
73	3n2e17_022	ACHD	Farmer's Lateral
74	3n2e17_040	ACHD	Ridenbaugh Ditch
75	3n2e18_017	ACHD	Ridenbaugh Canal
76	3n2e19_002	ACHD	Threemile Lateral
77	3n2e19_003	ACHD	Threemile Creek
78	3n2e20_004	ACHD	Penninger Lateral
79	3n2e20_008	ACHD	Threemile Lateral
80	3n2e20_012	ACHD	Threemile Lateral
81	3n2e20_019	ACHD	Threemile Creek
82	3n2e22_002	ACHD	Ridenbaugh Canal
83	3n2e24_005	ACHD	Boise River
84	3n2e24_019	ACHD	Logger Creek-Lateral
85	3n2e36_001	ACHD	Fivemile Creek-Trib. to
86	4n1e13_006	ACHD	Eagle Drain
87	4n1e13_007	ACHD	Eagle Drain
88	4n1e13_012	ACHD	Eagle Drain
89	4n1e13_015	ACHD	Eagle Drain
90	4n1e14_005	ACHD	Eagle Drain
91	4n1e14_006	ACHD	Eagle Drain
92	4n1e14_010	ACHD	Eagle Drain
93	4n1e23_007	ACHD	Warm Springs Canal

#	Outfall ID	Ownership	Receiving Water
94	4n1e23_014	ACHD	Dry Creek Canal
95	4n1e24_003	ACHD	Eagle Drain-lateral of
96	4n1e24_022	ACHD, ITD	Dry Creek Canal
97	4n1e25_021	ACHD, ITD	Thurman Mill Canal
98	4n1e25_029	ACHD	Warm Springs Canal
99	4n1e25_032	ACHD	Settler's Canal
100	4n1e26_007	ACHD	Settler's Canal
101	4n1e26_012	ACHD	Thurman Mill Canal-Lateral
102	4n1e27_002	ACHD	Zinger Lateral
103	4n1e27_008	ACHD	Zinger Lateral
104	4n1e27_009	ACHD	Zinger Lateral
105	4n1e28_004	ACHD	McMillan Lateral
106	4n1e28_006	ACHD	McMillan Lateral
107	4n1e32_001	ACHD	North Slough
108	4n1e34_002	ACHD	Karnes Lateral
109	4n1e34_004	ACHD, Irrigation	Karnes Lateral
110	4n1e34_008	ACHD	Karnes Lateral
111	4n1e34_010	ACHD	Karnes Lateral
112	4n1e35_001	ACHD	Zinger Lateral
113	4n1e35_006	ACHD	Settler's Canal
114	4n1e36_003	ACHD	Settler's Canal
115	4n1e36_011	ACHD	Settler's Canal
116	4n2e17_003	ACHD	Pierce Gulch
117	4n2e18_001	ACHD	Farmer's Union Canal
118	4n2e18_002	ACHD	Pierce Creek
119	4n2e18_004	ACHD	Pierce Creek
120	4n2e18_008	ACHD	Eagle Drain
121	4n2e19_001	ACHD	Eagle Drain
122	4n2e19_010	ACHD	Eagle Drain
123	4n2e19_011	ACHD	Eagle Drain
124	4n2e19_016	ACHD	Eagle Drain

This five-year outfall screening schedule has been developed to meet the Permit requirements according to the scheduling and prioritization approaches described in Section 2.2 of the Dry Weather Outfall G-34 G-34

Outfall Screening Schedule 2017-2018 cont.

#	Outfall ID	Ownership	Receiving Water
125	4n2e19_029	ACHD	Eagle Drain
126	4n2e21_002	ACHD	Stewart Gulch
127	4n2e28_001	ACHD	Boise City Canal
128	4n2e28_002	ACHD	Boise City Canal
129	4n2e28_008	ACHD	Boise City Canal
130	4n2e30_004	ACHD	Dry Creek Canal
131	4n2e30_012	ACHD	Boise River
132	4n2e32_002	ACHD, Private	Boise River
133	4n2e32_012	ACHD	Farmer's Union Canal
134	4n2e32_014	ACHD	Farmer's Union Canal
135	4n2e32_016	ACHD	Farmer's Union Canal
136	4n2e33_001	ACHD	Boise City Canal
137	4n2e33_006	ACHD	Crane Creek
138	4n2e33_007	ACHD	Boise City Canal
139	4n2e34_007	ACHD	Crane Creek
140	4n2e35_004	ACHD	Hulls Gulch-Lateral of

Outfall Screening Schedule 2018-2019

#	Outfall ID	Ownership	Receiving Water
1	3n1e01_004	ACHD	North Slough
2	3n1e01_007	ACHD	North Slough
3	3n1e01_008	ACHD	North Slough
4	3n1e02_009	ACHD	North Slough
5	3n1e02_010	ACHD	Milk Lateral
6	3n1e10_006	ACHD	Settler's Canal Lateral
7	3n1e11_012	ACHD	South Slough
8	3n1e12_029	ACHD	Ridenbaugh Canal
9	3n1e14_008	ACHD	Huntington Lateral
10	3n1e14_011	ACHD	Huntington Lateral
11	3n1e15_002	ACHD	Fivemile Creek
12	3n1e15_003	ACHD	Fivemile Creek
13	3n1e15_011	ACHD	Synder Lateral
14	3n1e15_012	ACHD	Ridenbaugh Canal
15	3n1e23_003	ACHD	Fivemile Creek
16	3n1e23_006	ACHD	Fivemile Creek
17	3n1e23_009	ACHD	Fivemile Creek
18	3n1e24_001	ACHD	Threemile Creek
19	3n1e24_002	ACHD	Fivemile Creek
20	3n1e24_004	ACHD	Fivemile Creek
21	3n2e03_009	ACHD	Boise City Canal
22	3n2e03_010	ACHD	Boise City Canal
23	3n2e04_009	ACHD	Boise River
24	3n2e04_011	ACHD, ITD	Boise River
25	3n2e04_013	ACHD	Boise City Canal
26	3n2e04_019	ACHD	Boise City Canal
27	3n2e04_027	ACHD	Crane Creek
28	3n2e05_006	ACHD	Thurman Mill Canal
29	3n2e05_008	ACHD	Settler's Canal
30	3n2e05_014	ACHD, ITD	Davis Drain
31	3n2e05_023	ACHD	Davis Drain

#	Outfall ID	Ownership	Receiving Water
32	3n2e05_024	ACHD	Boise River
33	3n2e06_009	ACHD	Davis Drain
34	3n2e06_012	ACHD	North Slough
35	3n2e06_016	ACHD	North Slough
36	3n2e06_017	ACHD	North Slough
37	3n2e08_001	ACHD, Private	North Slough
38	3n2e08_004	ACHD	North Slough
39	3n2e08_013	ACHD	North Slough
40	3n2e08_031	ACHD	North Slough
41	3n2e10_004	ACHD	Boise City Canal
42	3n2e10_007	ACHD	Boise City Canal
43	3n2e10_011	ACHD	Julia Davis Pond
44	3n2e10_037	ACHD	Boise City Canal
45	3n2e10_045	ACHD	Boise City Canal
46	3n2e10_046	ACHD, Private	Boise River
47	3n2e11_005	ACHD	Boise City Canal
48	3n2e12_005	ACHD	Cottonwood Creek-Trib of
49	3n2e13_002	ACHD	Lake Heron
50	3n2e13_004	ACHD	Boise City Canal
51	3n2e13_008	ACHD	Logger Creek
52	3n2e15_006	ACHD	Ridenbaugh Canal
53	3n2e15_008	ACHD	Ridenbaugh Canal
54	3n2e16_011	ACHD	Ridenbaugh Canal
55	3n2e16_014	ACHD	Powell Lateral
56	3n2e16_021	ACHD	Ridenbaugh Canal
57	3n2e17_005	ACHD	Ridenbaugh Canal
58	3n2e17_008	ACHD	Farmer's Lateral
59	3n2e17_012	ACHD, Irrigation	Rust Lateral
60	3n2e17_020	ACHD	Farmer's Lateral
61	3n2e17_023	ACHD	Farmer's Lateral
62	3n2e17_038	ACHD	Ridenbaugh Ditch

This five-year outfall screening schedule has been developed to meet the Permit requirements according to the scheduling and prioritization approaches described in Section 2.2 of the Dry Weather Outfall Screening Plan.

Outfall Screening Schedule 2018-2019 cont.

#	Outfall ID	Ownership	Receiving Water
63	3n2e17_041	ACHD	Ridenbaugh Ditch
64	3n2e18_001	ACHD, Railroad	Ridenbaugh Canal
65	3n2e18_003	ACHD	Ridenbaugh Canal
66	3n2e18_005	ACHD	Ridenbaugh Canal
67	3n2e18_010	ACHD	Ridenbaugh Canal
68	3n2e18_013	ACHD	Farmer's Lateral
69	3n2e18_014	ACHD	Farmer's Lateral
70	3n2e18_018	ACHD	Ridenbaugh Ditch
71	3n2e20_002	ACHD	Penninger Lateral
72	3n2e20_013	ACHD	Threemile Lateral
73	3n2e20_014	ACHD	Threemile Lateral
74	3n2e20_015	ACHD	Threemile Lateral
75	3n2e20_016	ACHD	Penninger Secondary
76	3n2e20_018	ACHD	New York Canal
77	3n2e24_023	ACHD	Lake Heron Creek-south fork
78	3n2e24_024	ACHD	Logger Creek
79	3n2e26_003	ACHD	Ridenbaugh Canal
80	3n2e26_006	ACHD	Ridenbaugh Canal
81	3n2e28_002	ACHD	New York Canal
82	3n3e19_001	ACHD	Boise River-Trib to
83	3n3e30_005	ACHD	Ridenbaugh Canal
84	3n3e30_006	ACHD	Ridenbaugh Canal
85	4n1e13_002	ACHD	Eagle Drain
86	4n1e13_010	ACHD	Eagle Drain
87	4n1e13_017	ACHD	Eagle Drain
88	4n1e14_011	ACHD	Eagle Drain
89	4n1e23_004	ACHD	Elmore Drain
90	4n1e23_008	ACHD	Warm Springs Canal
91	4n1e23_009	ACHD	Dry Creek
92	4n1e24_021	ACHD	Elmore Drain
93	4n1e24_024	ACHD	Elmore Drain

#	Outfall ID	Ownership	Receiving Water
94	4n1e25_004	ACHD	Warm Springs Canal
95	4n1e25_005	ACHD	Warm Springs Canal
96	4n1e25_008	ACHD	Warm Springs Canal
97	4n1e25_013	ACHD	Warm Springs Canal
98	4n1e25_015	ACHD, ITD	Warm Springs Canal
99	4n1e25_019	ACHD	Thurman Mill Canal
100	4n1e25_022	ACHD, ITD	Thurman Mill Canal
101	4n1e26_001	ACHD	Thurman Mill Canal
102	4n1e26_011	ACHD	Thurman Mill Canal-Lateral
103	4n1e26_015	ACHD	Thurman Mill Canal
104	4n1e26_021	ACHD	Settler's Canal
105	4n1e26_030	ACHD	Settler's Canal
106	4n1e27_003	ACHD	Zinger Lateral
107	4n1e27_005	ACHD	Zinger Lateral
108	4n1e27_007	ACHD	Zinger Lateral
109	4n1e28_003	ACHD	McMillan Lateral
110	4n1e34_015	ACHD	North Slough
111	4n1e34_016	ACHD	North Slough
112	4n1e34_017	ACHD	North Slough
113	4n1e34_020	ACHD	Settler's Canal
114	4n1e34_024	ACHD	Karnes Lateral
115	4n1e35_008	ACHD	Zinger Lateral
116	4n1e36_014	ACHD	Settler's Canal
117	4n1e36_031	ACHD	Thurman Mill Canal
118	4n2e17_002	ACHD	Pierce Creek
119	4n2e18_009	ACHD	Eagle Drain
120	4n2e19_002	ACHD	Eagle Drain
121	4n2e19_008	ACHD	Lake Elmore
122	4n2e19_022	ACHD	Farmer's Union Canal
123	4n2e20_002	ACHD	Boise City Canal
124	4n2e26_004	ACHD	Crane Creek

This five-year outfall screening schedule has been developed to meet the Permit requirements according to the scheduling and prioritization approaches described in Section 2.2 of the Dry Weather Outfall Screening Plan.

Outfall Screening Schedule 2018-2019 cont.

#	Outfall ID	Ownership	Receiving Water
125	4n2e26_007	ACHD	Crane Creek
126	4n2e28_007	ACHD	Boise City Canal
127	4n2e29_003	ACHD	Stewart Gulch
128	4n2e30_013	ACHD	Dry Creek Canal
129	4n2e31_004	ACHD	Davis Drain
130	4n2e31_007	ACHD	Davis Drain
131	4n2e31_016	ACHD	Davis Drain
132	4n2e32_006	ACHD	Boise River
133	4n2e32_015	ACHD	Boise River
134	4n2e33_004	ACHD	Boise City Canal
135	4n2e33_009	ACHD	Boise City Canal
136	4n2e34_012	ACHD	Crane Creek
137	4n2e34_015	ACHD	Crane Creek
138	4n2e34_017	ACHD	Crane Creek
139	4n2e34_022	ACHD	Hulls Gulch
140	4n2e34_026	ACHD	Hulls Gulch

Outfall Screening Schedule 2019-2020

#	Outfall ID	Ownership	Receiving Water
1	3n1e01_010	ACHD	North Slough
2	3n1e01_012	ACHD	North Slough
3	3n1e01_014	ACHD	North Slough
4	3n1e01_015	ACHD	Eggers Lateral
5	3n1e02_003	ACHD	North Slough
6	3n1e02_004	ACHD	North Slough
7	3n1e02_008	ACHD	South Slough
8	3n1e02_013	ACHD	North Slough
9	3n1e03_010	ACHD	Settler's Canal
10	3n1e03_012	ACHD	South Slough
11	3n1e03_015	ACHD	Settler's Canal
12	3n1e10_003	ACHD	Settler's Canal Lateral
13	3n1e11_002	ACHD	Chaffin Drain
14	3n1e11_011	ACHD	Collis Lateral
15	3n1e12_013	ACHD	South Slough
16	3n1e15_004	ACHD	Fivemile Creek
17	3n1e16_003	ACHD	Synder Lateral
18	3n1e22_001	ACHD	Fivemile Creek
19	3n1e22_002	ACHD	Fivemile Creek
20	3n1e23_005	ACHD	Farmer's Lateral
21	3n1e23_012	ACHD	Fivemile Creek
22	3n1e23_014	ACHD	Fivemile Creek
23	3n1e24_003	ACHD	Fivemile Creek
24	3n2e03_008	ACHD	Boise City Canal
25	3n2e03_013	ACHD	Boise City Canal
26	3n2e04_001	ACHD	Settler's Canal Lateral
27	3n2e04_014	ACHD, ITD	Settler's Canal Lateral
28	3n2e05_002	ACHD, Irrigation	Settler's Canal
29	3n2e05_009	ACHD, Private	Davis Drain
30	3n2e05_010	ACHD, Private	Davis Drain
31	3n2e05_019	ACHD	Davis Drain

#	Outfall ID	Ownership	Receiving Water
32	3n2e05_041	ACHD	Thurman Mill Canal
33	3n2e06_002	ACHD	North Slough
34	3n2e06_003	ACHD	Ash Lateral
35	3n2e06_014	ACHD	North Slough
36	3n2e06_019	ACHD	Davis Drain
37	3n2e06_020	ACHD	Davis Drain
38	3n2e07_005	ACHD	North Slough
39	3n2e07_009	ACHD, Railroad	Ridenbaugh Canal
40	3n2e07_020	ACHD	North Slough
41	3n2e08_008	ACHD, Private	North Slough
42	3n2e08_010	ACHD, Private	North Slough
43	3n2e08_012	ACHD	North Slough
44	3n2e08_028	ACHD	North Slough
45	3n2e08_029	ACHD, Private	Tuttle Lateral
46	3n2e09_024	ACHD	Boise River
47	3n2e10_008	ACHD	Boise City Canal
48	3n2e10_023	ACHD, Boise City	Boise River
49	3n2e10_024	ACHD	Boise River
50	3n2e10_042	ACHD	Boise City Canal
51	3n2e11_001	ACHD	Boise City Canal
52	3n2e11_004	ACHD	Boise City Canal
53	3n2e11_009	ACHD, Boise City	Cottonwood Creek
54	3n2e12_004	ACHD	Cottonwood Creek-Trib of
55	3n2e13_006	ACHD	Boise City Canal
56	3n2e14_028	ACHD	Bubb Canal
57	3n2e15_009	ACHD	Ridenbaugh Canal
58	3n2e15_023	ACHD	Ridenbaugh Canal
59	3n2e15_024	ACHD	Ridenbaugh Canal
60	3n2e16_005	ACHD	Ridenbaugh Canal
61	3n2e16_007	ACHD, Irrigation	Ridenbaugh Canal
62	3n2e16_008	ACHD	Ridenbaugh Canal

This five-year outfall screening schedule has been developed to meet the Permit requirements according to the scheduling and prioritization approaches described in Section 2.2 of the Dry Weather Outfall Screening Plan.

Outfall Screening Schedule 2019-2020 cont.

#	Outfall ID	Ownership	Receiving Water
63	3n2e16_009	ACHD	Ridenbaugh Canal
64	3n2e16_022	ACHD	Ridenbaugh Canal
65	3n2e16_023	ACHD	Ridenbaugh Canal
66	3n2e17_018	ACHD	Farmer's Lateral
67	3n2e17_021	ACHD, Private	Farmer's Lateral
68	3n2e17_025	ACHD	Farmer's Lateral
69	3n2e17_034	ACHD, Private	Ridenbaugh Canal
70	3n2e18_009	ACHD, Irrigation	Ridenbaugh Canal
71	3n2e20_006	ACHD	Threemile Creek
72	3n2e22_014	ACHD	Bennett Lateral
73	3n2e23_013	ACHD	Bubb Canal
74	3n2e23_016	ACHD, Private	Unnamed Ditch
75	3n2e24_004	ACHD	Boise City Canal
76	3n2e24_030	ACHD	Watson Drain
77	3n2e24_041	ACHD	Boise River
78	3n2e25_001	ACHD	Ridenbaugh Canal
79	3n2e26_004	ACHD, ITD	Ridenbaugh Canal
80	3n2e27_003	ACHD	New York Canal
81	3n2e36_003	ACHD	Fivemile Creek-Trib. to
82	3n2e36_006	ACHD	Fivemile Creek-Trib. to
83	3n2e36_007	ACHD	Fivemile Creek-Trib. to
84	4n1e13_008	ACHD	Eagle Drain
85	4n1e13_016	ACHD	Eagle Drain
86	4n1e14_013	ACHD	Eagle Drain
87	4n1e23_005	ACHD	Elmore Drain
88	4n1e24_004	ACHD	Elmore Drain
89	4n1e25_010	ACHD	Warm Springs Canal
90	4n1e25_011	ACHD, Private	Warm Springs Canal
91	4n1e25_030	ACHD	Warm Springs Canal
92	4n1e25_034	ACHD	Warm Springs Canal
93	4n1e25_037	ACHD	Warm Spring Canal

#	Outfall ID	Ownership	Receiving Water
94	4n1e26_005	ACHD	Settler's Canal
95	4n1e26_014	ACHD	Thurman Mill Canal-Lateral
96	4n1e26_017	ACHD	Helm Lateral
97	4n1e27_001	ACHD	Zinger Lateral
98	4n1e28_007	ACHD	McMillan Lateral
99	4n1e28_008	ACHD	McMillan Lateral
100	4n1e33_003	ACHD	North Slough
101	4n1e33_004	ACHD	North Slough
102	4n1e33_006	ACHD	North Slough
103	4n1e34_007	ACHD	Shavrer Lateral
104	4n1e34_019	ACHD	Karnes Lateral
105	4n1e34_021	ACHD	Shavrer Lateral
106	4n1e35_007	ACHD	Zinger Lateral
107	4n1e36_002	ACHD	Settler's Canal
108	4n1e36_007	ACHD	Settler's Canal
109	4n1e36_010	ACHD	Settler's Canal
110	4n2e18_006	ACHD	Pierce Creek
111	4n2e19_004	ACHD	Eagle Drain
112	4n2e19_005	ACHD	Eagle Drain
113	4n2e19_014	ACHD	Eagle Drain
114	4n2e19_017	ACHD	Eagle Drain
115	4n2e19_025	ACHD	Eagle Drain
116	4n2e19_026	ACHD	Eagle Drain
117	4n2e26_005	ACHD	Crane Creek
118	4n2e26_008	ACHD	Crane Creek
119	4n2e28_005	ACHD	Stewart Gulch
120	4n2e28_009	ACHD	Boise City Canal
121	4n2e29_002	ACHD	Boise City Canal
122	4n2e29_007	ACHD	Farmer's Union Canal
123	4n2e30_008	ACHD	Dry Creek Canal
124	4n2e30_011	ACHD	Dry Creek Canal

This five-year outfall screening schedule has been developed to meet the Permit requirements according to the scheduling and prioritization approaches described in Section 2.2 of the Dry Weather Outfall Screening Plan.

Outfall Screening Schedule 2019-2020 cont.

#	Outfall ID	Ownership	Receiving Water
125	4n2e30_014	ACHD	Boise River
126	4n2e31_003	ACHD	Settler's Canal
127	4n2e31_012	ACHD, Private	Thurman Mill Canal
128	4n2e31_015	ACHD	Boise River
129	4n2e31_022	ACHD	Davis Drain
130	4n2e32_008	ACHD	Boise River
131	4n2e32_009	ACHD	Farmer's Union Canal
132	4n2e34_001	ACHD	Crane Creek
133	4n2e34_004	ACHD	Crane Creek
134	4n2e34_011	ACHD	Crane Creek
135	4n2e34_018	ACHD	Crane Creek
136	4n2e34_019	ACHD	Crane Creek
137	4n2e34_020	ACHD	Crane Creek
138	4n2e34_021	ACHD	Hulls Gulch
139	4n2e34_025	ACHD	Hulls Gulch
140	4n2e35_001	ACHD	Hulls Gulch

Outfall Screening Schedule 2020-2021

#	Outfall ID	Ownership	Receiving Water
1	2n3e07_003	ACHD	Fivemile Creek
2	3n1e01_006	ACHD	North Slough
3	3n1e02_002	ACHD	North Slough
4	3n1e02_011	ACHD	South Slough
5	3n1e02_014	ACHD	North Slough
6	3n1e03_004	ACHD	North Slough
7	3n1e03_011	ACHD	South Slough
8	3n1e03_014	ACHD	Settler's Canal
9	3n1e03_017	ACHD	South Slough
10	3n1e10_007	ACHD	Settler's Canal Lateral
11	3n1e10_009	ACHD	Settler's Canal
12	3n1e11_001	ACHD	Ridenbaugh Canal
13	3n1e11_003	ACHD	South Slough
14	3n1e11_010	ACHD	Collis Lateral
15	3n1e12_001	ACHD	South Slough
16	3n1e12_003	ACHD	South Slough
17	3n1e12_004	ACHD	South Slough
18	3n1e12_008	ACHD	Ridenbaugh Canal
19	3n1e12_025	ACHD	Ridenbaugh Canal
20	3n1e12_030	ACHD	Ridenbaugh Canal
21	3n1e15_001	ACHD, Irrigation	Ridenbaugh Canal
22	3n1e15_014	ACHD	Fivemile Creek
23	3n1e23_001	ACHD	Fivemile Creek
24	3n1e23_013	ACHD	Fivemile Creek
25	3n2e03_005	ACHD	Boise City Canal
26	3n2e03_015	ACHD	Boise City Canal
27	3n2e04_015	ACHD	Lowell Drain
28	3n2e04_016	ACHD	Crane Creek
29	3n2e04_020	ACHD	Boise City Canal
30	3n2e04_024	ACHD	Crane Creek
31	3n2e05_015	ACHD	Davis Drain

#	Outfall ID	Ownership	Receiving Water
32	3n2e06_010	ACHD, ITD	Davis Drain
33	3n2e06_022	ACHD	Ash Lateral
34	3n2e06_023	ACHD	North Slough
35	3n2e07_010	ACHD	Ridenbaugh Canal
36	3n2e07_015	ACHD	Ridenbaugh Canal
37	3n2e07_019	ACHD	Ridenbaugh Canal
38	3n2e08_005	ACHD, Private	North Slough
39	3n2e08_016	ACHD	North Slough
40	3n2e08_024	ACHD	North Slough
41	3n2e08_025	ACHD	North Slough
42	3n2e08_030	ACHD	North Slough
43	3n2e09_025	ACHD	Boise River
44	3n2e10_001	ACHD, Private	Boise City Canal
45	3n2e10_012	ACHD	Boise River
46	3n2e10_039	ACHD	Boise City Canal
47	3n2e14_001	ACHD	Logger Creek
48	3n2e14_012	ACHD	Boise River
49	3n2e14_013	ACHD	Boise River
50	3n2e14_019	ACHD	Logger Creek
51	3n2e15_001	ACHD	Ridenbaugh Canal
52	3n2e15_010	ACHD	Ridenbaugh Canal
53	3n2e15_011	ACHD	Ridenbaugh Canal
54	3n2e16_001	ACHD	Powell Lateral
55	3n2e17_007	ACHD	Ridenbaugh Canal
56	3n2e17_010	ACHD	Rust Lateral
57	3n2e17_015	ACHD	Ridenbaugh Canal
58	3n2e17_024	ACHD	Farmer's Lateral
59	3n2e17_031	ACHD	Rust Lateral
60	3n2e17_032	ACHD	Ridenbaugh Canal
61	3n2e17_033	ACHD	Ridenbaugh Canal
62	3n2e17_042	ACHD	Ridenbaugh Ditch

This five-year outfall screening schedule has been developed to meet the Permit requirements according to the scheduling and prioritization approaches described in Section 2.2 of the Dry Weather Outfall Screening Plan.

Outfall Screening Schedule 2020-2021 cont.

#	Outfall ID	Ownership	Receiving Water
63	3n2e18_016	ACHD	Ridenbaugh Canal
64	3n2e18_019	ACHD	Ridenbaugh Ditch
65	3n2e19_004	ACHD	Threemile Creek
66	3n2e20_009	ACHD	Threemile Lateral
67	3n2e20_011	ACHD	Threemile Lateral
68	3n2e20_020	ACHD	Threemile Creek
69	3n2e20_021	ACHD	Threemile Creek
70	3n2e22_004	ACHD	Ridenbaugh Canal
71	3n2e23_002	ACHD	Logger Creek
72	3n2e23_005	ACHD	Logger Creek
73	3n2e23_007	ACHD	Bubb Canal
74	3n2e24_006	ACHD	Boise River
75	3n2e24_007	ACHD	Boise City Canal
76	3n2e24_015	ACHD, Private	Lake Heron-lateral of
77	3n2e24_031	ACHD	Watson Drain
78	3n2e27_001	ACHD	New York Canal
79	3n2e27_004	ACHD, ITD	New York Canal
80	3n2e32_001	ACHD	Fivemile Creek
81	3n2e33_001	ACHD	Fivemile Creek
82	3n3e20_001	ACHD	Penitentiary Canal
83	4n1e13_009	ACHD	Eagle Drain
84	4n1e13_011	ACHD	Eagle Drain
85	4n1e21_001	ACHD, Private	Thurman Mill Canal
86	4n1e23_001	ACHD	Dry Creek
87	4n1e23_002	ACHD	Elmore Drain
88	4n1e23_003	ACHD	Elmore Drain
89	4n1e24_008	ACHD	Elmore Drain
90	4n1e24_012	ACHD	Elmore Drain
91	4n1e24_026	ACHD	Boise River
92	4n1e25_006	ACHD	Warm Springs Canal
93	4n1e25_007	ACHD	Warm Springs Canal

#	ID_OFPT	OWNERSHIP	REC_WATER
94	4n1e25_009	ACHD	Warm Springs Canal
95	4n1e25_027	ACHD	Thurman Mill Canal
96	4n1e26_002	ACHD	Thurman Mill Canal
97	4n1e26_013	ACHD	Thurman Mill Canal-Lateral
98	4n1e26_016	ACHD	Thurman Mill Canal
99	4n1e26_020	ACHD	Thurman Mill Canal
100	4n1e27_006	ACHD	Zinger Lateral
101	4n1e28_001	ACHD	Zinger Lateral
102	4n1e28_002	ACHD	McMillan Lateral
103	4n1e33_005	ACHD	North Slough
104	4n1e34_003	ACHD	Karnes Lateral
105	4n1e34_009	ACHD	Karnes Lateral
106	4n1e34_011	ACHD, Irrigation	Shavrer Lateral
107	4n1e34_018	ACHD	Karnes Lateral
108	4n1e35_002	ACHD	Settler's Canal
109	4n1e35_004	ACHD	Settler's Canal
110	4n1e36_004	ACHD	Settler's Canal
111	4n1e36_006	ACHD	Settler's Canal
112	4n1e36_012	ACHD	Settler's Canal
113	4n1e36_026	ACHD	Settler's Canal
114	4n1e36_029	ACHD	Settler's Canal
115	4n2e17_001	ACHD, Private	Pierce Creek
116	4n2e19_006	ACHD	Eagle Drain
117	4n2e19_015	ACHD	Eagle Drain
118	4n2e19_019	ACHD	Eagle Drain
119	4n2e19_030	ACHD, Irrigation	Eagle Drain
120	4n2e20_001	ACHD	Boise City Canal
121	4n2e21_001	ACHD	Stewart Gulch
122	4n2e26_003	ACHD	Crane Creek
123	4n2e26_009	ACHD	Crane Creek
124	4n2e28_003	ACHD	Boise City Canal

This five-year outfall screening schedule has been developed to meet the Permit requirements according to the scheduling and prioritization approaches described in Section 2.2 of the Dry Weather Outfall Screening Plan.

Outfall Screening Schedule 2020-2021 cont.

#	Outfall ID	Ownership	Receiving Water		
125	4n2e28_006	ACHD	Boise City Canal		
126	4n2e29_001	ACHD	Boise City Canal		
127	4n2e29_008	ACHD	Boise Valley Canal		
128	4n2e30_009	ACHD	Boise Valley Canal		
129	4n2e31_001	ACHD	Thurman Mill Canal		
130	4n2e31_008	ACHD	Davis Drain		
131	4n2e31_011	ACHD	Davis Drain		
132	4n2e32_007	ACHD	Boise River		
133	4n2e32_013	ACHD, Private	Crane Creek		
134	4n2e32_026	ACHD	Boise Valley Canal		
135	4n2e33_002	ACHD	Boise City Canal		
136	4n2e34_003	ACHD	Crane Creek		
137	4n2e34_008	ACHD	Crane Creek		
138	4n2e34_016	ACHD	Crane Creek		
139	4n2e34_024	ACHD	Hulls Gulch		
140	4n2e35_003	ACHD	Hulls Gulch-Lateral of		

Outfall Screening Schedule 2021-2022

#	Outfall ID	Ownership	Receiving Water		
1	2n3e07_006	ACHD, Private	Fivemile Creek		
2	3n1e01_005	ACHD	Fitz Lateral		
3	3n1e01_011	ACHD	North Slough		
4	3n1e02_005	ACHD	North Slough		
5	3n1e02_012	ACHD	North Slough		
6	3n1e03_013	ACHD	South Slough		
7	3n1e10_004	ACHD	Gruber Lateral		
8	3n1e11_004	ACHD	South Slough		
9	3n1e11_005	ACHD	Cloverdale Lateral		
10	3n1e11_007	ACHD	Ridenbaugh Canal		
11	3n1e11_009	ACHD	Collis Lateral		
12	3n1e12_022	ACHD	Ridenbaugh Canal		
13	3n1e12_023	ACHD	Ridenbaugh Canal		
14	3n1e12_024	ACHD	Ridenbaugh Canal		
15	3n1e12_050	ACHD	South Slough		
16	3n1e14_001	ACHD	Wilson Fruit Lateral		
17	3n1e14_005	ACHD	Huntington Lateral		
18	3n1e14_012	ACHD	Huntington Lateral		
19	3n1e14_013	ACHD	Huntington Lateral		
20	3n1e15_005	ACHD	Fivemile Creek		
21	3n1e15_009	ACHD	Ridenbaugh Canal		
22	3n1e15_013	ACHD	Fivemile Creek		
23	3n1e23_007	ACHD	Fivemile Creek		
24	3n1e23_010	ACHD	Fivemile Creek		
25	3n1e23_011	ACHD	Fivemile Creek		
26	3n1e24_006	ACHD	Fivemile Creek		
27	3n2e03_001	ACHD	Boise City Canal		
28	3n2e03_002	ACHD	Boise City Canal		
29	3n2e03_007	ACHD	Boise City Canal		
30	3n2e04_005	ACHD, Private	Settler's Canal Lateral		
31	3n2e04_008	ACHD	Boise River		

#	Outfall ID	Ownership	Receiving Water
32	3n2e04_010	ACHD	Boise River
33	3n2e04_017	ACHD	Boise City Canal
34	3n2e04_021	ACHD	Boise City Canal
35	3n2e05_001	ACHD	Davis Drain
36	3n2e05_011	ACHD	Boise River
37	3n2e05_012	ACHD	Thurman Mill Canal
38	3n2e05_013	ACHD	Settler's Canal
39	3n2e05_027	ACHD	Davis Drain
40	3n2e05_028	ACHD	Thurman Mill Canal
41	3n2e05_030	ACHD, Private	Davis Drain
42	3n2e05_039	ACHD	Davis Drain
43	3n2e05_040	ACHD	Thurman Mill Canal
44	3n2e06_006	ACHD	North Slough
45	3n2e06_008	ACHD	North Slough
46	3n2e06_013	ACHD	North Slough
47	3n2e06_021	ACHD	Davis Drain
48	3n2e07_001	ACHD	North Slough
49	3n2e08_009	ACHD	North Slough
50	3n2e08_017	ACHD	North Slough
51	3n2e08_018	ACHD	North Slough
52	3n2e08_023	ACHD, Private	North Slough
53	3n2e09_027	ACHD	Boise River
54	3n2e09_028	ACHD	Boise River
55	3n2e10_002	ACHD	Boise City Canal
56	3n2e10_003	ACHD	Boise City Canal
57	3n2e10_010	ACHD	Julia Davis Pond
58	3n2e10_038	ACHD	Boise City Canal
59	3n2e11_002	ACHD	Boise City Canal
60	3n2e13_005	ACHD	Boise City Canal
61	3n2e14_002	ACHD	Logger Creek
62	3n2e15_004	ACHD	Ridenbaugh Canal

This five-year outfall screening schedule has been developed to meet the Permit requirements according to the scheduling and prioritization approaches described in Section 2.2 of the Dry Weather Outfall Screening Plan.

Outfall Screening Schedule 2021-2022 cont.

#	Outfall ID	Ownership	Receiving Water		
63	3n2e16_010	ACHD	Ridenbaugh Canal		
64	3n2e17_002	ACHD	Ridenbaugh Canal		
65	3n2e17_006	ACHD	Ridenbaugh Canal		
66	3n2e17_037	ACHD	Ridenbaugh Ditch		
67	3n2e18_002	ACHD	Ridenbaugh Canal		
68	3n2e18_015	ACHD	Farmer's Lateral		
69	3n2e20_010	ACHD	Threemile Lateral		
70	3n2e22_016	ACHD	Ridenbaugh Canal		
71	3n2e23_001	ACHD	Logger Creek		
72	3n2e23_003	ACHD	Logger Creek		
73	3n2e23_006	ACHD	Bubb Canal		
74	3n2e23_014	ACHD	Bubb Canal		
75	3n2e23_015	ACHD	Bubb Canal		
76	3n2e24_025	ACHD	Logger Creek		
77	3n2e24_028	ACHD	Watson Drain-Lateral		
78	3n2e24_040	ACHD	Logger Creek		
79	3n2e25_002	ACHD	Ridenbaugh Canal		
80	3n2e25_003	ACHD	New York Canal		
81	3n2e26_002	ACHD	Ridenbaugh Canal		
82	3n2e27_002	ACHD	New York Canal		
83	3n2e27_005	ACHD	New York Canal		
84	3n2e34_001	ACHD	Fivemile Creek		
85	3n2e36_004	ACHD	Fivemile Creek-Trib. to		
86	3n2e36_005	ACHD	Fivemile Creek-Trib. to		
87	3n2e36_009	ACHD	Fivemile Creek-Trib. to		
88	3n2e36_010	ACHD	Fivemile Creek-Trib. to		
89	3n2e36_014	ACHD	Fivemile Creek		
90	3n3e29_002	ACHD	Ridenbaugh Canal		
91	4n1e13_001	ACHD	Eagle Drain		
92	4n1e13_004	ACHD	Eagle Drain		
93	4n1e13_019	ACHD	Eagle Drain		

#	Outfall ID	Ownership	Receiving Water
94	4n1e13_020	ACHD	Eagle Drain
95	4n1e14_004	ACHD	Eagle Drain
96	4n1e14_012	ACHD	Eagle Drain
97	4n1e24_001	ACHD	Eagle Drain-lateral of
98	4n1e24_002	ACHD	Eagle Drain-lateral of
99	4n1e24_007	ACHD	Elmore Drain
100	4n1e24_023	ACHD	Elmore Drain
101	4n1e24_025	ACHD	Elmore Drain
102	4n1e25_036	ACHD	Warm Springs Canal
103	4n1e26_004	ACHD	Thurman Mill Canal
104	4n1e26_009	ACHD	Warm Springs Canal
105	4n1e27_004	ACHD	Zinger Lateral
106	4n1e28_005	ACHD	McMillan Lateral
107	4n1e33_007	ACHD	North Slough
108	4n1e33_008	ACHD	North Slough
109	4n1e34_014	ACHD	North Slough
110	4n1e34_023	ACHD	Karnes Lateral
111	4n1e34_025	ACHD	Karnes Lateral
112	4n1e35_003	ACHD	Settler's Canal
113	4n1e36_001	ACHD	Settler's Canal
114	4n1e36_005	ACHD	Settler's Canal
115	4n1e36_008	ACHD	Settler's Canal
116	4n2e18_003	ACHD	Pierce Creek
117	4n2e18_005	ACHD	Pierce Creek
118	4n2e18_007	ACHD	Eagle Drain
119	4n2e19_003	ACHD	Eagle Drain
120	4n2e19_013	ACHD	Eagle Drain
121	4n2e19_021	ACHD	Eagle Drain
122	4n2e19_028	ACHD	Eagle Drain
123	4n2e26_002	ACHD	Crane Creek
124	4n2e28_010	ACHD	Stewart Gulch

This five-year outfall screening schedule has been developed to meet the Permit requirements according to the scheduling and prioritization approaches described in Section 2.2 of the Dry Weather Outfall Screening Plan.

Outfall Screening Schedule 2021-2022 cont.

#	Outfall ID	Ownership	Receiving Water		
125	4n2e29_004	ACHD	Eagle Drain		
126	4n2e29_006	ACHD	Farmer's Union Canal		
127	4n2e29_011	ACHD	Boise City Canal		
128	4n2e30_007	ACHD	Stewart Gulch		
129	4n2e31_006	ACHD	Davis Drain		
130	4n2e31_023	ACHD	Davis Drain		
131	4n2e32_010	ACHD	Farmer's Union Canal		
132	4n2e32_011	ACHD	Farmer's Union Canal		
133	4n2e32_017	ACHD	Farmer's Union Canal		
134	4n2e33_005	ACHD	Boise City Canal		
135	4n2e33_010	ACHD	Boise City Canal		
136	4n2e34_002	ACHD	Crane Creek		
137	4n2e34_005	ACHD	Crane Creek		
138	4n2e34_006	ACHD	Crane Creek		
139	4n2e34_014	ACHD	Crane Creek		
140	4n2e34_023	ACHD	Hulls Gulch		

Appendix B: Standard Operating Procedures and Procedure Guidance for Dry Weather Outfall Screening

- SOP110 Discrete Grab Sample Collection
- SOP111 Low Flow Grab Sample Collection
- SOP112 Large Volume Grab Sample Collection
- SOP114 Field Filtering Procedures
- SOP116 Outfall Discharge Estimation Bucket Method
- SOP312 YSI Model 85 Multi-parameter Meter Operation, Calibration and Maintenance
- SOP313 pH Meter Operation, Calibration and Maintenance
- SOP318 Flow Probe Operation
- PG116 Visual Flow Qualification
- Hach Stormwater Test Kit User Manual
- PHD6 Gas Monitor User Manual
- Hach 2100q Turbidity Meter User Manual

A discrete grab sample is defined as an aliquot representative of a specific location at a given point in time. The sample is collected all at once at one particular point in the sample medium.

Application:

This standard operating procedures (SOP) is intended to assist sampling personnel in the collection of a single discrete grab sample of water. This SOP is to describe procedures for collecting a discrete grab sample from flowing water in a conveyance. The sample collection should be taken through a manhole, at an outfall or point of discharge. This SOP is not appropriate for low flow conditions or large volume containers where multiple grabs are needed to fill a sample bottle. See SOP111 and SOP112 for these specific applications.

Considerations:

Due to the variable nature of field work, advance planning and preparation is necessary. Consider the following:

- * Discrete grab sample collection may be performed during all weather conditions, day or night.
- * Dress appropriately for weather and traffic conditions.
- * Keep work areas lit to reduce accidents and prevent contamination.
- * Visit the sampling location prior to sampling to determine the best sampling approach.
- * Most often the sampling location will be established and documented in a sampling plan. If this is not the case, assess sampling location and conditions to determine the best approach for sample collection.
 - o Is a swing sampler needed or can the sample be safely collected by hand?
 - Is traffic control needed to access the sample location? If so, a two-person crew is required.
- * What supplies will be needed?
- * Pre-label sample containers, when possible.
- * Prepare extra sampling containers in case a cap is dropped or container breakage.
- * Extensive documentation is required if deviations from the standard operating procedures are required.
- * Ensure that all required sample equipment is present.
- * Be careful to minimize influence on ambient water quality conditions.

Procedures:

If sample collection will be performed using a swing sampler, follow swing sampler grab steps 1-13. If sample will be collected directly by hand, proceed to hand grab steps 1-9. Procedure should be followed in the order presented here, to prevent contamination of samples.

Discrete Grab with Swing Sampler

- 1. Put on one pair of sanitary disposable nitrile gloves.
- 2. Extend the sampling pole to the length appropriate to reach the sample location.

- 3. Attach sample container to the swing sampler securely, depending on flow conditions.
 - Slow to moderate flow, use 2-3 heavy duty rubber bands;
 - Fast flow, use zip ties;
 - When in doubt, use more supplies to keep from losing sampling jars.
- 4. Remove the sample bottle lid to a safe and clean area.
 - If single sampler, place cap face down on cooler lid or other stable surface.
 - If two-member sampling team, assistant should hold cap face down.
- 5. Lower the sample container attached to the swing sampler towards the flow making sure not to touch the surroundings with the sampling bottle.
 - Take extra care not to disturb sides of manhole with swing sampler. Debris can easily be dislodged and fall into the sample container.
- 6. Maneuver the sampling pole so flow contacts the sample container opening directly, and opening is oriented upstream [figure 1].
- 7. Plunge the sample bottle to the middle of the flow depth, if possible. If water is too deep, sample should be collected just below the surface of water. Slowly raise the swing sampler.
- 8. If cascading flow, collect sample in middle of flow as it cascades, discharging into the water body.
- 9. If sampling inside a manhole, collect the sample from the inlet pipe if the configuration allows.
- 10. If sampling for *E.coli* fill the sample container to the specified fill line.
- 11. For all other samples completely fill the sample container to minimize air in the sample container.
- 12. Raise the pole and carefully cap sample container.
 - If single sampler, slide hands up the swing sample, keeping the sample container level, until capping container is within reach.
 - If two-member sampling team, assistant can easily cap sample bottle.
- 13. Label sample container with sample name and collection date and time with black sharpie or *"Rite in the Rain"* pen.
- 14. Record sample information on field form.
- 15. Place sample container in cooler on ice.
- 16. Repeat steps 2-12 for collection of additional samples.
- 17. Deliver samples to laboratory with completed chain of custody.

Discrete Grab by Hand

- Put on one pair of sanitary disposable nitrile gloves.
 Demove the comple bettle lid to a cofe and
- 2. Remove the sample bottle lid to a safe and clean area.

Figure 1 Swing Sampler Positioning

- If single sampler, place cap face down on cooler lid or other stable surface.
- If two-member sampling team, assistant should hold cap face down.
- 3. Orient bottle with opening opposite direction of flow and gloved hand behind bottle.
 - Water should flow directly into sample bottle opening, without flowing over bottle or hand. [Figure 2]
- 4. If cascading flow, collect sample in middle of flow as it cascades, discharging to water body.
- 5. Plunge the sample bottle to the middle of the flow depth, if possible. If water is too deep, sample should be collected just below the surface of water.
- 6. If sampling for *E.coli* fill the sample container to the specified fill line.

- 7. For all other samples completely fill the sample container to minimize air in the sample container.
- 8. Carefully cap sample container.
- 9. Label sample container with sample name and collection date and time with black sharpie or *"Rite in the Rain"*® pen.
- 10. Record sample information on field form.
- 11. Place sample container in cooler on ice.
- 12. Repeat steps 1-9 for collection of additional samples.
- 13. Deliver samples to the laboratory with completed chain of custody.

Figure 2: Container orientation by hand. Water flows into container directly. Gloved hand behind container.

Prepared by Monica Lowe, ACHD, Stormwater Quality Specialist

Revised by Monica Lowe, ACHD, Stormwater Quality Specialist_

Reviewed by Ted Douglass, Brown and Caldwell, Project Manager_

Monicar Lowe Monicar Lowe

SOP111- Low Flow Grab Sample Collection

A Low flow grab sample is operationally defined as multiple aliquots collected consecutively, with minimal lag time between aliquots, when flow conditions prevent a single aliquot sample.

Application:

This SOP is intended as a reference for sampling personnel in the collection of grab samples when a discrete grab sample (single aliquot of sample in a single point of time) is not possible due to low flow conditions. Low flow situations occur when the volume of flow is such that collecting an entire sample volume with one discrete grab sample aliquot is not possible. During these situations, ACHD and the Boise WQL will identify designated bottles to be used to transfer small aliquots of sample into a second container, until sufficient volume is achieved for laboratory analyses.

Considerations:

Due to the variable nature of field work, advance planning and preparation is necessary. Consider the following:

- * Low flow grab sample collection may be performed during all weather conditions, day or night;
- * Dress appropriately for weather and traffic conditions;
- * Keep work areas lit to reduce accidents and prevent contamination;
- * Visit the sampling location prior to sampling to determine the best sampling approach for sample collection;
 - o Is a swing sampler needed or can the sample be safely collected by hand?
 - Is traffic control needed to access the sample location? If so, a two-person crew is required.
- * Prepare extra sampling containers in case a cap is dropped or container breakage.
- * Be prepared for low flow grab sample collection. Know which designated bottles will be used as transfer containers.
- * Extensive documentation is required if deviations from the standard operating procedures are required.
- * Ensure that all required sample equipment is present.
- * Be careful to minimize influence on ambient water quality conditions.

Procedures:

If sample collection will be performed using a swing sampler, follow swing sampler grab steps 1-19. If sample will be collected directly by hand, proceed to hand grab steps 1 - 27. Procedure should be followed in the order presented here, to prevent contamination of samples.

Low Flow Grab with Swing Sampler

- 1. Put on one pair of sanitary disposable nitrile gloves.
- 2. Extend the sampling pole to the length appropriate to reach the sample location.
- 3. Position receiving container on a flat surface, within reach of the sample location.
 - Setting the receiving container in an open cooler works well to stabilize the sample container during sample transfers.
- 4. Select designated sample container for transfer.

1

- The transfer container should be appropriate for the analysis performed according to 40 CFR 136. The transfer container should be identified by ACHD or WQL and should be labeled accordingly;
- As a general rule, use the same type of transfer bottle as the one you will be submitting for analyses;
- The transfer container should be prepared by the laboratory in the same manner as the sample container being filled. If in doubt, contact the laboratory where the sample will be submitted.
- 5. Attach sample container to the swing sampler securely, with 2-3 heavy duty rubber bands.
- 6. If single sampler, loosen cap of receiving bottle and set lid loosely on top to cover opening.
- 7. Maneuver the sampling pole so flow contacts the sample container opening directly and opening is oriented upstream [Figure 1].
- 8. Plunge the sample bottle to the middle of the flow depth, if possible. If water is too deep, sample should be collected just below the surface of water. Slowly raise the swing sampler.
- 9. If cascading flow, collect sample in middle of flow as it cascades, discharging into the water body.
- 10. If two-member sampling team, have assistant remove the lid on the receiving container.
- 11. Slowly pour transfer bottle contents into the receiving container while still attached to swing sampler.
 - If single sampler, slide hands down pole to transfer container and stabilize pole to pour into receiving container.
 - If two-member sample team, sampler should gently swing sampler over to assistant who will stabilize the swing sampler and transfer bottle and pour sample into receiving container.
- 12. Loosely cap receiving container.
- 13. Label receiving container with sample name and collection start time.
- 14. Repeat collecting aliquots of sample until bottle is full or adequate sample volume for analysis. This should be done as quickly as possible to minimize lag time between sample aliquots.
- 15. Tightly cap receiving container.
- 16. Label receiving container with sample end time.
- 17. Record sample information on field form.
- 18. Place sample container in cooler on ice.
- 19. Deliver samples to laboratory with completed chain of custody.

Low Flow Grab by Hand

- 1. Put on one pair of sanitary disposable nitrile gloves.
- 2. Position receiving container on a flat surface, within reach of the sample location.
 - a. Setting the receiving container in an open cooler works well to stabilize the sample container during sample transfers.
- 3. Select designated sample container for transfer.
 - a. The transfer container should be appropriate for the analysis performed according to 40 CFR 136. The transfer container should be identified by ACHD or WQL and should be labeled accordingly;
 - b. As a general rule, use the same type of transfer bottle as the one you will be submitting for analyses;
 - c. The transfer container should be prepared by the laboratory in the same manner as the sample container being filled. If in doubt, contact the laboratory where the sample will be submitted.
- 4. If single sampler, loosen cap of receiving bottle and set lid loosely on top to cover opening.
- 5. Maneuver the sampling pole so flow contacts the sample container opening directly and opening is oriented upstream [Figure 1].

- 6. Plunge the sample bottle to the middle of the flow depth, if possible. If water is too deep, sample should be collected just below the surface of water. Slowly raise the swing sampler.
- 7. If cascading flow, collect sample in middle of flow as it cascades, discharging into the water body.
- 8. If two-member sampling team, have assistant remove the lid on the receiving container.
- 9. Carefully pour sample aliquot into receiving container.
- 20. Loosely cap receiving container.
- 21. Label receiving container with sample name and collection start time.
- 22. Repeat collecting aliquots of sample until bottle is full or adequate sample volume for analysis.
- 23. Tightly cap receiving container.
- 24. Label receiving container with sample end time.
- 25. Record sample information on field form.
- 26. Place sample container in cooler on ice.
- 27. Deliver samples to laboratory with completed chain of custody.

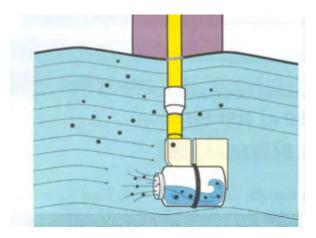


Figure 1: Swing sampler container orientation. Water flows directly into the sample container.

	water Quality Specialist Monicar . Lowe
Prepared by Monica Lowe, ACHD, Stormy	water Quality Specialist

Revised by Monica Lowe, ACHD, Stormwater Quality Specialist Monicar . Lowe

Reviewed by Ted Douglass, Brown and Caldwell, Program Manager____

A large volume grab sample is operationally defined as multiple aliquots of sample collected consecutively, with minimal lag time between aliquots, when laboratories request a larger volume for analysis than can be collected in a single container.

Application:

This standard operating procedure (SOP) is intended for sampling personnel in the collection of large volume grab samples when a discrete grab sample (single aliquot of sample in a single point of time) is not possible due to large sample volumes required by the laboratory. A discrete grab sample is preferred, but for certain analysis, a large volume of sample is needed by the laboratory to achieve desired detection limits. The large container, (Volumes > 1L) is often too cumbersome for a discrete grab sample, and too large to attach to a swing sampler. Therefore, a large container is filled by transferring small aliquots collected consecutively, with minimal lag time between aliquots, to achieve a large volume grab sample. ACHD and the Boise WQL will identify designated bottles to be used to transfer aliquots of sample into the large volume container.

Considerations:

Due to the variable nature of field work, advance planning and preparation is necessary. Consider the following:

- * Large volume flow grab sample collection may be performed during all weather conditions, day or night;
- * Dress appropriately for weather and traffic conditions;
- * Keep work areas lit to reduce accidents and prevent contamination;
- Visit the sampling location prior to sampling to determine the best sampling approach for sample collection;
 - o Is a swing sampler needed or can the sample be safely collected by hand?
 - $\circ\,$ Is traffic control needed to access the sample location? If so, a two-person crew is required.
- * Prepare extra sampling containers in case a cap is dropped or container breakage.
- * Be prepared for large volume grab sample collection. Know which designated bottles will be used as transfer containers.
- * Extensive documentation is required if deviations from the standard operating procedures are required.
- * Ensure that all required sample equipment is present.
- * Be careful to minimize influence on ambient water quality conditions.

Procedures:

If sample collection will be performed using a swing sampler, follow swing sampler grab steps 1-19. If sample will be collected directly by hand, proceed to hand grab steps 1 - 27. Procedure should be followed in the order presented here, to prevent contamination of samples.

Large Volume Grab Sample with Swing Sampler

1. Put on one pair of sanitary disposable nitrile gloves.

- 2. Extend the sampling pole to the length appropriate to reach the sample location.
- 3. Position receiving container on a flat surface, within reach of the sample location.
 - Setting the receiving container in an open cooler works well to stabilize the sample container during sample transfers;
 - 10 L carboys are often double bagged with polyethylene bags at the laboratory. Untie bags and push bags down around the outside of the container, so not to interfere with opening of the container.
- 4. Select designated sample container for transfer.
 - The transfer container should be appropriate for the analysis performed according to 40 CFR 136. The transfer container should be identified by ACHD or WQL and should be labeled accordingly;
 - As a general rule, use the same type of transfer bottle as the one you will be submitting for analyses;
 - The transfer container should be prepared by the laboratory in the same manner as the sample container being filled. If in doubt, contact the laboratory where the sample will be submitted.
- 5. Attach sample container to the swing sampler securely, depending on flow conditions.
 - Slow to moderate flow, use 2-3 heavy duty rubber bands;
 - Fast flow, use zip ties;
 - When in doubt, use more supplies to keep from losing sampling jars.
- 6. If single sampler, loosen cap of receiving bottle and set lid loosely on top to cover opening.
- 7. Maneuver the sampling pole so flow contacts the sample container opening directly, and opening is oriented upstream [Figure 1].
- 8. Plunge the sample bottle to the middle of the flow depth. If water is too deep, sample should be collected just below the surface of water. Slowly raise the swing sampler.
- 9. If cascading flow, collect sample in middle of flow as it cascades, discharging into the water body.
- 10. If two-member sampling team, have assistant remove the lid on the receiving container.
- 11. Slowly pour transfer bottle contents into the receiving container while still attached to swing sampler.
 - If single sampler, slide hands down pole to transfer container and stabilize pole to pour into receiving container.
 - If two-member sample team, sampler should gently swing sampler over to assistant who will stabilize the swing sampler and transfer bottle and pour sample into receiving container.
- 12. Loosely cap receiving container.
- 13. Label receiving container with sample name and collection start time.
- 14. Repeat collecting aliquots of sample until bottle is full or adequate sample volume for analysis. This should be done as quickly as possible to minimize lag time between sample aliquots.
- 15. Tightly cap receiving container.
- 16. Label receiving container with sample end time.
- 17. Record sample information on field form.
- 18. Place sample container in cooler on ice.
- 19. Deliver samples to laboratory with completed chain of custody.

Large Volume Grab by Hand

- 1. Put on one pair of sanitary disposable nitrile gloves.
- 2. Position receiving container on a flat surface, within reach of the sample location.
 - a. Setting the receiving container in an open cooler works well to stabilize the sample container during sample transfers.
- 3. Select designated sample container for transfer.

2

- a. The transfer container should be appropriate for the analysis performed according to 40 CFR 136. The transfer container should be identified by ACHD or WQL and should be labeled accordingly;
- b. As a general rule, use the same type of transfer bottle as the one you will be submitting for analyses;
- c. The transfer container should be prepared by the laboratory in the same manner as the sample container being filled. If in doubt, contact the laboratory where the sample will be submitted.
- 4. If single sampler, loosen cap of receiving bottle and set lid loosely on top to cover opening.
- 5. Maneuver the sampling pole so flow contacts the sample container opening directly [Figure 1].
- 6. Plunge the sample bottle to the middle of the flow depth. If water is too deep, sample should be collected just below the surface of water. Slowly raise the swing sampler.
- 7. If cascading flow, collect sample in middle of flow as it cascades, discharging into the water body.
- 8. If two-member sampling team, have assistant remove the lid on the receiving container.
- 9. Carefully pour sample aliquot into receiving container.
- 20. Loosely cap receiving container.
- 21. Label receiving container with sample name and collection start time.
- 22. Repeat collecting aliquots of sample until bottle is full or adequate sample volume for analysis.
- 23. Tightly cap receiving container.
- 24. Label receiving container with sample end time.
- 25. Record sample information on field form.
- 26. Place sample container in cooler on ice.
- 27. Deliver samples to laboratory with completed chain of custody.

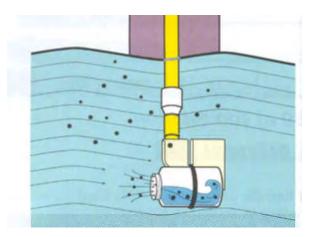


Figure 1: Swing sampler container orientation. Water flows directly into the sample container.

Prepared by Monica Lowe, ACHD, Stormwater Quality Specialist
--

Revised by Monica Lowe, ACHD, Stormwater Quality Specialist Monicar . Lowe

Reviewed by Ted Douglass, Brown and Caldwell, Program Manager_

The Bucket Method is a simple approach to estimating discharge in gallons per minute (GPM) from an outfall with low flow using a container of known volume and a stopwatch. GPM can then be converted to cubic feet per second (cfs) to match the standard flow measurement rate of the program.

Application:

This standard operating procedures (SOP) is a step by step protocol designed to assist sampling personnel in estimating discharge from an outfall with low flow. An outfall is the point where a stormwater conveyance discharges to a surface water body. The Bucket Method is simply the measurement of time needed to fill a container of known volume as it flows from an outfall. The Bucket Method is best utilized when site conditions are appropriate to allow for collection of the entire discharge without the container filling too quickly to obtain an accurate reading.

Considerations:

Due to the variable nature of field work, advance planning and preparation is necessary. Consider the following:

- * Dress appropriately for weather, traffic, and outfall access.
- * Visit the sampling location and review available mapping prior to sampling to determine the best sampling approach and outfall access.
- * Ideally a two-person sampling team is needed; One person to hold the bucket securely, and one person to operate the stopwatch.
- * What supplies will be needed?

Procedures:

Note: This procedure specifies the use of a five-gallon bucket which is most commonly used. However, any container with a known volume can be used if it is of sufficient size to capture the entire flow.

- 1. Ensure the five-gallon bucket is marked clearly with the five-gallon volume indicated.
- 2. Put on one pair of sanitary disposable nitrile gloves.
- 3. Depending on the outfall access, position yourself just above the outfall discharge (preferred) or in the receiving water in front of the outfall discharge.
- 4. Communicate with a sampling partner (Timer) to start and stop the stopwatch as necessary.
- 5. Insert the bucket into the discharge such that the entire flow is being captured.
- 6. Once the level in bucket reaches the five-gallon volume mark, alert the timer to stop the stop watch.
- 7. The Timer will record the time in seconds it takes to fill the bucket on the appropriate field form.
- 8. Empty the bucket.
- 9. Repeat steps five through eight to attain three successful readings.
- 10. Calculate the average time to fill the bucket by adding the three times together and dividing the sum by three. Record the average time in seconds on the field form. See example calculations below for steps 10-12.

- 11. Convert average time in seconds to minutes by dividing the average time in seconds by 60 seconds per minute.
- 12. Calculate the GPM by dividing 5 gallons by the averaged time calculation in minutes from step 11. Record the value in GPM on the field form.

Calculating the Discharge – Example

A clean 5 gallon bucket was placed under the flow of a discharge pipe. The bucket was filled three consecutive times resulting the in following times: 15 seconds, 18 seconds and 14 seconds.

Calculate average time:

Add the three recorded times together and divide by three to obtain the average fill time. Average time = $\frac{15 + 18 + 14}{3}$ = 15.7 sec

Convert average time in seconds to minutes:

Divide average time by 60 to convert time to minutes. Average time = $\frac{15.7 \text{ sec}}{60}$ = 0.26 min

Calculate the site discharge in GPM:

Divide the volume of the container (gallons) by the average time needed to fill the container (minutes).

Discharge = 5 gal = 19.2 gpm 0.26 min

Convert the site discharge to cfs:

Multiply discharge in GPM by 0.00223 to obtain discharge in cfs. Discharge = 19.2 gpm x 0.00223 = 0.043

Report discharge in cfs.

References:

Estimation Discharge and Stream Flows: A Guide for Sand and Gravel Operators, July 2005 Department of Ecology.

Prepared by Adam Van Patten, ACHD, Stormwater Quality Specialist_

Monicar . Lowe

Revised by Monica Lowe, ACHD, Stormwater Quality Coordinator

Reviewed by Ted Douglass, Brown and Caldwell, Stormwater Quality Project Manager_

The Flow Probe by Global Water Instrumentation is designed to measure the average velocity (V) in a flow stream. The cross-sectional area (A) can be measured by manually measuring the depth of flow at several points across the flow. With these two values, flow (Q) = VA, can be estimated.

Application:

This standard operating procedure (SOP) is intended for sampling personnel for measurement of flow in a stream channel using a Flow Probe (probe) by Global Water. The probe measures velocity of stream flow. Due to the variability in velocity measurements discussed below, an average velocity reading will be calculated by the probe during a set interval of time. To obtain the most accurate velocity reading, three procedures are outlined below depending on the size of the stream.

The following procedure outlines how to record an average velocity (V). To calculate flow (Q=VA) the crosssectional area must also be determined. The cross-sectional area is measured by manually measuring the width and depth of the stream at several points across the flow [Figure 1] and constructing a diagram of the cross section.

The volumetric flow rate of water, which is commonly called discharge (Q), is the product of multiplying the average velocity (V) by the total cross-sectional area (A). The **velocity-area method** measurement is made by subdividing a stream cross-section into segments (sometimes referred to as sections, verticals, profiles, panels, or ensembles) and by measuring the depth and average velocity in a vertical profile within each segment.

By dividing the stream width into subsections (streams less than 10 feet in width have 10 subsections, and streams greater than 10 feet in width have 20 subsections), total discharge is equal to the sum of the individual discharge measurements in each subsection. Individual point velocity (V) is measured at each subsection, and the subsection discharge is equal to the product of the point velocity and cross-sectional area (a) within the subsection. The cross-section is defined by depths at verticals 1,2,3,4,...,n.

Considerations:

Due to the variable nature of field work, advance planning and preparation is necessary. Consider the following:

- * Dress appropriately for weather and traffic conditions;
 - o Is traffic control needed to access the sample location? If so, a two-person crew is required.
 - Should waders and/or personal floatation device (PFD) be used? If risk of drowning, a PDF is required. Use caution when wading in streams due to hazards of wet, unstable footing of stream bed and flowing water. A two-person crew is required.
- Visit the sampling location prior to sampling to determine the best approach for flow measurements.
 - Will an extension pole be needed if collecting measurements from a bridge?
 - o Is there a relatively straight section of flow with little turbulence?
 - Is the stream shallow enough to wade?
 - o Is there access within the public right-of-way or private property issued to address?
 - What is the best way to determine subsections if the stream is wide?

Flowing water varies in velocity for two main reasons:

* Velocities vary across the cross-section. In general, the velocities are greater in the center of the flow and lesser near the bottom and sides of the channel.

* The water surges in velocity with time. In a smooth running stream the velocity at a specific point can easily vary 1-2 feet per second over the period of a minute. The pulsating or surging of the flow should be averaged to get a good average flow reading.

Procedures: The following procedures are based on manufacturer recommendations. The user's manual is available in Appendix B or at www.globalw.com/downloads/flowprobe/flowprobe_manual_past.pdf.

Obtaining an Average Velocity Reading

- 1. Remove the probe from the protective case by unscrewing the top cap. Case can also be opened by releasing the side latch if the top cap is difficult to unscrew.
- 2. Blow air strongly through the flow propeller [Figure 2] in the direction of the arrow to ensure the propeller can spin freely.
- 3. Lower the flow propeller into the water column oriented so the flow of water is the same direction as the black arrow on the flow propeller.
- 4. Press and hold button located on top of the display [Figure 3] labeled "Reset" for six seconds to zero the instrument.

A. Small Streams and Pipes (probe can be moved slowly and smoothly throughout the flow)

- 5. Press the bottom button "MODE" on the flow probe computer. Average velocity is displayed as "AVGSPEED" and maximum velocity is displayed as "MAXSPEED".
- 6. Move the probe smoothly and evenly back and forth across the flow and from top to bottom of the water column so that the probe stays on each point in the flow for the same amount of time. (The motion is like applying an even coat of spray paint over the entire surface.)
- 7. Measure the depth of flow using a measuring stick or measuring tape in the center of the area where the average velocity reading was recorded.

B. Large Streams and Rivers (divide width of flow into 2-3 foot subsections)

- 5. Press the bottom button "MODE" on the flow probe computer. Average velocity is displayed as "AVGSPEED" and maximum velocity is displayed as "MAXSPEED".
- 6. Move the probe vertically from the surface of the water to the bottom slowly and smoothly.
- 7. Move the probe up and down for 40 seconds to obtain a good average. Repeat step 7 every subsection across the stream.
- 8. The average velocity multiplied by the area of the subsection is the flow for the subsection. Add all the subsection flows to obtain the total stream flow [Figure 4].

C. Alternate Method

The probe can also be used for the "6 tenths method". Procedure B is the recommended procedure for large streams that is recommended by the manufacturer.

- 5. The probe is held at the center of the subsection at a depth (from the surface) of 0.6 of the total depth. The 0.6 of the total depth is assumed to be the average velocity point for the vertical profile. It is therefore the average velocity for the subsection as in procedure B above.
- 6. Press the bottom button "MODE" on the flow probe computer. Average velocity is displayed as "AVGSPEED" and maximum velocity is displayed as "MAXSPEED".
- 7. Average the velocity over a 40 second period.
- 8. Repeat step 7 every 2-3 foot subsections across the stream. Add all the subsection flows to obtain the total stream flow [Figure 4].

Deviations

The nature of instream flow monitoring may require deviations from the aforementioned standard operating procedures. In the event that deviations from these standard operating procedures is required, the field team will document and describe in detail the specific deviations conducted during the event.

Top Button – "Reset"

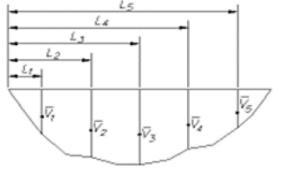
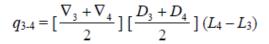


Figure 1: Sampling Multiple points across a transect


Figure 2: Flow Probe Propeller

O = total discharge

Horizontal Velocity Profile

 $\widetilde{\nabla}$ = the mean velocity associated with the partial area a = partial area of total cross section L_1, L_2, \dots, L_n = distance to vertical measurement locations in feet from an initial point to vertical station ΔL = the distance in feet between consecutive vertical measurement stations $\nabla_1, \nabla_1, \dots, \nabla_n$ = the respective mean velocities in feet per second at vertical measurement stations

q = the discharge in cubic feet per second (ft³/s) for a partial area

 D_1, D_2, \dots, D_n = the water depths in feet at verticals

n = the number of verticals related to the partial area

Figure 4: Velocity Profile Segments and Discharge Calculation

Source: US Department of Interior Bureau of Reclamation, Water Management Manual, Revised reprinted 2001.

Monical Lowe

Prepared by Monica Lowe, ACHD, Stormwater Quality Specialist

Reviewed by Adam Van Patten, ACHD, Stormwater Quality Specialist_____

Reviewed by Ted Douglass, Brown and Caldwell, Project Manager______

<u>Appendix A</u>

Calculations for Partially Filled Round Pipes

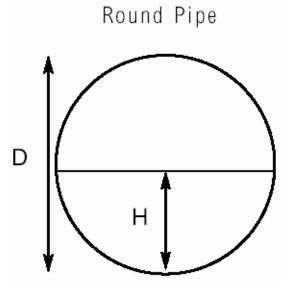
Global Water 800-876-1172 • globalw.com

XI. Appendix B: Calculations for Flow in Partially Filled Pipes

В	С	В	С
0.01	0.0013	0.51	0.4027
0.02	0.0037	0.52	0.4127
0.02	0.0069	0.52	0.4227
0.00	0.0105	0.54	0.4327
0.04	0.0147	0.55	0.4426
0.06	0.0192	0.56	0.4526
0.07	0.0242	0.57	0.4625
0.08	0.0294	0.58	0.4723
0.09	0.0350	0.59	0.4822
0.10	0.0409	0.60	0.4920
0.11	0.0470	0.61	0.5018
0.12	0.0534	0.62	0.5115
0.13	0.0600	0.63	0.5212
0.14	0.0668	0.64	0.5308
0.15	0.0739	0.65	0.5404
0.16	0.0811	0.66	0.5499
0.17	0.0885	0.67	0.5594
0.18	0.0961	0.68	0.5687
0.19	0.1039	0.69	0.5780
0.20	0.1118	0.70	0.5872
0.21	0.1199	0.71	0.5964
0.22	0.1281	0.72	0.6054
0.23	0.1365	0.73	0.6143
0.24	0.1449	0.74	0.6231
0.25	0.1535	0.75	0.6318
0.26	0.1623	0.76	0.6404
0.27	0.1711	0.77	0.6489
0.28	0.1800	0.78	0.6573
0.29	0.1890	0.79	0.6655
0.30	0.1982	0.80	0.6736
0.31	0.2074	0.81	0.6815
0.32	0.2167	0.82	0.6893
0.33	0.2266	0.83	0.6969
0.34	0.2355	0.84	0.7043
0.35	0.2450	0.85	0.7115
0.36	0.2546	0.86	0.7186
0.37	0.2644	0.87	0.7254
0.38	0.2743	0.88	0.7320
0.39	0.2836	0.89	0.7384
0.40	0.2934	0.90	0.7445
0.41	0.3032	0.91	0.7504
0.42	0.3130	0.92	0.7560
0.43	0.3229	0.93	0.7612
0.44	0.3328	0.94	0.7662
0.45	0.3428	0.95	0.7707
0.46 0.47	0.3527 0.3627	0.96	0.7749
0.47	0.3627 0.3727	0.97 0.98	0.7785 0.7816
0.48	0.3727 0.3827	0.98	0.7816
0.49	0.3927	1.00	0.7854
0.00	0.0321	1.00	0.7004

H= Height of water; D= Diameter of pipe (in feet)

H/D = Column B

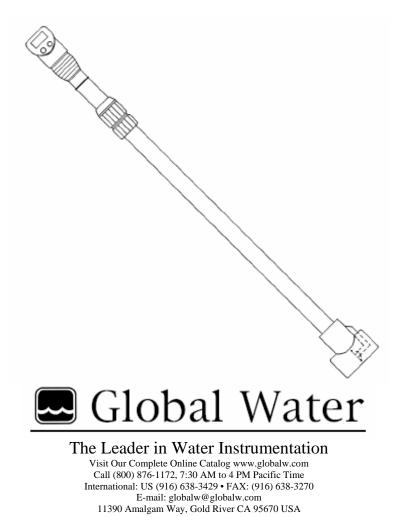

Read Column C adjacent to your pipe's B

C x D2 = Filled area, A (sq.ft.)

A x Average Velocity = Volumetric flow (CFS)

CFS x 448.83 = Gallons/minute (GPM)

GPM x 1440 = Gallons/day (GPD)


<u>Appendix B</u>

FP101-FP201 Global Flow Probe User's Manual

FP101-FP201 Global Flow Probe

User's Manual

Level • Flow • Samplers • Water Quality • Weather • Remote Monitoring • Control

1/20/04

1

Congratulations on your purchase of the Global Water Flow Probe. This instrument has been quality tested and approved for providing accurate and reliable measurements. We are confident that you will find the sensor to be a valuable asset for your application. Should you require assistance, our technical staff will be happy to help.

Table of Contents

u	l.	Checklist •	•	•	•	•	•	•	Page	3
	II.	Inspection	•	•	•	•	•	•		3
	III.	General Instructi	ons	•	•	•	•	•		4
	IV.	Average Velocity	1	•	•	•	•	•		5
	V.	Computer Opera	ition	•	•	•	•	•		7
	VI.	Specifications	•	•	•	•	•	•		8
	VII.	Maintenance	•	•	•	•	•	•		8
	VIII.	Troubleshooting	•	•	•	•	•	•		10
	IX.	Warranty •	•	•	•	•	•	•		12
	Х.	Appendix A: Cor	nputer	Set-Up	•	•	•	•		13
	XI.	Appendix B: Cal	culation	is for Fl	ow in P	artially	Filled F	Pipes		15
a			T (T	0004				

* Copyright © Global Water Instrumentation, Inc. 2004

I. Flow Probe Checklist

- a. Flow Probe
- b. Flow Probe Manual

II. Inspection

a. Your Flow Probe was carefully inspected and certified by our Quality Assurance Team before shipping. If any damage has occurred during shipping, please notify Global Water Instrumentation, Inc. and file a claim with the carrier involved.

Use the checklist to ensure that you have received everything needed to operate the Flow Probe.

III. General Instructions

- a. Make sure the Flow Probe's propeller turns freely by blowing strongly on the prop.
- b. Point the propeller directly into the flow you wish to measure. Face the arrow inside the prop housing downstream. The FP101 probe handle is a two piece rod expandable from 3' to 6', and the FP201 is a three section rod expandable from 5' to 15'. To expand the rod for correct placement in flow, loosen the locking nut on the handle, pulling out the top piece and retightening the nut.
- c. Use the bottom button to scroll through the functions until "AVGSPEED" appears. The top number is the instantaneous velocity to the nearest .5 ft/second. The lower display is the average velocity. Pressing the top button for 3 seconds will clear the average and start a new reading. While taking an average reading the maximum velocity will also be recorded. Pushing the bottom button until "MAXSPEED" is displayed causes the lower display to indicate this value. While on this screen, pressing the top button for 3 seconds will clear this value. While on the average or maximum screens pressing the top button for 5 seconds will clear both of these functions.
- d. To make a measurement, place the propeller at the desired measuring point and hold the top button for 3 seconds to clear the value or 5 seconds to clear both average and maximum values. Hold the probe in place until the reading becomes steady and remove the probe from the water. The average and maximum velocities remain in their respective screens. These values are only updated while the propeller is turning. See the Average Velocity section for more information.
- e. Measure/calculate the cross-sectional area of your flow stream in square feet. If you are measuring flow in round pipes, measure the depth of water and use the enclosed tables to determine cross-sectional area (see Appendix B: Calculations for Flow in Partially Filled Pipes). If you are measuring flow in another channel type, manually measure water depth at several points across the flow. These measurements are most easily recorded by drawing a diagram on graph paper with a scale of 1 square foot per graph paper square. Cross-sectional area (in square feet) can then be found by counting the number of squares in the stream.

Global Water 800-876-1172 • globalw.com

- f. The average velocity (calculated with the Flow Probe in feet/second) times the cross-sectional area (square feet) equals flow in cubic feet per second (cfs), or Q = V x A.
- g. If the propeller gets fouled while measuring flow, clean it until the prop turns freely and start over.

IV. Average Velocity

The Flow Probe is used to measure the average water velocity. Streamflow velocity varies for two reasons:

- a. The velocities vary throughout the flow's cross-section. In general, the velocities are greater in the center of the flow and less near the bottom and sides of the channel.
- b. The water surges in velocity with time. In a smooth running stream, the velocity at a specific point can easily vary 1-2 feet per second over the period of a minute. This pulsating or surging of flow should be averaged to obtain an accurate average flow reading (leave the probe in the flow through a series of flow surges).

The Flow Probe can be used in three ways to determine average velocity in a stream.

a. For small streams and pipes, the probe can be moved slowly and smoothly throughout the flow during average velocity measurement. Move the probe smoothly and evenly back and forth from top to bottom of the flow so that the probe stays at each point in the flow for approximately the same amount of time. Keep moving the probe for 20-40 seconds to obtain an accurate average value that accounts for surging. (Move the probe as if you were spray painting and attempting to get an even coat of paint over the entire surface.)

The Flow Probe uses true velocity averaging. When the average and maximum velocities are zeroed by pushing the top button, a running average is started. As long as the probe remains in the flow, the averaging continues. One reading is taken per second, and a continuous average is displayed. For example, after 10 seconds, 10 readings are totaled and then divided by 10 and this average is displayed. Once the average reading becomes steady, the true average velocity of the stream is obtained. When you pull the probe from the water, this average value is frozen on the display until it is reset.

- b. For larger streams and rivers where the Flow Probe can't easily be moved throughout the flow, divide the stream into subsections 2-3 feet wide. We recommend dividing subsections on your graph paper diagram of the flow profile. Run a measuring tape across the stream for reference. Obtain a vertical flow profile at the center of each subsection: zero the averaging function and move the Flow Probe vertically from the surface to the bottom, up and down, slowly and smoothly for 20-40 seconds to obtain a good average. The average velocity (obtained with the Flow Probe) times the area of the subsection (use your graph paper diagram) equals the flow for the subsection (Q=VxA).Once the flow of each subsection is obtained, add all of the subsection flows to obtain the Total Streamflow.
- c. For the USGS "6 tens method", the Flow Probe is placed at the center of the subsection at a depth from the surface of 0.6 of the total depth. The Flow Probe is held in place and the average velocity is obtained over a period of 40 seconds. The 0.6 depth is assumed to be the average velocity point for the vertical profile. Therefore, this average is similar to that obtained in technique 2 (above) however; we feel that technique 2 is more accurate.

V. Computer Operation

- a. The Flow Probe is calibrated at the factory. When you receive the product, you may wish to set the computer's clock (see Computer Setup), otherwise you should not have to alter any of your computer settings. You will have to recalibrate the computer when you change the unit's battery (See Appendix A: Computer Setup). Normal battery life for the Flow Probe is 3 years or more.
- b. The Flow Probe computer has a simple 2-button operation. The bottom button scrolls between functions and the top button resets the function's value. Pressing the top button for 3 seconds zeros the average and maximum velocities. With a little practice, the buttons can be pushed with the hand holding the top of the probe.
- c. The computer functions are as follows:
 - Velocity: The upper display number is the instantaneous velocity to the nearest .5 foot (or meter, depending on units being used) per second.
 - The lower display number is used for the following functions: average velocity(AVGSPEED), maximum velocity(MAXSPEED), stop watch(STPWATCH) and CLOCK.
 - The bottom button scrolls between these functions, and also DIST/DAY, RIDETIME, TRIP UP, and TOTALODO which are not used for this application.
 - Push the top button for 3 seconds to reset the displayed function. Push for 5 seconds to reset all velocity functions.
 - Stop watch: While STPWATCH is displayed, pressing the top button once will start the stop watch. Pressing a second time stops the watch. Holding the button for 3 seconds clears it.
 - Clock: The computer returns to the clock function after a period of inactivity for the probe.

Global Water 800-876-1172 • globalw.com

VI. Specifications

Range: Accuracy:	0.3-15 FPS (0.1-4.5 MPS) 0.1 FPS
Averaging:	True digital running average. Readings taken once per second.
Display:	LCD
Sensor Type:	Protected Turbo-Prop propeller with electro-magnetic pickup.
Weight:	2 Lbs (10 lbs. U.S., 14 lbs. international shipping weight)
Size:	Length: FP101 3' to 6'; FP201 5' to 15'
Materials:	PVC, anodized aluminum, stainless steel bearing
Power:	Internal watch type batteries/1 year life
Operating Temperature:	0° to 120° F
Carrying Case:	The Flow Probe is shipped in a padded carrying case.

VII. Maintenance

a. Probe Handle:

When the Flow Probe expansion joint becomes submerged, water will enter the Probe handle. After use, dry the Probe by separating the two handle sections, draining the water inside the Probe handle, and letting the handle dry out in a warm place before reassembling. The Flow Probe handle can be cleaned with mild soap and water. DO NOT submerge the top of the pole and the computer. If the computer gets submerged, remove it from the Flow Probe, DRY IMMEDIATELY with a soft cloth; remove the battery and place in a warm place overnight to dry.

b. Battery Replacement:

The Computer is held onto the head of the Probe by a twist lock connection. To remove, turn Computer ¼ turn to the left and pull off. To remove the battery use a small coin to twist the battery cover on

Global Water 800-876-1172 • globalw.com

the back of the computer, ¼ turn to the left. Replace battery, + side toward battery cover, using a CR2032, 3 volt lithium cell. After replacing battery the calibration numbers will require resetting. (See Appendix A: Computer Setup)

c. Cleaning:

Make sure the Turbo Prop turns freely before and after your measurements. Blow on the prop in the direction of flow. The prop should turn freely. If not, rinse the probe in clean water and remove any visible strings or hair materials from the prop bearing. This should correct the problem. If the prop still does not turn freely, remove the prop screw and the prop, and wash them in clean water or soap and water. Replace prop and screw. Tighten screw firmly but make sure prop still spins freely.

VIII. Trouble Shooting

Issue: Computer reading incorrectly

- a. Blow on the propeller. The prop should spin freely and make a noise (chatter) when you blow on it. The prop should be loose on the shaft when you push it with your finger. If prop does not spin freely, rinse it with clean water or soak it in mild soapy water.
- b. A small metal magnet covered with clear adhesive is installed on the back side of the prop on one blade. Be sure the magnet is in place and has not been removed. This magnet is necessary to make the signal for the computer.
- c. Remove the computer holder from the pole handle by pulling the holder up away from the pole. The holder should come off with a popping sound. Make sure there is no moisture around the plug or socket. If the plug and socket are wet, dry the parts off and place both in a warm place overnight. Push the computer holder back on to handle HARD until you hear a "pop" or "snap" sound. If you don't hear this sound, the holder is not on all the way or you have a defective socket connector. Zero the "av" mode and blow on the prop for 5 to 7 seconds. You should see a number in "av" if the unit is working.
- d. The computer can be removed from the holder by turning it ¼ turn to the left and lifting. Check the two electrical contacts on computer holder and the mating spring contacts on the computer. Make sure they are clean and dry.
- e. Reinstall the computer on the computer head in the opposite manner that it was removed. Spin the propeller, by blowing on it, and check for an average reading. If there is still no reading contact Global Water.
- f. If the display becomes weak or does not light up at all, replace the battery.

Other issues

 a. Call Global Water for tech support: 800-876-1172 or 916-638-3429 (many problems can be solved over the phone). Fax: 916-638-3270 or Email: <u>globalw@globalw.com</u>.

When calling for tech support, please have the following information ready;

- 1. Model #.
- 2. Unit serial number.
- 3. P.O.# the equipment was purchased on.
- 4. Our sales number or the invoice number.
- 5. Repair instructions and/or specific problems relating to the product.

Be prepared to describe the problem you are experiencing including specific details of the application, installation, and any additional pertinent information.

 b. In the event that the equipment needs to be returned to the factory for any reason, please call to obtain a RMA# (Return Material Authorization). Do not return items without a RMA# displayed on the outside of the package.

Clean and decontaminate the FP101/201 if necessary.

Include a written statement describing the problems.

Send the package with shipping prepaid to our factory address. Insure your shipment; Global Water's warranty does not cover damage incurred during transit.

IX. Warranty

- c. Global Water Instrumentation, Inc. warrants that its products are free from defects in material and workmanship under normal use and service for a period of one year from date of shipment from factory. Global Water's obligations under this warranty are limited to, at Global Water's option: (I) replacing or (II) repairing; any products determined to be defective. In no case shall Global Water's liability exceed the products original purchase price. This warranty does not apply to any equipment that has been repaired or altered, except by Global Water Instrumentation, Inc., or which has been subject to misuse, negligence or accident. It is expressly agreed that this warranty will be in lieu of all warranties of fitness and in lieu of the warranty of merchantability.
- d. The warranty begins on the date of your invoice.

X. Appendix A: Computer Setup

The BC1200 has the capability to switch between 2 different calibration factors. To change between the calibrations remove the computer from the flow probe head by twisting 45 degrees counter clockwise and lifting. The indented gray button in the upper left corner on the back is to switch between CAL I and CAL II. In the upper left corner of the display, I is displayed for CAL I and II is displayed for CAL II.

Note:

I = ft/sec, calibration # = 0053

II = m/sec, calibration # = 0016

The indented gray button on the upper right is used to enter the calibration mode. Press and hold it for 5 seconds to enter calibration mode.

TO RESET THE CALIBRATION:

(Calibration #'s are factory set. Resetting is only required after changing the battery.)

- Press bottom button until CLOCK or TOTALODO is not displayed on screen.
- Press the left indented gray button to select CAL I.
- Turn computer over and press and hold the right indented gray button for 5 seconds and "set language" flashes on display.
- Press top button to select language.
- Press bottom button to accept.
- Press top button until "SET M" is displayed.
- Press bottom button to accept. The calibration factor is now displayed.
- Pressing the top button will change the value of the flashing digit.
- Pressing the bottom button will accept this value and move to the next digit.
- Set the calibration factors as follows:
 - o Feet/second: 0053 (CAL I)
 - o Meters/second: 0016 (CAL II)
- Press indented right button on back for one second to store.

Repeat above procedure for Cal II. (Only the cal number will be required)

Global Water 800-876-1172 • globalw.com

(NOTE: after battery replacement and additional screen displaying SET ODO will follow the forth digit of the cal number. Ignore this and press the indented gray button to store settings)

TO SET CLOCK

- Press bottom button until clock appears at the bottom of the screen.
- Turn computer over and press and hold the right indented gray set button (S) for 5 seconds or until clock flashes.
- Press top button until hour is reached.
- Press bottom button to move to minutes.
- Press top button until desired number is reached.
- Press bottom button to move to single minutes.
- Press top button until desired single minute is reached.
- Turn computer over and press right indented gray set button for 1 second to save.

PG 116-Visual Flow Qualification

A visual flow qualification is a description of the amount of flow observed from an outfall. The varying amount of flow observed is arouped into three categories: Trickle. Moderate. or Substantial.

Application:

This guidance contains examples of varying flow amounts to assist sampling personnel with visually qualifying outfall discharges into three categories: Trickle, Moderate, or Substantial. Visual qualification of flow will be observed during all outfall investigations. Flow observations are best made from the outfall point where it discharges into the receiving water but if access does not allow, observations can be taken from the nearest accessible drainage pipe.

Considerations:

Due to the variable nature of field work, advance planning and preparation is necessary. Consider the following:

- * Dress appropriately for weather, traffic, and outfall access.
- * Review available mapping prior to the investigation to determine the safest approach for outfall access.
- * What supplies will be needed?

Procedures:

- 1. Gain access to the outfall following one of the three following options. Safety takes precedence over access and efficiency do not put yourself at risk of injury.
 - a. Preferably, observations would be made from the bank opposite the outfall, allowing for full visual of the flow exiting the outfall.
 - b. Observations can be made from the bank adjacent the outfall as well, but this approach may limit the observer's ability to see the flow as it exits the outfall.
 - c. If outfall access is not possible, flow can be observed from the nearest connecting drainage feature such as a drop inlet, manhole, open ditch, pond, or irrigation box. Accessing flow from connecting drainage features may require special tools such as a manhole puller, hammer, pry bar, gas meter, and flashlight.
- 2. Visually categorize the outfall discharge based on the following criteria:
 - a. Trickle: very narrow stream of water
 - b. Moderate: steady stream of flow, but very shallow depth
 - c. Substantial: steady stream of flow with depth.

Trickle: narrow stream

Moderate: steady stream, but shallow

Substantial: steady stream with depth

3. Record the flow category on the appropriate field form.

Resources:

Brown, E., D. Caraco, and R. Pitt. 2004. Illicit Discharge Detection and Elimination: A Guidance Manual for Program Development and Technical Assessments. Center of Watershed Protection. Ellicot City, MD.

SOP 312 – YSI Model 85 Multi-parameter Meter – Operation, Calibration and Maintenance

Dissolved Oxygen (DO), conductivity, and temperature measurements are collected from water samples using YSI Model 85 Multi-parameter Meters. These parameters are often measured in conjunction with other field parameters (pH and temperature) when manually collecting "grab" water samples. Meters need to be properly maintained and calibrated to ensure accurate measurements while in the field.

Application:

This standard operating procedure (SOP) is intended for stormwater personnel who are responsible for taking field measurements of DO and conductivity, typically in conjunction with collecting manual grab samples. SOP 110 will be followed to obtain a field parameter grab sample.

Ada County Highway District currently has YSI Model 85 meters to measure DO and conductivity. The YSI Model 85 Operations Manual is available at

S:\STORMWATER\SW Monitoring Manuals\YSI-Model-85-Operations-Manual-RevE.pdf

Considerations:

Due to the variable nature of field work, advance planning and preparation is necessary. Consider the following:

- * DO, conductivity and temperature measurements may be performed during all weather conditions, day or night.
- * Dress appropriately for weather and traffic conditions.
- * Keep work areas lit to reduce accidents and ensure accurate measurements.
- * Follow SOP 110 to collect the field parameter sample to be measured.
- * Ensure that the correct sampling container is used. Generally, field parameters are taken using a clean, 500 mL amber glass container supplied by the water quality lab.
- * Bring an extra sampling container in case of container breakage.
- * Ensure that the meter has been properly maintained and calibrated prior to going out to the field.
- * Ensure that nitrile gloves are worn during calibration and maintenance procedures.
- * Bring extra batteries (6 AAs).

Procedures:

Prior to Sampling Event

- 1. Check sponge in Calibration/Storage Chamber to make sure it is moist (Figure 1).
- 2. Turn unit on by pressing down on the On/Off button.
- 3. Press LIGHT button, to ensure batteries and backlight are functioning.

Note: The LCD will display a "LO BAT" message when the

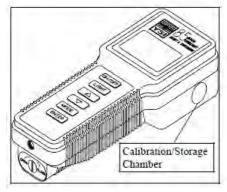


Figure 1. YSI 85

batteries need to be replaced.

4. Inspect membrane cap for damage. Change if necessary.

Note: For correct probe operation the gold cathode should always be bright. If tarnished it can be cleaned at the factory or a cleaning kit ordered. See manual for details.

Field Sampling

- 1. Upon arriving on site, open instrument case and turn on instrument by pressing the **ON/OFF** button on the front panel.
- 2. Press the **MODE** button slowly (allowing the instrument to respond) until dissolved oxygen in mg/L is displayed.
- 3. Allow the temperature reading to stabilize prior to calibration of DO.
- 4. Follow steps provided on laminated sheet adhered to inside cover of the instrument case to calibrate the DO probe.

NOTE: Conductivity calibration is rarely required because of the factory calibration performed. Conductivity calibration will be verified annually.

- 5. Proceed with grab sample collection according to **SOP 110**.
- 6. Remove probe from storage on side of meter by pulling the probe in an outward direction away from the meter.
- 7. Lower the probe into the sample taking care to submerge the probe deep enough to cover the two ports on top of the probe.

NOTE: The top of the cord where the probe attaches will be partially submerged. Ideally the probe is suspended in the sample and is not touching the sides or bottom of the container.

- 8. With gentle, slow movements, slightly agitate the probe in a circular direction. NOTE: Create enough movement so the sample at the tip of the probe is representative of ambient conditions, but not too much movement that oxygen is added to the sample.
- 9. The numbers on the display will slowly decrease until a point is reached where the number appears to stabilize before slightly increasing. The display presents measurements to the nearest hundredth. The reading has stabilized when the variability in the hundredths does not change the reading in the tenths. NOTE: Stabilization typically takes several minutes.
- 10. Record the value in mg/L on the data log form with the corresponding temperature.
- 11. Press the **MODE** button to display conductivity in μ S/cm.
- 12. Record the value in μ S/cm and the corresponding temperature on the data log form.
- 13. Spray and rinse the probe thoroughly with distilled water.
- 14. Push probe back into the storage chamber on the side of the meter.
- 15. Push the **ON/OFF** button on the front panel to turn off the meter.
- 16. Return meter to the instrument case.
- 17. Secure latches.

Following a Sampling Event

- 1. Wipe the unit clean using a damp cloth or paper towel.
- 2. Ensure unit is off, prior to storage

<u>Annually</u>

1. Once a year a calibration should be performed for conductivity. See Section 5.2 of the Instruction Manual.

Prepared by: Monica Lowe, ACHD Stormwater Quality Coordinator_____

Reviewed by: Ted Douglass, Brown and Caldwell, Project Manager

SOP 313 - pH Meter – Operation, Calibration and Maintenance

pH Meters are used to record the pH level and temperature during the manual collection of grab samples. pH levels and temperature will generally be recorded in conjunction with other field parameters (dissolved oxygen and conductivity) when manually collecting water samples. pH meters need to be properly maintained and calibrated to ensure accurate measurements while in the field.

Application:

This standard operating procedure (SOP) is intended for stormwater personnel who are responsible for obtaining field parameter measurements in conjunction with collecting manual grab samples. SOP 110 will be followed to obtain a field parameter grab which will be used to measure pH.

Ada County Highway District currently has Horiba D series handheld pH meters. The Horiba Instruction Manual is available at http://www.coleparmer.com/Assets/manual_pdfs/58702-20.pdf or at http://www.coleparmer.com/Assets/manual_pdfs/58702-20.pdf or at http://www.sciences.com/Assets/manual_pdfs/58702-20.pdf or http:

Considerations:

Due to the variable nature of field work, advance planning and preparation is necessary. Consider the following:

- * Field pH measurements may be performed during all weather conditions, day or night.
- * Dress appropriately for weather and traffic conditions.
- * Keep work areas lit to reduce accidents and ensure accurate measurements.
- * Follow SOP 110 to collect the field parameter sample to be measured.
- * Ensure that the correct sampling container is used. Generally, field parameters are taken using a clean, 500 mL amber glass container supplied by the water quality lab.
- * Bring an extra sampling container in case of container breakage.
- * Ensure that the meter has been maintained and calibrated prior to going out to the field.
- * Ensure that nitrile gloves are worn during calibration and maintenance procedures.
- * Bring extra batteries (2AAs).

Procedures:

Prior to Sampling Event

- 1. Connect electrode and temperature connection to the unit.
- 2. Thoroughly rinse the electrode with distilled water or reagent water and blot dry with tissue paper.
- 3. Check to ensure the internal reference solution of the electrode is full. Fill if needed.
 - NOTE: This solution is concentrated KCI. Be sure to wear gloves and safety glasses when using this solution.
- 4. Ensure that the internal solution filler port is open when taking measurements. This port is also where the internal reference solution is filled or removed.

- 5. Calibrate with standard solutions (pH 4.00, pH 7.00 and pH 10.00) according to the steps outlined in the Instruction Manual.
- 6. Fill protective cap with fresh distilled water and place electrode in the cap for storage.

Field Sampling

NOTE: If field parameter measurements include dissolved oxygen (DO), as well as pH using the same grab sample, take the DO measurement first to ensure oxygen is not added to the sample by the stirring action called for in Step 7.

- 1. Open instrument case and turn on instrument by pressing the **ON/OFF** button on the front panel. *NOTE:* A "Y" connector connects the electrode probe and temperature probe to the meter. The electrode probe has a plastic covering that threads onto the meter where the cord and meter connect. The temperature probe has an o-ring that must be securely pressed into the meter to take an accurate temperature reading. Check to make sure the electrodes are securely attached to the meter.
- 2. Remove probe from plastic storage container by pulling in an outward direction.
- 3. Set plastic storage container upright in instrument case so the distilled water/storage solution does not spill.
- 4. Slide open the port on side of the probe.
- 5. Lower probe into the field parameter grab sample collected according to SOP 110, taking care NOT to submerge the probe too deep. **Do not allow any of the grab sample to enter the open port on the side of the probe.**
- 6. Gently stir probe in a circular direction taking care NOT to touch the sides or bottom of the sample container.
- 7. Press the **MEAS** key.
- 8. HOLD will flash in the display.
- 9. The **HOLD** will stop flashing and remain lit in the display when the value has stabilized.
- 10. Once **HOLD** remains lit and does not flash, record the pH value and temperature on the data form. NOTE: If 25° C is displayed for temperature, double check to ensure the temperature probe and o-ring are securely engaged. 25°C is a default temperature reading generally indicating the temperature probe is not engaged.
- 11. Slide cover to close port on side of probe.
- 12. Rinse the probe thoroughly using distilled water.
- 13. Return probe into plastic storage container.
- 14. Place probe and meter in instrument case.
- 15. Secure latches.

Following a Sampling Event

- 1. Wipe the unit clean using a damp cloth or paper towel.
- 2. Thoroughly rinse the electrode and protective cap with distilled or deionized water.
- 3. Disconnect electrode and temperature connection from the unit for storage.

Semi-Annually

1. Replace the internal solution in electrode with fresh 3.33 M KCL solution. Change the internal solution more frequently if calibration is slow.

Soak sponge in the bottom of the protective cap in a dilute chlorox solution, if mold growth occurs.

Prepared by Monica Lowe, ACHD, Stormwater Quality Coordinator_____

Reviewed by Ted Douglass, Brown and Caldwell, Program Manager_____

DOC326.97.00024

Storm Water Test Kit

11/2013, Edition 1

User Manual

General information	3
Safety information	3
Use of hazard information	3
Precautionary labels	3
Product overview.	3
Product components	5
Total Chlorine	6
Test preparation	
Total Chlorine (0–3.4 mg/L) test procedure	6
Replacement items	
Total Copper	8
Test preparation	
Free and Total Copper (0-4 mg/L) test procedure	8
Interferences	
Accuracy check	
Replacement items	
Optional items	10
Detergents	11
Test preparation	
Detergents (0–1.2 mg/L) test procedure	
Replacement items	
рН	14
Phenols	14
Test preparation	
Phenols (0–4 mg/L) test procedure	
Replacement items	
Optional items	16

General information

In no event will the manufacturer be liable for direct, indirect, special, incidental or consequential damages resulting from any defect or omission in this manual. The manufacturer reserves the right to make changes in this manual and the products it describes at any time, without notice or obligation. Revised editions are found on the manufacturer's website.

Safety information

NOTICE

The manufacturer is not responsible for any damages due to misapplication or misuse of this product including, without limitation, direct, incidental and consequential damages, and disclaims such damages to the full extent permitted under applicable law. The user is solely responsible to identify critical application risks and install appropriate mechanisms to protect processes during a possible equipment malfunction.

Please read this entire manual before unpacking, setting up or operating this equipment. Pay attention to all danger and caution statements. Failure to do so could result in serious injury to the operator or damage to the equipment.

Make sure that the protection provided by this equipment is not impaired. Do not use or install this equipment in any manner other than that specified in this manual.

Use of hazard information

A DANGER

Indicates a potentially or imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

Indicates a potentially or imminently hazardous situation which, if not avoided, could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation that may result in minor or moderate injury.

NOTICE

Indicates a situation which, if not avoided, may cause damage to the instrument. Information that requires special emphasis.

Precautionary labels

Read all labels and tags attached to the instrument. Personal injury or damage to the instrument could occur if not observed. A symbol on the instrument is referenced in the manual with a precautionary statement.

Electrical equipment marked with this symbol may not be disposed of in European public disposal systems after 12 August of 2005. In conformity with European local and national regulations (EU Directive 2002/96/EC), European electrical equipment users must now return old or end-of-life equipment to the Producer for disposal at no charge to the user. Note: For return for recycling, please contact the equipment producer or supplier for instructions on how to return end-

Note: For return for recycling, please contact the equipment producer or supplier for instructions on how to return endof-life equipment, producer-supplied electrical accessories, and all auxiliary items for proper disposal.

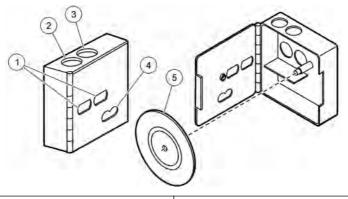
Product overview

WARNING

Chemical exposure hazard. Obey laboratory safety procedures and wear all of the personal protective equipment appropriate to the chemicals that are handled. Refer to the current safety data sheets (MSDS/SDS) for safety protocols.

Environmental Protection Agency (EPA) studies show that storm water runoff carries pollutants to nearby lakes, rivers and streams. To protect receiving waters, the EPA issued regulations^{*} in November 1990 which apply to both municipalities and industrial storm water discharges.

Part 1 of the NPDES (National Pollutant Discharge Elimination System) application requires municipalities to do field screening with grab samples collected from dry weather flows. These samples will be analyzed for pH, total chlorine, total phenols, total copper and detergents.


Use this test kit on-site or in a laboratory to identify the pH level and the concentrations of total chlorine, total phenols, total copper and detergents in storm sewer outflow and industrial discharge. Refer to Table 1 for the test kit parameters.

A color comparator box and color discs are used to identify the concentration of total chlorine, total phenols, total copper and detergents. Refer to Figure 1. The Pocket Pro pH tester is used to identify the pH level.

Parameter	Range	Number of tests	Type of test	Sensitivity
рН	0–14	Refer to packaging	Ion selective electrode	Refer to packaging
Chlorine, total	0–3.4 mg/L	100	DPD	0.1 mg/L
Copper, free and total	0–4 mg/L	100	Bicinchoninate Hydrosulfite reduction	0.1 mg/L
Phenol	0–4	100	4-aminoantipyrine	0.1 mg/L
Detergents	0–1.2 mg/L	32	Toluidine Blue-O	0.05 mg/L

Table	1	Test	kit	parameters
I UNIC		1000		purumeters

Figure 1 Color comparator box

1	Color matching windows	4 8	Scale window
2	Opening for tube with untreated sample	5 (Color disc
3	Opening for tube with prepared sample		

Federal Register, November 16, 1990.

Product components

Make sure that all components have been received. Refer to the list that follows. If any items are missing or damaged, contact the manufacturer or a sales representative immediately.

- Pocket Pro[™] pH tester
- Color discs (4x)
- Color viewing tubes with caps (4x)
- · Color comparator box
- · Carrying case
- · Chloroform, ACS grade
- · Detergents Test Solution
- Wash Water Buffer (2x)
- · Hardness 1 Buffer Solution
- · Filtering thimble
- Test tube, 10-mL (2x)
- · Draw-off pipet

- · Stopper for color viewing tubes
- · Phenol Reagent Powder Pillows
- Hydrosulfite Reagent Powder Pillows
- Free Copper Reagent Powder Pillows
- EDTA Reagent Powder Pillows
- DPD Total Chlorine Reagent Powder Pillows
- Potassium Persulfate Powder Pillows
- pH 7.0 SINGLET[™] buffer solution packs
- Dropper
- Beaker, 100-mL
- · Demineralizer bottle
- · Glass wool for detergents test

Total Chlorine

Test preparation

- Assemble the color comparator. Put the DPD Chlorine color disc on the center pin with the lettering facing out.
- · Use sunlight or a fluorescent light source to compare colors.
- · Rinse all viewing tubes with the sample water before testing and between tests.
- · Accuracy is not affected by undissolved powder.
- If the disc becomes wet, carefully open the plastic case. Dry the case and the color insert with a soft cloth. Assemble the case when the parts are completely dry.

Total Chlorine (0-3.4 mg/L) test procedure

1. Fill one color viewing tube to the lower edge of the frosted area (5-mL mark) with clear water.

2. Put the tube into the left opening on the top of the comparator.

3. Fill a second color viewing tube to the lower edge of the frosted area (5-mL mark) with the water sample.

4. Add the contents of one DPD Total Chlorine Reagent Powder Pillow.

5. Swirl to mix.

6. A color will develop if chlorine is present in the sample. Wait 3–6 minutes for full color development.

7. Put the tube into the right opening on the top of the comparator. Hold the comparator in front of a light source. Turn the disc to find a color match.

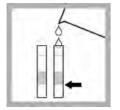
8. Read the mg/L total chlorine (Cl₂) from the scale window. If the result is between two values, use the value halfway between the two printed numbers.

Replacement items

Note: Product and Article numbers may vary for some selling regions. Contact the appropriate distributor or refer to the company website for contact information.

Description	Unit	Item no.
Color comparator box	1	173200
Color viewing tubes with caps	4/pkg	4660004
DPD Chlorine disc, 0–3.4 mg/L	1	990200

Description	Unit	ltem no.
DPD Total Chlorine Reagent Powder Pillows	100/pkg	1407699
Caps for color viewing tubes	4/pkg	4660014


Total Copper

Test preparation

This test procedure identifies the concentration of free or complexed copper. Free copper refers to any free or weakly chelated copper ion in solution. Complexed (chelated) copper is tightly bound, as in Cu (EDTA). Free copper plus complexed copper gives the total dissolved copper.

- Assemble the color comparator. Put the copper color disc on the center pin with the lettering facing out.
- Use sunlight or a fluorescent light source to compare colors.
- · Rinse all viewing tubes with the sample water before testing and between tests.
- · Accuracy is not affected by undissolved powder.
- Refer to Table 2 on page 9 for interfering substances.
- If the disc becomes wet, carefully open the plastic case. Dry the case and the color insert with a soft cloth. Assemble the case when the parts are completely dry.

Free and Total Copper (0-4 mg/L) test procedure

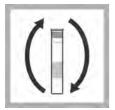
1. Fill two color viewing tubes to the lower edge of the frosted area (5-mL mark) with the water sample.

2. Add the contents of one Free Copper Reagent Powder Pillow to one of the tubes.

3. Put a stopper in the tube with the powder. Invert the tube several times to mix.

4. A purple color will develop if free copper is present in the sample. Wait 2 minutes for full color development.

5. Put the untreated sample tube into the left opening on the top of the comparator.


6. Put the prepared sample tube into the right opening on the top of the comparator. Hold the comparator in front of a light source. Turn the disc to find a color match.

7. Read the mg/L free copper (Cu) from the scale window. If the result is between two values, use the value halfway between the two printed numbers.

8. To identify the concentration of total dissolved copper present, add the contents of one Hydrosulfite Reagent Powder Pillow (clear pillow) to the tube.

9. Put a stopper in the tube. Remove the tube from the comparator. Invert the tube several times to mix.

10. Wait 2 minutes for full color development.

11. Put the prepared sample tube back into the right opening on the top of the comparator. Hold the comparator in front of a light source. Turn the disc to find a color match.

12. Read the mg/L total dissolved copper (free copper and complexed copper) from the scale window. If the result is between two values, use the value halfway between the two printed numbers.

13. To identify the concentration of complexed copper present in the sample, subtract the amount of free copper from the amount of total dissolved copper.

Interferences

Tab	le 2	Interfering substances

Interfering substance	Interference level
Cyanide	More than 2 mg/L inhibits color development
	Add three drops of Formaldehyde Solution before the viewing tube is put into the comparator box. Wait 3 minutes and then read the mg/L free copper.

Accuracy check

Periodically identify the reagent accuracy with a reliable standard such as Copper Standard Solution 10-mg/L.

- 1. Prepare a 2 mg/L free copper solution.
 - a. Carefully measure 1 mL of Copper Standard Solution 10-mg/L into a sample tube.
 - **b.** Add deionized water to the sample tube to the 5 mL mark.
- Identify the concentration of copper that is present in the standard. Refer to Free and Total Copper (0-4 mg/L) test procedure on page 8.

Replacement items

Note: Product and Article numbers may vary for some selling regions. Contact the appropriate distributor or refer to the company website for contact information.

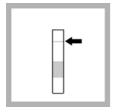
Description	Unit	Item no.
Color comparator box	1	173200
Color viewing tubes with caps	6/pkg	173006
Copper color disc	1	9263300
Free Copper Reagent Powder Pillow	100/pkg	2182369
Hydrosulfite Reagent Powder Pillow	100/pkg	2118869
Stoppers for viewing tubes	6/pkg	173106

Optional items

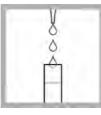
Description	Unit	Item no.
Copper Standard Solution 10 mg/L	100 mL MDB	12932
Formaldehyde Solution	100 mL SCBD	205932

Detergents

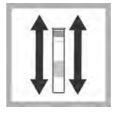
Test preparation

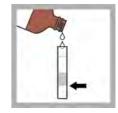

- Assemble the color comparator. Put the Detergents color disc on the center pin with the lettering facing out.
- Use sunlight or a fluorescent light source to compare colors.
- · Rinse all viewing tubes with the sample water before testing and between tests.
- If the disc becomes wet, carefully open the plastic case. Dry the case and the color insert with a soft cloth. Assemble the case when the parts are completely dry.

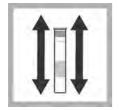
Filter the chloroform layer


If the water sample is turbid, filter the chloroform layer at step 13.

- 1. Put a small ball (about the size of a large pea) of glass wool in the filter thimble.
- 2. Use the draw-off pipet to remove the chloroform. Filter the chloroform through the glass wool and into an unused, glass test tube.


Detergents (0-1.2 mg/L) test procedure


1. Fill one test tube to the upper mark (20 mL) with the water sample.


2. Add 12 drops of Detergent Test Solution.

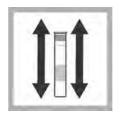
3. Put the stopper in the tube. Shake to mix.

4. Add chloroform to the lowest mark (5 mL). Chloroform is heavier than water and will go to the bottom of the tube.

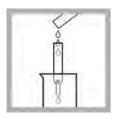
5. Put the stopper in the tube. Shake vigorously for 30 seconds.

6. Do not touch the tube for 1 minute to let the chloroform separate.

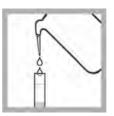
7. Use the draw-off pipet to remove the water from the tube. Discard the water.


8. Add Wash Water Buffer to the upper mark (20 mL).

9. Use the draw-off pipet to remove the Wash Water Buffer. Discard the buffer. Note: This step washes away the remaining water sample.


10. Add Wash Water Buffer to the upper mark (20 mL).

11. Put the stopper in the tube. Shake vigorously for 30 seconds.


12. Do not touch the tube for 1 minute to let the chloroform separate.

13. If the water sample is turbid, filter the chloroform layer.

14. Put the prepared sample tube into the right opening on the top of the comparator.

15. Fill a second test tube with deionized water.

16. Put the deionized water tube into the left opening on the top of the comparator. Hold the comparator in front of a light source. Turn the disc to find a color match.

17. Read the ppm Detergents (LAS and/or ABS) from the scale window. If the result is between two values, use the value halfway between the two printed numbers. If the color is darker than the highest reading on the color disc, do steps 18–20 to make a 20-to-1 dilution.

18. Discard the contents of the prepared sample tube (in the right opening). Rinse the tube with deionized water. Use the dropper to add 1 mL of the water sample to the tube.

19. Add deionized water to the upper mark (20 mL).

20. Do steps 2–17 and multiply the results by 20.

Replacement items

Note: Product and Article numbers may vary for some selling regions. Contact the appropriate distributor or refer to the company website for contact information.

G-96 September 2022

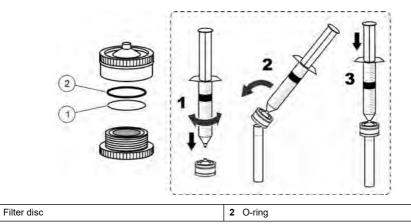
Description	Quantity	ltem no.
Bulb for draw-off pipette	1	178600
Color comparator box	1	173200
Color viewing tubes with caps, 5 mL and 20 mL marks	6/pkg	173606
Chloroform, ACS grade (approximately 100 tests)	500 mL	1445849
Detergents color disc, 0–1.2 mg/L	1	9265700
Detergents reagent	100 mL MDB	105932
Dropper, 0.5 mL and 1.0 mL marks	5/pkg	1419700
Filtering thimble	1	51200
Glass tube for draw-off pipette	1	221800
Glass wool	5 g	252074
Test tube	10/pkg	56510
Wash Water Buffer (approximately 32 tests)	500 mL	99949

pН

Refer to the documentation supplied with the Pocket Pro[™] pH tester to do a pH measurement.

Phenols

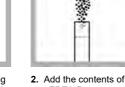
Test preparation


- Assemble the color comparator. Put the Phenols color disc on the center pin with the lettering facing out.
- Use sunlight or a fluorescent light source to compare colors.
- Rinse all viewing tubes with the sample water before testing and between tests.
- If the disc becomes wet, carefully open the plastic case. Dry the case and the color insert with a soft cloth. Assemble the case when the parts are completely dry.

Filter the sample

If the sample is turbid, it may be necessary to filter the sample.

- 1. Install a 0.45 micron filter disc in the filter holder. Refer to Figure 2. Make sure that the holder is closed tight after the disc is installed.
- 2. Fill the 30-cc syringe with the turbid sample.
- 3. Attach the filter holder to the syringe with a twisting motion.
- 4. Filter the sample directly into the viewing tubes from the syringe. Use the filtered sample in the test procedure.

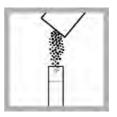

Figure 2 Assemble the filter assembly

Phenols (0-4 mg/L) test procedure

1. Fill two color viewing tubes to the upper mark (20 mL) with water sample.

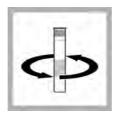

one EDTA Reagent Powder Pillow to each tube.

3. Put the cap on each tube and swirl until the powder is dissolved.


4. Add 15 drops of Hardness 1 Buffer Solution to each tube.


5. Put the cap on each tube and swirl.


6. Put one of the tubes into the left opening on the top of the comparator.


7. Add the contents of one Phenol Reagent Powder Pillow for nonextraction method to the second tube.

8. Put the cap on the tube and swirl until the powder is dissolved.

9. Add the contents of one Potassium Persulfate Powder Pillow for Phosphonate to the second tube.

10. Put the cap on the tube and swirl until the powder is dissolved.

11. Put the second tube into the right opening on the top of the comparator. Hold the comparator in front of a light source. Turn the disc to find a color match.

12. Read the result in mg/L from the scale window. If the result is between two values, use the value halfway between the two printed numbers.

Replacement items

Note: Product and Article numbers may vary for some selling regions. Contact the appropriate distributor or refer to the company website for contact information.

Description	Quantity	ltem no.
Color comparator box	1	173200
Color viewing tubes	4/pkg	4660004
		G-99

September 2022 English 15

Description	Quantity	Item no.
Clippers for powder pillows	1	93600
EDTA Reagent Powder Pillows	50/pkg	700599
Hardness 1 Buffer Solution	50 mL	42426
Phenol Reagent Powder Pillows (nonextraction)	100/pkg	2481569
Potassium Persulfate Powder Pillows for Phosphonate	100/pkg	2084769

Optional items

Description	Quantity	Item no.
Filter discs, 25 mm, 45 micron	25/pkg	2209525
Filter holder for Luer-Lok	1	246800
Syringe, 30 cc, Luer-Lok tip	1	2225800

PHD6[™] Gas Detector

G-101 September 2022

PHD6 PERSONAL PORTABLE GAS DETECTORS HAVE BEEN DESIGNED FOR THE DETECTION AND MEASUREMENT OF POTENTIALLY HAZARDOUS ATMOSPHERIC CONDITIONS

IN ORDER TO ASSURE THAT THE USER IS PROPERLY WARNED OF POTENTIALLY DANGEROUS ATMOSPHERIC CONDITIONS, IT IS ESSENTIAL THAT THE INSTRUCTIONS IN THIS REFERENCE MANUAL BE READ, FULLY UNDERSTOOD, AND FOLLOWED.

> PHD6™ Reference Manual Part Number 13-322 Version 3 Copyright 2012 by Honeywell Inc. LincoInshire, Illinois 60069

> > All rights reserved.

No page or part of this operation manual may be reproduced in any form without written permission of the copyright owner shown above.

Honeywell reserves the right to correct typographical errors. Specifications are subject to change without notice.

Table of Contents

-		
	ATION INFORMATION	
OPERATIN	NG TEMPERATURE AND HUMIDITY LIMITS	. 4
SIGNAL W	Vords	. 4
WARNING	GS AND CAUTIONS	.4
	CRIPTION	
-	Methods of sampling	-
	Multi-sensor capability	
	Calibration	
	Alarm logic	
1.4.1	· ·	
1.4.2		
1.4.3		
1.4.4 1.4.5	· · · · · · · · · · · · · · · · · · ·	
1.4.5		
1.4.7		
1.4.8	5	
-	Other electronic safeguards	
	Sensors	
	Optional sample draw pump	
1.7.1		
	Data storage	0 0
1.0 1.8.1		. o
1.8.2		
	PHD6 design components	
	PHD6 standard accessories	
1.10.		
1.10.		
	PHD6 kits	
1.11.	· · · ·	
1.11.		
	IC OPERATIONS	
	Turning the PHD6 On	
2.1.1		
2.1.2		
	Operating Logic	
2.2.1		
	attery Status Icon	
He	eartbeat Symbol	11
Pu	ump Status Icon	11
	alibration and Bump Due Warnings	
	me	
2.2.2	I	
	Turning the PHD6 Off	
	Atmospheric Hazard Alarms	
2.4.1	*=	
2.4.2 2.4.3		
2.4.3		
	Alarm Descriptionsarning Alarms	
	•	
	anger Alarms	
ST	TEL Alarms	11
тν	NA Alarms	12
2.5	Other Alarms	12
2.5.1 2.5.2		
2.5.2		
2.5.3	· · · · · · · · · · · · · · · · · · ·	
2.5.4		
2.5.6	•	
2.5.0		
-	PC Connection via Infrared Port	
	PID Sensor Correction Factors	
2.7 .1		
2.7.1		
£.1.Z		.0

2	.8	Specia	Il Instructions for NDIR sensors	13
-	2.8.1	•	Special Calibration Requirement for NDIR CO ₂ (Carbon Dioxide) Sensor	13
	2.8.2		Special Consideration for IR CH ₄ Methane sensor gas calibration	
	2.8.3	_	Hydrogen Warning for IR CH ₄ Methane Sensor	
3.			· · · · · · · · · · · · · · · · · · ·	
	5.1		Il sample draw kit	
3				
	3.1.1		Manual sample draw kit usage	
3	5.2		zed sample draw pump	
	3.2.1	-	Starting the motorized sample pump	
	3.2.2		Turning off the pump	
	3.2.3		Pump low flow alarm	
3	.3	Sampl	e draw probe	6
4.	CAL	IBRATIO	N	16
4	.1	Functi	onal (Bump) testing	16
-	.2		Air/Zero Calibration	
	4.2.1		Fresh air calibration failure	
	4.2.2		Forced fresh air calibration	
	4.2.3		Fresh air calibration in a contaminated atmosphere	
	ч. <u>2</u> .		alibration	
4	4.3.1		Gas calibration failure: All sensors except oxygen	
	4.3.	-		
		_	Gas calibration failure: Oxygen sensors	
4			Il Calibration Instruction for NDIR CO ₂ sensor	
	4.4.′		CO ₂ Sensor True Zero	
-	.5		Il Calibration Instructions for NDIR-CH₄ Sensor	
5.	MEN		DNS	
5	5.1	Basic	Menu	
	5.1.1	1	Entering the Basic Menu	19
5	.2	Main M	/enu	20
	5.2.1	1	Entering the Main Menu	20
	5.2.2	2	Using the submenus.	
	5.2.3	3	Alarms Menu	20
	5.2.4	4	Calibration Menu	21
	5.2.5	5	Configuration Menu	
	5.2.6	3	Screen Menu	
	5.2.7	7	Information Menu	22
	5.2.8	3	Datalogger Menu	
6.	MΔI	ΝΤΕΝΔΝ	CE	
-	5. 1			
-	5.2		cing alkaline batteries	
			ining Li-lon battery packs	
C	5. 3		Storage guidelines for the Li-Ion battery	13
	6.3.1			
	6.3.2		Charging guidelines for Li-Ion battery	
	6.3.3		Charging procedure for Li-lon battery	
	6.3.4 6.3.5		Charging with the pump attached	
~			Battery troubleshooting	
6	.4		rs	
	6.4.	-	Sensor replacement	
	6.4.2	_	Care and maintenance of PID sensors	
			Troubleshooting the PID	
	6.	4.2.2	Cleaning and replacing PID components	24
6	5.5	Sampl	e probe assembly	24
	6.5.		Changing sample probe filters	
	6.5.2		Changing sample probe tubes (wands)	
6	6.6	PHD6	Pump Maintenance	
•	6.6.1		Replacing pump filters	
Δр				
			Toxic gas measurement – Warning, Danger, STEL and TWA alarms	
F	1.		Warning and Danger Alarms	
	1. 2.		Time Weighted Average (TWA)	
	2. 3.		Short Term Exposure Limits (STEL)	
,		ndiv P		
			Calibration Frequency Recommendation	
			PHD6 Sensor Information	
			Electrochemical Toxic Sensor Cross-Sensitivity	
но	IONEYWELL WARRANTY GAS DETECTION PRODUCTS			

Certification Information

The PHD6 carries the following certifications:

QPS Class I Division 1 Groups A,B,C,D Temp Code T3C (Approved to UL 913) QPS USTC Class II Division 1 Groups E,F,G (Approved to UL 913) QPS USTC Class III (Approved to UL 913)

CSA Class I, Division 1 Groups A,B,C,D Temp Code T3C ONLY THE COMBUSTIBLE GAS DETECTION PORTION OF THIS INSTRUMENT HAS BEEN ASSESSED FOR PERFORMANCE.

ATEX: Ex d ia IIC 170 °C (T3) IECEx: Ex d ia IIC 170 °C (T3) CE Mark

Operating Temperature and Humidity Limits

WARNING The PHD6's operating temperature range is printed on the label on the back of the instrument. Use of Honeywell Gas Detectors outside of the instrument's specified operating temperature range may result in inaccurate and potentially dangerous readings.

Signal Words

The following signal words, as defined by ANSI Z535.4-1998, are used in the PHD6 Reference Manual.

ADANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

AWARNING indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION indicates a potentially hazardous situation, which if not avoided, may result in moderate or minor injury.

CAUTION used without the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in property damage.

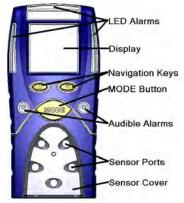
Warnings and Cautions

- 1. **WARNING** The PHD6 personal, portable gas detector has been designed for the detection of dangerous atmospheric conditions. An alarm condition indicates the presence of a potentially life-threatening hazard and should be taken very seriously. Failure to immediately leave the area may result in serious injury or death.
- 2. **WARNING** In the event of an alarm condition it is important to follow established procedures. The safest course of action is to immediately leave the affected area, and to return only after further testing determines that the area is once again safe for entry. Failure to immediately leave the area may result in serious injury or death.
- 3. **WARNING** The PHD6 must be located in a non-hazardous location whenever alkaline batteries are removed from the alkaline battery pack. Removal of the alkaline batteries from the battery pack in a hazardous area may impair intrinsic safety.
- 4. **WARNING** Use only Duracell MN1500 or Ultra MX1500, Eveready Energizer E91-LR6, Eveready EN91 batteries in the alkaline battery pack. Substitution of batteries may impair intrinsic safety.
- 5. **WARNING** To reduce the risk of explosion, do not mix old or used batteries with new batteries and do not mix batteries from different manufacturers.
- 6. **WARNING** Do not charge the PHD6 with any charger other than the appropriate PHD6 charger. Standard versions of the PHD6 must be charged with the UL/CSA-approved charger, which is part number 54-49-103-1. European versions of the PHD6 must be charged with the ATEX-approved charger, which is part number 54-49-103-5.
- 7. **WARNING** The PHD6 must be located in a non-hazardous location during the charging cycle. Charging the PHD6 in a hazardous location may impair intrinsic safety.
- 8. **WARNING** PHD6 rechargeable battery packs are supplied with Panasonic CGR18650D Lithiumlon batteries. The Li-lon batteries in the battery packs may not be replaced by the user. The rechargeable pack must be obtained from Honeywell and replaced as a complete assembly to maintain intrinsic safety.
- 9. **WARNING** The accuracy of the PHD6 should be checked periodically with known concentration calibration gas. Failure to check accuracy can lead to inaccurate and potentially dangerous readings.

(The Canadian Standards Association (CSA) requires an accuracy check using known concentration calibration gas prior to each day's use.)

- 10. **WARNING** Fresh air/zero calibrations may only be performed in an atmosphere that is known to contain 20.9% oxygen, 0.0% LEL and 0 PPM toxic gas.
- 11. **WARNING** The accuracy of the PHD6 should be checked immediately following any known exposure to contaminants by testing with known concentration test gas before further use. Failure to check accuracy can lead to inaccurate and potentially dangerous readings.
- 12. **WARNING** A sensor that cannot be calibrated or is found to be out of tolerance should be replaced immediately. An instrument that fails calibration may not be used until testing with known concentration test gas determines that accuracy has been restored, and the instrument is once again fit for use.
- 13. **WARNING** Do not reset the calibration gas concentration unless you are using a calibration gas concentration that differs from the one that is normally supplied by Honeywell for use in calibrating the PHD6.

Customers are strongly urged to use only Honeywell calibration materials when calibrating the PHD6. Use of non-standard calibration gas and/or calibration kit components can lead to dangerously inaccurate readings and may void the standard Honeywell warranty.


14. **WARNING** Use of non-standard calibration gas and/or calibration kit components when calibrating the PHD6 can lead to inaccurate and potentially dangerous readings and may void the standard Honeywell warranty.

Honeywell offers calibration kits and long-lasting cylinders of test gas specifically developed for easy PHD6 calibration. Customers are strongly urged to use only Honeywell calibration materials when calibrating the PHD6.

- 15. **AWARNING** Substitution of components may impair intrinsic safety.
- 16. **WARNING** For safety reasons this equipment must be operated and serviced by qualified personnel only. Read and understand this reference manual before operating or servicing the PHD6.
- 17. **WARNING** A rapid up-scale reading followed by a declining or erratic reading may indicate a hazardous combustible gas concentration that exceeds the PHD6's zero to 100 percent LEL detection range.
- 18. **WARNING** The PHD6 is not designed for use in oxygen enriched atmospheres.
- 19. **WARNING** Do not use the PHD6 pump for prolonged periods in an atmosphere containing a concentration of solvent or fuel that may be greater than 50% LEL.
- 20. **WARNING** Do not unplug the NDIR-CH⁴ or NDIR-CO² sensors in an explosive atmosphere. Unplugging IR sensors in an explosive atmosphere may impair intrinsic safety.

1. Description

The PHD6 is a multi-sensor gas detector that can be configured to meet a wide variety of user requirements. This chapter provides an overview of many of the features of the PHD6. More detailed descriptions of the specific features of the PHD6 are contained in the subsequent chapters of this manual.

1.1 Methods of sampling

The PHD6 may be used in either diffusion or sample-draw mode. In either mode, the gas sample must reach the sensors for the instrument to register a gas reading. The sensors are located at the lower front of the instrument.

WARNING The sensor ports must be kept free of obstruction. Blocked sensor ports can lead to inaccurate and potentially dangerous readings.

In diffusion mode, the atmosphere being measured reaches the sensors by diffusing through the sensor ports at the front of the instrument. Normal air movements are enough to carry the sample to the sensors. The sensors react quickly to changes in the concentrations of the gases being measured. Diffusion-style operation monitors only the atmosphere that immediately surrounds the detector.

The PHD6 can also be used to sample remote locations with its hand-aspirated sample-draw kit or with its motorized, continuous sample draw pump. During remote sampling, the gas sample is drawn into the sensor compartment through the probe assembly and a length of tubing. Remote sampling operations only monitor the atmosphere at the end of the sample draw probe.

Use of the hand-aspirated sample draw kits is covered in section 3.1.

Use of the motorized sample draw pump is covered in section 3.2.

A detailed description of the PHD6 probe assembly is given in section 6.5

1.2 Multi-sensor capability

The PHD6 can be configured to simultaneously monitor oxygen, combustible gases and vapors, volatile organic compounds (VOCs), and a wide variety of toxic gases. All sensors are replaceable in the field.

Note: The accuracy of the PHD6 must be verified by calibration with known concentration test gas whenever a change is made to the sensors installed in the instrument.

Calibration procedures are discussed in detail in Chapter 4.

The PHD6 can utilize a variety of sensor types to detect atmospheric contaminants including electrochemical sensors, PID (Photo Ionization Detector) sensors, NDIR (Non-Dispersive Infra-Red Absorbance) sensors and catalytic hot-bead LEL sensors.

Different measurement units are used depending on the gas being measured.

Type of Hazard	Measurement unit
Oxygen (O ₂)	Percentage by volume
Combustible gas (LEL Sensor)	Percentage of lower explosive limit (%LEL) or %/Vol CH ₄
Hydrocarbon-specific combustible gas sensor (NDIR – CH ₄)	Percentage of lower explosive limit (%LEL) or %/Vol CH ₄
Volatile Organic Compounds (VOCs) (PID Sensor)	Parts-per-million (PPM) or tenths of a part-per-million (0.1PPM)
Toxic Gases (by electrochemical sensor	Parts-per-million (PPM) – some sensors capable of tenths of a part-per- million (0.1PPM)
Toxic Gas by NDIR – CO ₂ sensor Table 1.2 PHD	%/Vol CO ₂

Table 1.2. PHD6 Units of Measurement.

1.3 Calibration

The PHD6 detector features fully automatic fresh air and gas calibration.

WARNING The accuracy of the PHD6 should be checked periodically with known concentration calibration gas. Failure to check accuracy can lead to inaccurate and potentially dangerous readings. (The Canadian Standards Association (CSA) requires an accuracy check using known concentration calibration gas prior to each day's use.)

Calibration procedures are discussed in detail in Chapter 4.

Recommended calibration frequency is discussed in Appendix B.

1.4 Alarm logic

PHD6 gas alarms can be adjusted manually using the PHD6's built in menu functions, with BioTrak II software via IrDA interface, or with the IQ Database Manager Program through the IQ6 Dock. (See Chapter 6 for direct menu programming instructions). Alarms may be set anywhere within the nominal range of the specific sensor. When an alarm set point is exceeded a loud audible alarm sounds, and the bright red LED alarm lights flash.

1.4.1 Atmospheric hazard alarms

AWARNING PHD6 portable gas detectors have been designed for the detection of deficiencies of oxygen, accumulations of flammable gases and vapors, and accumulations of specific toxic gases. An alarm condition indicating the presence of one or more of these potentially life-threatening hazards should be taken very seriously. Failure to immediately leave the area may result in serious injury or death. **WARNING** In the event of an alarm condition it is important to follow established procedures. The safest course of action is to immediately leave the affected area, and to return only after further testing determines that the area is once again safe for entry. Failure to immediately leave the area may result in serious injury or death.

WARNING A rapid up-scale reading followed by a declining or erratic reading may indicate a hazardous combustible gas concentration that exceeds the PHD6's zero to 100 percent LEL detection range. Failure to immediately leave the area may result in serious injury or death.

The combustible gas alarms are activated when the reading for combustible gases exceeds one of the alarm setpoints. Combustible gas readings are typically given in terms of percent of LEL (Lower Explosive Limit), but may also be shown in terms of percent-by-volume methane (CH₄). The PHD6 includes Warning and Danger alarms for the both the LEL sensor and the NDIR-CH₄ sensor.

Two oxygen alarm set points have been provided; a low alarm for oxygen deficiency and a high alarm for oxygen enrichment.

Up to four alarm set points are provided for the PID sensor and for each toxic gas sensor: Warning, Danger, STEL (Short Term Exposure Limit) and TWA (Time Weighted Average).

Appendix A discusses Warning, Danger, STEL and TWA alarms.

1.4.2 Low battery alarms

The PHD6 includes multi-staged alarms for both the Li-Ion and alkaline battery packs to let the user know that the battery is running low.

For detailed information concerning the low battery alarms, see section 2.5.5.

WARNING Use only Duracell MN1500 or Ultra MX1500, Eveready Energizer E91-LR6, Eveready EN91 batteries. Substitution of batteries may impair intrinsic safety.

1.4.3 Sensor over range alarms

The PHD6 will go into alarm if a sensor is exposed to a concentration of gas that exceeds its established range. In the case of an LEL or NDIR-CH₄ sensor reading that exceeds 100% LEL, the sensor channel will be automatically disabled by the instrument and the instrument will remain in constant alarm until it is turned off, brought to an area that is known to be safe, and then turned back on. The display will show a vertical arrow with two heads in place of the sensor reading for any channel that has gone into over range alarm.

See section 2.5.2 for further details.

WARNING In the event of an LEL overrange alarm the PHD6 must be turned off, brought to an area that is known to be safe and then turned on again to reset the alarm.

1.4.4 PID lamp out alarm

The PHD6 monitors the status of the PID lamp to ensure that it is functioning properly. Alarms are generated if the PHD6 determines that the lamp is out. See section 2.5.3 for further details

1.4.5 LEL response failure due to lack of O₂ alarm

The PHD6 features automatic warning against LEL sensor response failure due to lack of oxygen. See section 2.5.4 for details.

1.4.6 Security beep/flash

The PHD6 includes a security beep function that is designed to notify the user that the instrument is powered up and running. Once enabled the PHD6 will emit a short audible beep and give a short flash on the LED at a user-defined interval.

The security beep/flash can be enabled manually through the Main Menu (see chapter 5), with BioTrak II software or through the IQ6 Dock.

1.4.7 Latching alarms

The PHD6's alarms are self-resetting unless the alarm latch is enabled. With the PHD6's alarm latch enabled, the audible and visible alarms will continue to sound after the atmospheric hazard has cleared. To reset the alarms, simply press the MODE button. If the alarm latch is disabled and the alarm condition is no longer present, the instrument will automatically return to normal operation, and the visible and audible alarms cease without further input from the user.

Latching alarms can be enabled manually through the Main Menu (see chapter 5), with BioTrak II software or through the IQ6 Dock.

1.4.8 Fault detection

PHD6 software includes a number of additional alarms designed to ensure the proper operation of the instrument. When the PHD6 detects that an electronic fault or failure condition has occurred, the proper audible and visible alarms are activated and an explanatory message is displayed.

Faults and other electronic safeguards are discussed in detail in section 2.5.

WARNING The PHD6 is designed to detect potentially life threatening atmospheric conditions. Any alarm condition should be taken seriously. The safest course of action is to immediately leave the affected area, and return only after further testing determines that the area is once again safe for entry.

1.5 Other electronic safeguards

Several automatic programs prevent tampering and misuse of the PHD6 by unauthorized persons. Each time the detector is turned on, the PHD6 automatically tests the LED alarm lights, audible alarm, internal memory and pump status (if so equipped). The battery is monitored continuously for proper voltage. The PHD6 also monitors the connection of sensors that are currently installed. The detection of any electronic faults causes the activation of the audible and visible alarms and causes the display of the appropriate explanatory message.

1.6 Sensors

The PHD6 can be configured to simultaneously monitor oxygen, combustible gases and vapors, volatile organic compounds (VOCs) and a number of toxic gases. The sensor configuration of the PHD6 may be specified at the time of purchase, or changed in the field by appropriately trained personnel. The PHD6 must be calibrated following any sensor replacement.

Replacement sensor part numbers and sensor ranges are given in Appendix C.

WARNING A sensor that cannot be calibrated or is found to be out of tolerance must be replaced immediately. An instrument that fails calibration may not be used until testing with known concentration test gas determines that accuracy has been restored, and the instrument is once again fit for use.

Calibration procedures are discussed in detail in Chapter 4.

1.6.1 Cross Sensitivity

Sensor cross-sensitivity figures are given in Appendix D.

The CO channel in the Duo-Tox sensor in the PHD6 may exhibit high levels of cross sensitivity to organic vapors (VOCs). For best performance in an atmosphere known to contain VOCs, use a dedicated CO sensor.

1.7 Optional sample draw pump

A motorized sample-draw pump is available for the PHD6 for situations requiring continuous "hands free" remote monitoring.

WARNING The PHD6 continuous sample draw pump (part number 54-54-102) is the only pump that can be used with the PHD6.

The pump contains a pressure sensor that detects restrictions in airflow caused by water or other obstructions being drawn into the unit and immediately acts to turn the pump off in order to protect the sensors, pump, and other PHD6 components from damage.

Pump status is continuously monitored by the PHD6 microcontroller. When the pump is active and functioning properly, the spinning pump icon is displayed in

the status bar at the bottom of the display. Low flow or other pump fault conditions activate audible and visible alarms and cause the display of the appropriate explanatory message.

1.7.1 Special precautions when using the PHD6 pump

The rubber material used in the PHD6 diaphragm pump is susceptible to temporary compromise by exposure to high levels of flammable fuel and solvent vapors. If the PHD6 is being used to sample atmospheres that exceed 50% LEL, test the pump frequently to ensure that pump function has not been compromised.

To test the pump, block the end of the sampling line (probe) inlet with a finger. The pump should quickly go into alarm, which indicates proper function. If the pump fails to go into alarm while the inlet is blocked, it is not working properly; and the PHD6 may not be providing an accurate reading. If the pump test fails, the safest course of action is to immediately leave the affected area and to return only after further testing with known, functional detection equipment confirms that the area is once again safe for entry.

AWARNING Do not use the pump to sample for prolonged periods in conditions where the

concentration of solvent or fuel vapors may be greater than 50% LEL.

1.8 Data storage

The PHD6 includes a black box data recorder and an event logger as standard features. A full datalogger is available as an upgrade at any time.

1.8.1 Black box data recorder

A black box data recorder is a standard feature in the PHD6. The "black box" is continually in operation whether the user is aware of it or not. The black box stores important information such as gas readings, turn-on times, turn-off times, temperatures, battery conditions, the most recent calibration date and settings, types of sensors currently installed, sensor serial numbers, warranty expiration and service due dates, and current alarm settings.

There is a finite amount of memory storage available in the black box data recorder. Once the memory is "full", the PHD6 will begin to write the new data over the oldest data. The black box data recorder will store a minimum of 63 hours of data in one-minute increments before it begins to write new data over the oldest data. In this way, the newest data is always conserved.

To extract the information from the black box data recorder, the PHD6 must be returned to Honeywell. Once the data is downloaded from the instrument, a report will be generated. The unit and the report will then be returned to the user. Simply call Honeywells' Instrument Service Department to obtain a return authorization number. There is no charge for the downloading service, but the user is responsible for any freight charges incurred.

The "black box" data recorder in the PHD6 can be upgraded to a fully enabled datalogger at any time. All that is required is the activation code that corresponds to the serial number of the PHD6 and the PHD6 Upgrade Utility Program.

1.8.2 Event logger

The event logger in the PHD6 stores data associated with alarm conditions. Each (alarm) event includes the following data for each of the installed sensors:

- Sensor type
- Max reading
- Average reading
- Start time
- End time
- Duration of the event.

The PHD6 stores the data from the 20 most recent alarm events. Once 20 events have been stored, the PHD6 will begin to systematically overwrite the data from the oldest event in memory with data from new events. One event may be a combination of different alarms occurring simultaneously or in immediate succession. The event logger may be downloaded using BioTrak II software. The PC must be equipped with IrDA to provide a connection.

1.9 PHD6 design components

1. **Case:** The instrument is enclosed in a solid PC (polycarbonate) case with TPE (rubber) overmold.

- 2. Front face: The front face of the instrument houses the MODE button, navigation keys, LCD (liquid crystal display), LED alarm lights, and audible alarm ports.
- **3. Display:** A liquid crystal display (LCD) shows readings, messages, and other information.
- 4. Alarm LEDs: Top, front and side-mounted LED (light emitting diode) alarm lights provide a visual indication of alarm state.
- **5. Infrared Port:** The infrared port is located at the bottom of the instrument and is used for communication between the PHD6 and a PC.
- 6. On / Off "MODE" button: The large black push-button on the front of the instrument is the "MODE" button. The MODE button is used to turn the PHD6 on and off as well as to control most other operations, including the initiation of the automatic calibration adjustment.
- 7. Navigation Keys: The up and down navigation keys are located between the MODE button and the display.
- 8. Sensor compartment cover: The sensors are located in a vented compartment at the bottom of the instrument.
- **9.** Audible alarm ports: Two cylindrical ports extending through the front of the instrument on opposing sides of the MODE button house the loud audible alarms. The waterproof audible alarms seat directly to the rubber inner-liner to protect the instrument against leakage or exposure to liquids.
- **10. Battery pack:** Two types of interchangeable battery packs (rechargeable Lithium Ion (Li-Ion) and disposable alkaline) are available for use. Li-Ion battery packs are recharged with the pack installed on the PHD6.
- **11. Battery charger connector:** A water-resistant connector at the bottom of the case assembly is used to connect the PHD6 to the "drop in" style charger.
- **12. Battery Compartment / Clip:** The battery inserts from the back of the instrument. A sturdy clip attached to the battery allows the user to wear the PHD6 on a belt or other article of clothing.

1.10 PHD6 standard accessories

Standard accessories included with every PHD6 include calibration adapter, additional tubing for use during calibration, manual sample draw kit, reference manual and quick reference card. The manual sample draw kit consists of a sample draw / calibration adapter, squeeze bulb, replacement sample probe filters, ten feet/three meters of tubing and a sample probe.

Standard configurations of the PHD6 are delivered in a cardboard box with cardboard inserts.

1.10.1 Alkaline PHD6 detectors

If the PHD6 has been purchased as an alkaline instrument, the standard accessories include an alkaline battery pack and a set of 3 disposable AA alkaline batteries.

1.10.2 Li-lon PHD6 detectors

If the PHD6 has been purchased as a Li-Ion rechargeable instrument, the standard accessories include Li-Ion battery pack and a slip-in PHD6 charger.

1.11 PHD6 kits

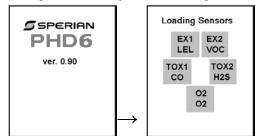
PHD6 detectors may also be purchased as part of a complete kit that includes calibration gas, fixed-flow regulator and a hard-shell carrying case.

1.11.1 PHD6 Confined Space Kits

In addition to the standard accessories listed above, Confined Space Kits also include calibration fittings, fixedflow regulator with pressure gauge, and appropriate large cylinder(s) of calibration gas in a foam-lined, waterproof hard-shell carrying case.

1.11.2 PHD6 Value Packs

PHD6 Value Packs include an alkaline PHD6, all standard accessories, calibration fittings, small cylinder of calibration gas, and fixed flow regulator in a foam-lined non-waterproof hard-shell carrying case.


2. Basic Operations

The PHD6 is a three-button gas detector. Most day-to-day functions are initiated solely with the MODE button. The MODE button controls:

- Turning the PHD6 on and off
- Turning on the backlight
- Viewing the MAX, STEL and TWA reading screens
- Initiating the calibration sequence

2.1 Turning the PHD6 On

To turn the PHD6 on, press and hold the MODE button for one second. The introduction screen is followed by a screen showing a list of installed sensors and the sensor ports they occupy. The PHD6 has 5 sensor ports, but can display readings for as many as 6 distinct gases.

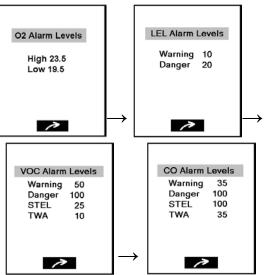
The serial number will then be shown. If the detector has a fully enabled datalogger, the interval and memory capacity will be shown.

The sampling interval is given in minutes and seconds. The datalogger samples continuously,

so the data stream must be broken

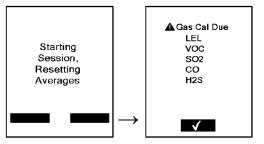
into intervals to be recorded. The datalogging interval defines the frequency of the breaks in the data stream. The capacity is the number of hours and minutes it will take to completely fill the datalogger's memory. Once the memory is filled, the PHD6 will start to write new data over the oldest data in order to conserve that most recent data.

The sampling interval in the fully enabled datalogger may be modified using BioTrak II Software, the IQ Systems or manually through the Main Menu.


If the PHD6 is equipped with the standard black box datalogger, it will show Black Box.

In the PHD6, a one-minute sampling interval will result in the ability to store a minimum of 63 hours of readings before the oldest data is overwritten by new data. If fewer than 5 sensors are used, the capacity will increase.

As the instrument performs a basic electronic self test, the date, time, temperature and battery type will be displayed. During the self-test, the PHD6 performs a system memory check and tests to see if a motorized pump is attached to the instrument. If a pump is detected, it will be briefly


activated during the self-test. For details on start up procedures for pump-equipped PHD6 instruments see section 2.1.1 below.

The PHD6 will then display each installed sensor along with any associated alarms levels.

For more information concerning atmospheric hazard alarms, see section 2.4.

After the alarm screens, the PHD6 will show that "Starting Session, Resetting Averages" followed by the calibrations status screen. Whenever the PHD6 is turned on, it automatically starts a new operating session and resets STEL and TWA calculations. The MAX reading is also reset for the new session.

If calibration is due and the calibration due warning is enabled, the user will need to acknowledge the calibration due status by pressing the MODE button. Once the MODE button is pressed, the PHD6 will continue to the current gas readings screen and the appropriate calibration due icons will flash to remind the user that the instrument is past due for calibration. If calibration is not due, the number of days until the next calibration will be shown before the instrument proceeds to the current gas readings screen.

2.1.1 Start up with pump

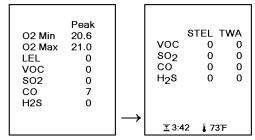
PHD6 instruments that are equipped with a built-in

motorized sample draw pump will have a slightly longer start up sequence. After the calibration status screens, the PHD6 will prompt you to leak test the pump.

See section 3.2 for further instructions on using the PHD6 pump.

2.1.2 Start up with PID or IR sensor

When a PID or IR sensor is installed in the PHD6, there will be a warm-up period during which the hourglass icon and either "PID" or "IR" will be shown. The VOC gas type and reading are shown in reverse text.


MWARNING PID and IR readings

that are displayed during the sensor warm up period should not be considered accurate. The use of the PHD6 to monitor for compounds detected by the PID or IR sensor during the warm up period may lead to inaccurate and potentially dangerous readings.

2.2 Operating Logic

Once the PHD6 has completed the start up sequence, the current gas readings screen will be shown. The status bar at the bottom of the display shows time plus calibration, pump and battery status.

To turn on the backlight press the MODE button once. To view the peak readings screen, press the MODE button a second time. Press the MODE button a third time to view the Short Term Exposure Limit (STEL) and Time Weighted Averages (TWA) for the operating session.

Screens that are accessible with the MODE button (including the Peak and STEL/TWA screens) are selectable by the user. See section 5.2.6 for details.

Note: The PHD6 must be in continuous operation for at least 15 minutes before it will be able to calculate STEL or TWA values. For the first 15 minutes of any operating session, the screen will show the length of time that the instrument has been operating instead of the STEL and TWA values.

2.2.1 Status Bar

The status bar at the bottom of the current gas readings shows general information including: Battery Status

Battery Status Icon

The battery status icon is located at the far lower left of the screen. The battery icon gives an indication of how much power is left in the battery.

When the battery icon is empty, it is considered a low battery condition and the user should take the appropriate steps to either recharge the Li-Ion battery or replace the alkaline batteries.

For more information on the low battery alarms, see section 2.5.5.

IR Hourglass Symbol

The hourglass symbol along with IR are shown in the status bar during the IR sensor's 1-minute warm-up period. Once the warm-up period is over, the hourglass will no longer be shown.

PID Hourglass Symbol

The hourglass symbol along with PID are shown in the status bar during the PID sensor's 5-minute warm-up period. Once the warm-up period is over, the hourglass will no longer be shown.

When a PHD6 is equipped with both an IR and a PID sensor, the PID hourglass is shown since the PID sensor takes longer to warm up than the IR sensor.

Heartbeat Symbol

When the instrument is properly charged, calibrated and functioning normally, the heartbeat symbol will flash in the status bar.

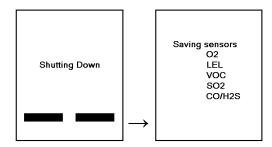
Pump Status Icon

If the pump is attached and functioning, the moving fan icon will appear in the status bar.

Calibration and Bump Due Warnings

If the PHD6 is due for calibration the calibration bottle icon and triangular warning symbol will be flash in the status bar.

Time


The time is shown on the current gas readings screen at the lower right.

2.2.2 Screen Flip

The screen orientation of the PHD6 may be flipped (so that it can be read looking down from above instead of up from below) by pressing the up and down arrows simultaneously at the Current Gas Readings screen.

2.3 Turning the PHD6 Off

To turn the PHD6 off, press and hold the MODE button until the display reads "Release MODE to shut down". Then release the MODE button. The display will briefly show "Shutting Down" and "Saving Sensors" before the display goes blank.

2.4 Atmospheric Hazard Alarms

The PHD6 is configured with a series of alarms that are designed to warn the user of hazardous atmospheric conditions.

WARNING The PHD6 is designed to detect potentially life threatening atmospheric conditions. Any alarm condition should be taken seriously. The safest course of action is to immediately leave the affected area, and return only after further testing determines that the area is once again safe for entry.

2.4.1 O2 Alarms

The PHD6 is equipped with both high and low alarms for oxygen. Fresh air contains 20.9% oxygen.

The low oxygen alarm indicates oxygen deficiency and is normally set at 19.5% at the factory.

The high alarm indicates oxygen enrichment and is normally set at 23.5% at the factory.

2.4.2 Combustible Gas Alarms

The PHD6 is equipped with a 2-stage alarm for concentrations of combustible gas.

The default LEL warning alarm setting is 10% LEL. The default LEL danger alarm setting is 20% LEL.

The default warning alarm for NDIR-CH₄ sensors is 10% LEL or 0.5%/vol CH₄. The default danger alarm is 20% LEL or 1.0%/vol CH₄.

2.4.3 Toxic and VOC sensor alarms

The PHD6 is equipped with up to four different alarms for toxic gases and volatile organic compounds (VOCs). The combination of alarms is designed to protect the user from both chronic and acute toxic hazards.

Current alarm settings are shown during the startup sequence, and can also be accessed through the Alarms Menu.

2.4.4 Alarm Descriptions

Warning Alarms

Warning alarms indicate a hazardous atmospheric condition that has not yet risen to the level necessary to initiate the danger alarms.

Warning alarms can be temporarily silenced by pressing the MODE button.

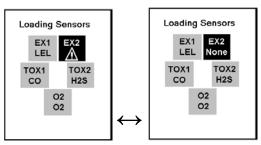
Danger Alarms

Danger alarms indicate a significantly hazardous condition. The danger alarms cannot be silenced by the user.

STEL Alarms

STEL (Short Term Exposure Limit) alarm values represent the average concentration of instrument readings for the target gas for the most recently completed 15 minutes of operation.

TWA Alarms


TWA (Time Weighted Average) values are calculated by taking the sum of exposure to a particular toxic gas in the current operating session in terms of parts-per-million-hours and dividing by an eight-hour period.

2.5 Other Alarms

The PHD6 will display warnings or error messages when it detects problems during operation.

2.5.1 Missing Sensor Alarms

During startup, if the PHD6 fails to detect a sensor that was present when the instrument was last turned off, it will show the sensor channel with "None" and the triangular warning symbol at the Loading Sensors screen.

Press MODE to acknowledge the missing sensor

If the PHD6 loses connection with a sensor during an operating session, it will

immediately go into alarm and show an "X" in the space on the display allotted for the sensor reading. The PHD6 must be turned off to reset the missing sensor alarm.

2.5.2 Sensor Overrange alarm

The PHD6 will show a vertical double-headed arrow and go into alarm if a sensor is exposed to a concentration of gas that exceeds its established range. In the case of an LEL reading that exceeds 100%

LEL, the LEL channel will be automatically disabled by the instrument and the alarm will latch (remain on) until the instrument is turned off. The PHD6 must be turned off, brought to an area that is known to be safe (containing 20.9% oxygen, 0% LEL and 0 PPM toxic gases), and then turned back on. The display will show a vertical arrow with two heads in place of the sensor reading for any channel that has gone into over range alarm.

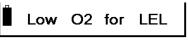
A combustible sensor overrange alarm indicates a potentially explosive atmosphere. Failure to leave the area immediately may result in serious injury or death!

WARNING In the event of an LEL overrange alarm the PHD6 must be turned off, brought to an area that is known to be safe (containing 20.9% oxygen, 0% combustible gases and 0 PPM toxic gases), and then turned on again to reset the alarm.

2.5.3 PID Lamp Out Alarm

The PID sensor in the PHD6 uses a lamp to ionize the gas sample and generate a reading.

If the lamp fails to light during instrument startup, the PHD6 will attempt to start it for the


duration of the warm-up cycle. If the lamp lights, the PHD6 will complete the warm-up cycle and then enter standard operating mode. If the lamp fails to light by the end of the 5-minute warm-up cycle, the instrument will display an X in the PID channel and the instrument will go into alarm. The status bar at the bottom of the screen will also show "Check Sen." to let the user know that the PID sensor is not functioning.

The PHD6 also tests the lamp in the PID sensor at regular intervals during normal operation. If the PHD6 determines that the lamp has gone out, the X will appear on the display in the PID channel, the instrument will go into alarm and the status bar will show "Check Sen."

2.5.4 O₂ Too Low for LEL Alarms

The LEL sensor in the PHD6 requires a certain amount of oxygen to function properly. When oxygen levels fall below 11% by volume, the PHD6 will show "X" in place of the LEL reading and will indicate the oxygen levels are too low.

2.5.5 Low Battery Alarms

When the battery icon in the LCD appears empty, it means that a low battery condition exists. Leave the area immediately.

If the PHD6 is equipped with an alkaline battery pack, proceed to an area that is known to be safe area (containing 20.9% oxygen, 0% combustible gases and 0 PPM toxic gases) and change the batteries.

WARNING The PHD6 must be located in a nonhazardous location whenever alkaline batteries are removed from the alkaline battery pack. Removal of the alkaline batteries from the battery pack in a hazardous area may impair intrinsic safety.

CAUTION Always turn the PHD6 off prior to removing the battery pack. Removal of the battery pack with the instrument turned on may cause corruption of stored data in the PHD6.

If the PHD6 is equipped with a Li-Ion battery pack, proceed to an area that is known to be safe and recharge the battery pack.

If the PHD6 continues to be used during a low battery condition, it will eventually go into a low battery alarm, and the warning alarm will sound and the screen will display the low battery warning. To silence the alarms, the user will need to acknowledge the low battery condition by pressing the MODE button before the instrument will resume monitoring. Once the MODE button is pressed, the empty battery cell and the caution icon will flash. After 5 minutes the warning will sound again. This cycle will continue until the battery reaches a "very low battery" condition, when the instrument will go into alarm for the last time, notify the user that it is shutting itself and proceed to turn itself off.

Alkaline battery replacement and Li-lon battery charging instructions are contained in sections 6.2 and 6.3.

WARNING The PHD6 must be located in a nonhazardous location during the charging cycle. Charging the PHD6 in a hazardous location may impair intrinsic safety.

2.5.6 Calibration Due Warning

If the PHD6 is due for calibration, the triangular warning symbol and span bottle icons will flash in the status bar at the bottom of the LCD once per second as a reminder.

2.5.7 Out of Temperature Range

If the operating temperature falls outside of the normal operating range of a sensor in the PHD6, the instrument will go into alarm and the thermometer icon will be shown on the display at the sensor.

2.6 PC Connection via Infrared Port

PHD6 instruments that are equipped with a fully enabled datalogger can be downloaded to a PC using BioTrak II or IQ software through the PHD6's infrared port. The IrDA port is located on the bottom of the instrument towards the back.

- If the PHD6 is turned off, hold the MODE button down for about 5 seconds until "Communication Mode" is shown. If the PHD6 is on already, proceed to step 2.
- 2. Align the infrared port on the PHD6 with the PC's infrared port to complete the connection.

Note: For further instructions concerning the download procedure for the PHD6, see the BioTrak II or IQ System manual as appropriate.

2.7 PID Sensor Correction Factors

The PHD6 may be equipped with a PID (Photo Ionization Detector) sensor designed to detect Volatile Organic Compounds. The PID sensor employs an ultraviolet lamp to ionize the VOCs in the sample. The detector is then able to measure the level of the VOCs and generate a reading.

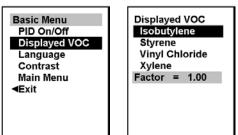
PID sensors are broadband in nature. This means that they are inherently non-specific. Any gas or vapor that is ionized at the UV lamp energy will give a response.

WARNING It must be understood that the selection of a particular VOC or gas from the onboard PID library in the PHD6 does **not** imply that the detector will only respond to that material. It only means that the sensitivity scale (and default alarms) has been set to approximate the target material.

Regardless of the library material selected, the PID sensor always remains broadband in nature and therefore will respond to any gases/vapors in the ambient environment that are present and are ionized at the UV lamp energy. This consideration is particularly important when trace or hard to detect materials (higher correction factor (CF) are present in highly contaminated backgrounds. In this case the PID would be a poor choice for detection of the target gas/vapor.

WARNING Correction factors in the PHD6 onboard PID library for various, common VOCs and gases should be considered as approximate. The PHD6 with PID has been fully tested and validated only for performance with isobutylene.

For other materials requiring verified accuracy it is necessary to calibrate the detector to the gas/vapor to be monitored directly. Further if using remote sample draw and/or physical conditions in the field that differ from ambient, to perform calibrations as close to the physical and actual setup conditions as possible.


The convention in the gas detection industry is to calibrate the PID sensor to a known concentration of isobutylene and (as required) to use response factors or to select the scale of target gas from a preprogrammed menu. Sensitivity scale is displayed on the channel with 7 character designation whether it is isobutylene or another material.

2.7.1 Displayed VOC

To change the displayed VOC, first enter the Basic Menu by holding the MODE button to turn the PHD6 off. When "Release MODE to Shut Down" is shown, continue to hold the MODE Button until the Basic Menu is shown.

At the Basic Menu press the down arrow once to select "Displayed

VOC". A list of Volatile Organic Compounds will be shown. Use the navigation arrows to highlight the appropriate VOC and press MODE to select it. The new VOC will be shown when the PHD6 is restarted.

2.7.2 Specified VOC Calibration Gas

To change the calibration gas for PID sensor, follow the instruction in section 5.2.1 to reach the Main Menu. Then access the Calibration Menu followed by the Gas Values submenu. Once in the Gas Values submenu, select the VOC sensor. Then select Cal Gas Type and specify the appropriate compound and amount for calibration.

2.8 Special Instructions for NDIR sensors

Two NDIR sensors are available for the PHD6: One for the detection of carbon dioxide (CO_2) , and one for the detection of methane (CH_4) .

2.8.1 Special Calibration Requirement for NDIR CO₂ (Carbon Dioxide) Sensor

Unlike most sensors the Infrared CO_2 sensor requires two different gas sources to fully calibrate the instrument. The

reason for this is that it is effectively impossible to zero calibrate a CO_2 detector in ambient air because there is an unknown and varying amount of background CO_2 present in the atmosphere.

See section 4.4 for more details.

2.8.2 Special Consideration for IR CH₄ Methane sensor gas calibration

The NDIR-CH₄ sensor is designed specifically for the detection of methane. Gas calibration should always be done with methane calibration gas at the actual amount of methane shown on the cylinder. See section 4.5 for details.

2.8.3 Hydrogen Warning for IR CH₄ Methane Sensor

Unlike other types of sensors used to measure combustible gases and vapors, the IR CH_4 sensor used in the PHD6 does not respond to hydrogen.

WARNING Do not use the NDIR CH_4 sensor for the detection of hydrogen. Unlike catalytic hotbead LEL sensors, the NDIR CH_4 sensor in the PHD6 does not respond to hydrogen. Use the of the NDIR CH_4 for the detection hydrogen may lead to property damage, personal injury or death.

3. Sampling

The PHD6 may be used in either diffusion or sample-draw mode. In either mode, the gas sample must reach the sensors for the instrument to register a gas reading. The sensors are located on the front of the instrument near the bottom in a vented compartment.

▲WARNING The sensor ports must be kept free of obstruction. Blocked sensor ports can lead to inaccurate and potentially dangerous readings.

In diffusion mode, the atmosphere being measured reaches the sensors by diffusing through vents in the instrument. Normal air movements are enough to carry the sample to the sensors. The sensors react quickly to changes in the concentrations of the gases being measured. Diffusion-style operation monitors only the atmosphere that immediately surrounds the detector.

The PHD6 can also be used to sample remote locations with either the hand-aspirated sample-draw kit, or with the motorized sample draw pump. During remote sampling, the gas sample is drawn into the sensor compartment through the probe assembly and a length of tubing.

WARNING The PHD6 is delivered with a sample draw kit that contains 10 feet/3 meters of polyester urethane (fuel-resistant) tubing part number 53-001. This material is completely compatible with common combustible gases/vapors, and the toxic gases CO and H₂S. When using the PHD6 with a sample draw pump or kit to sample with any of the gas types and tubing lengths listed in the chart below, FEP-Lined Tubing (part number 53-036) should be used.

Gas Type	Tubing Length
CL_2, CLO_2	Up to 10 ft/3m Max.
HCN	Up to 100 ft/30m
	Max.
PID, SO ₂ , NO, NO ₂ ,	> than 10 ft/3m up to
PH ₃ , NH ₃	100 ft/30m Max.

Standard polyester urethane (fuel-resistant) tubing (part number 53-001) can be used otherwise. Use of other types of tubing may cause inaccurate and potentially dangerous readings that could result in serious injury or death.

For sampling using a PID sensor please refer to the Application Note titled "Usage and Applications of PID sensors version B1" included with your PhD documentation or contact customer service at 800-711-6776 to request a copy.

WARNING Do not use the NDIR CH_4 sensor for the detection of hydrogen. Unlike catalytic hotbead LEL sensors, the NDIR CH_4 sensor in the PHD6 does not respond to hydrogen. Use of the NDIR CH_4 for the detection of hydrogen may lead to property damage, personal injury or even death.

3.1 Manual sample draw kit

The manual sample draw kit is comprised of a sample draw probe, 2 sections of tubing, a squeeze bulb and an adapter that is used to connect the sample draw accessories system to the PHD6.

Note: The maximum amount of tubing that can be used with the manual sample draw kit is 50 feet/15 meters.

3.1.1 Manual sample draw kit usage

WARNING The PHD6's manual sample draw kit may not be used for the detection of chlorine (Cl₂) or chlorine dioxide (ClO₂) due to the reactive properties of these gases.

To use the manual sample draw kit:

- 1. Connect the short section of hose that comes off the squeeze bulb to the sample draw adapter.
- To test the seals in the sample draw system, cover the end of the sample draw probe with a finger, and squeeze the aspirator bulb. If there are no leaks in the sample draw kit components, the bulb should stay deflated for a few seconds.
- 3. Secure the calibration adapter (with the sample draw assembly attached) to the PHD6 by inserting the tab and tightening the knurled screw into the brass nut at the bottom of the adapter.
- 4. Insert the end of the sample probe into the location to be sampled.
- 5. Squeeze the aspirator bulb to draw the sample from the remote location to the sensor compartment.

To ensure accurate readings while using the manual sample draw kit, it is necessary to squeeze the bulb once for every one foot of sampling hose for the sample to first reach the sensors, and then to continue squeezing the bulb once per second for an additional 45 seconds or until readings stabilize. As an example, if 10 feet/3 meters of tubing is used, it will be necessary to draw the sample in by squeezing the bulb continuously for a minimum of 55 seconds or until readings stabilize.

6. Note the gas measurement readings.

CAUTION: Hand-aspirated remote sampling only provides continuous gas readings for the area in which the probe is located while the bulb is being continuously squeezed. Each time a reading is desired, it is necessary to squeeze the bulb a sufficient number of times to bring a fresh sample to the sensor compartment.

3.2 Motorized sample draw pump

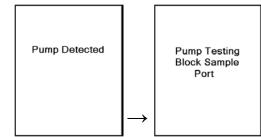
WARNING The PHD6 continuous sample draw pump (part number 54-54-102) is the only pump

that can be used with the PHD6. A motorized sample-draw pump is available for the PHD6 for situations requiring continuous "hands free" remote monitoring. The pump is powered by the PHD6 battery. When the pump is attached to the instrument, the spinning fan icon will be shown on

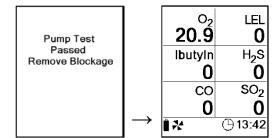
the display in the current gas readings screen.

Note: The maximum amount of tubing that can be used with the motorized sample draw pump is 100 feet/30 meters. To ensure accurate readings while using the continuous sample pump, it is necessary to allow the pump to draw the sample for one second for every one foot of sampling hose plus an additional 45 seconds or until readings stabilize. For example, with 10 ft/3m of tubing, it will be necessary to allow a minimum of 55 seconds for the sample to be drawn into the sensor chamber and for the readings to stabilize.

PHD6 instruments are designed to automatically recognize the pump whenever it is attached to the instrument. If the pump is attached when the PHD6 is turned off, the instrument will automatically initiate the pump start up sequence when the instrument is turned on. If the pump is attached while the instrument is running, the PHD6 will automatically initiate the pump test sequence before returning to the current gas readings screen.

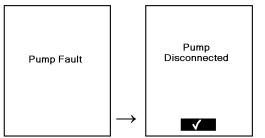

WARNING Do not use the PHD6 pump for prolonged periods in an atmosphere containing a concentration of solvent or fuel that may be greater than 50% LEL.

3.2.1 Starting the motorized sample pump


First attach the probe and tubing to the pump, then secure the pump (with the sample draw assembly attached) to the PHD6 by hooking the tabs on the pump into the corresponding slots on the back of the PHD6. Once the pump is in position over the sensors, tighten the knurled screw on the adapter into receptor at the center of the sensor cover.

Note: The sample probe assembly must be attached to the pump when the pump is attached to the instrument.

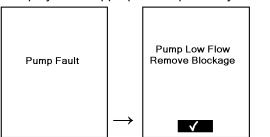
Once the pump is recognized, the pump test sequence will be initiated automatically. The instrument will instruct you to block the sample inlet.


Block the sampling inlet by placing a finger over the end of the sample probe assembly. Once the blockage is detected, the PHD6 will indicate that the test has been passed and instruct you to remove the blockage. Once the blockage is removed, it will proceed to the current gas readings screen and the pump icon will be shown in the status bar.

If the instrument is unable to detect the vacuum resulting from the pump blockage within 30 seconds, the test will fail, the instrument will go into alarm and you will be directed to remove the pump. Remove the pump and press the MODE button to resume diffusion operation.

3.2.2 Turning off the pump

To turn off the pump, simply remove the pump from the bottom of the instrument. The screen will show "Pump Fault" followed by "Pump Disconnected". Press MODE to continue without the pump.



3.2.3 Pump low flow alarm

The PHD6 Pump contains a pressure sensor that continuously monitors for restrictions in airflow caused by water or other fluids being drawn into the unit and immediately acts to turn the pump off in order to protect the sensors, pump, and other PHD6 components from damage.

CAUTION: Never perform remote sampling with the PHD6 without the sample probe assembly. The sample probe handle contains replaceable filters designed to block moisture and remove particulate contaminants. If the pump is operated without the probe assembly in place, contaminants may cause damage to the pump, sensors and internal components of the PHD6

When the pump is active and functioning properly, the moving pump icon is shown on the lower status bar on the display. Low flow or other pump fault conditions activate audible and visible alarms and cause the display of the appropriate explanatory message.

Press MODE once the blockage has been cleared to restart the pump.

The pressure sensor in the sample draw pump is designed to detect pressure changes while the sample-draw probe is being held in a vertical position. If the probe is held horizontally or at a low angle while inserted into a fluid, a pressure drop sufficient to cause the pump to shut down may not be generated, and water could be drawn into the pump assembly causing damage to the pump, sensors and internal components of the PHD6.

CAUTION: Insertion of the sample draw tube into a fluid horizontally or at a low angle may lead to water ingress and may cause damage to the sensors and internal components of the PHD6.

If the PHD6 determines that a significant increase in pressure has occurred, it will go into alarm and notify the user that there is a blockage of the pump. The display will alternate between the following two screens. Remove the blockage and press the MODE button to acknowledge the alarm and resume sampling.

3.3 Sample draw probe

The PHD6's sample draw probe is the standard probe assembly from Honeywell. The sample probe handle contains moisture barrier and particulate filters designed to remove contaminants that might otherwise harm the instrument.

Particulate contaminants are removed by means of a cellulose filter. The hydrophobic filter includes a Teflon[™] barrier which blocks the flow of moisture as well as any remaining particulate contaminants.

Sample probe filters should be replaced whenever visibly discolored due to contamination.

See section 6.5 for a probe diagram and a list of available sample probe filter replacement kits.

4. Calibration

The accuracy of the PHD6 should be verified on a regular basis. Verification can be as simple as performing a bump test, which is described below in section 4.1. If the instrument fails the fresh air test, then it must be fresh air calibrated before use. If the instrument fails the bump test with calibration gas, it must be successfully span calibrated before use.

Note: The NDIR-CO₂ sensor used in the PHD6 cannot be zero calibrated in fresh air. For specific instructions on calibrating the CO_2 sensor, proceed to section 4.4.

Note: The NDIR-CH₄ sensor used in the PHD6 must be calibrated with methane calibration scale to the actual amount of methane in the cylinder in terms of percent volume methane. See section 4.5 for details.

* **WARNING** The Canadian Standards Association (CSA) requires combustible gas sensors to be bump tested prior to each day's use with calibration gas containing between 25% and 50% LEL. The functional (bump) test procedure is covered in section 4.1.

** **WARNING** The Canadian Standards Association (CSA) requires combustible gas sensors to undergo calibration when the displayed value during a bump test fails to fall between 100% and 120% of the expected value for the gas.

For Honeywells' official recommendations concerning calibration frequency, see Appendix B.

4.1 Functional (Bump) testing

The accuracy of the PHD6 may be verified at any time by a simple functional (bump) test.

To perform a functional (bump) test, do the following:

- Turn the PHD6 on and wait at least three minutes to allow the readings to fully stabilize. If an IR or PID sensor is in use, wait until the stabilization period ends before proceeding. If any of the sensors have just been replaced, the new sensor(s) must be allowed to stabilize prior to use. See section 6.4 for further details on sensor stabilization requirements.
- 2. Make sure the instrument is located in fresh air.

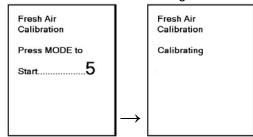
Figure 4.1 Bump Test / Gas calibration set up

- 3. Verify that the current gas readings match the concentrations present in fresh air. The oxygen (O₂) sensor should read 20.9%/vol. (+/-0.2%/vol.). The readings for the LEL sensor should be 0% LEL. The PID, NDIR-CH₄ and toxic sensors should read 0 parts-per-million (PPM) in fresh air. For the NDIR-CO₂ sensor, a carbon dioxide level between 0.03% and 0.10% is considered normal in fresh air. If the readings deviate from the expected levels in a fresh air environment, proceed to section 4.2 and perform the fresh air calibration adjustment then proceed to step 4.
- 4. Attach the calibration adapter and connect the calibration cylinder to the PHD6 as shown in figure 4.1. Flow gas to the sensors.
- 5. Wait for the readings to stabilize. (Forty-five seconds to one minute is usually sufficient.)
- 6. Note the readings. Toxic, VOC and combustible gas sensor readings are considered accurate in a bump test if they are between 90%* and 120% of the expected reading as given on the calibration cylinder. If the readings are considered accurate, then the instrument may be used without further adjustment. If the readings do not fall within 90%* and 120% of the expected reading as given on the calibration cylinder, then readings are considered inaccurate. If readings are considered inaccurate. If readings are considered inaccurate. If readings are considered inaccurate, proceed to section 4.3 and perform the gas calibration.

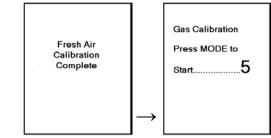
*Note: The Canadian Standards Association (CSA) requires combustible gas sensors to undergo calibration when the displayed value during a bump test fails to fall between 100% and 120% of the expected value for the gas.

Honeywell multi-calibration gas mixtures contain approximately 18% oxygen. During the bump test the oxygen sensor should read within +/-0.5% of the level given on the calibration cylinder.

4.2 Fresh Air/Zero Calibration


Note: The NDIR-CO² sensor in the PHD6 may not be zero calibrated in fresh air. See section 4.4 for further instructions.

WARNING Fresh air/zero calibrations may only be performed in an atmosphere that is known to contain 20.9% oxygen, 0.0% LEL and 0 PPM toxic gas.


To initiate the fresh air/zero calibration:

- Press the MODE button three times within two seconds to begin the fresh air/zero calibration sequence. The PHD6 will briefly display AUTO CAL and then begin a 5-second countdown.
- 2. Press the MODE button before the end of the 5second countdown to begin the fresh air/zero

calibration. The fresh air/zero calibration is initiated when the PHD6 shows "Calibrating" on the screen.

3. The PHD6 will indicate when the fresh air/zero calibration is complete. It will then proceed to a second 5-second countdown for the gas calibration. If gas calibration is not required, allow the countdown to reach 0 without pressing the MODE button.

For instructions on the Gas Calibration, proceed to section 4.3.

4.2.1 Fresh air calibration failure

In the event of a fresh air calibration failure, the alarms will be activated and the instrument will display the following screen. Note that the sensor(s) that fail the zero calibration are shown (in this case, CO)

After 3 seconds, the PHD6 will return to the current gas readings screen and the visual and audible alarms will cease.

When calibration is due, the triangular warning symbol along with the span bottle icon the PHD6's status bar will show

If a successful fresh air calibration is not performed prior to instrument shut down, the PHD6 will note that Fresh Air Calibration is due during instrument start up.

Possible causes and solutions

- 1. The atmosphere in which the instrument is located is contaminated (or was contaminated at the time the instrument was last fresh air calibrated.
- 2. A new sensor has just been installed.
- 3. Instrument has been dropped or banged since last turned on.
- 4. There has been a significant change in temperature since the instrument was last used.

Recommended action:

Take the instrument to fresh air and allow readings to stabilize. Perform the fresh air/zero adjustment again. If the manual fresh air/zero procedure fails to correct the problem, perform the manual fresh air / zero calibration procedure as described in section 4.2.2 below.

4.2.2 Forced fresh air calibration

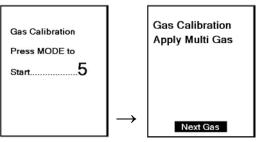
The PHD6 includes safeguards to prevent fresh air calibration in contaminated environments. If the standard

fresh air calibration fails a second time, the instrument may be "forced" to accept the fresh air calibration by performing the manual fresh air calibration.

WARNING Fresh air calibrations may only be performed in an atmosphere that is known to contain 20.9% oxygen, 0.0% LEL and 0 PPM toxic gas. Performing a fresh air calibration in a contaminated atmosphere may lead to inaccurate and potentially dangerous readings.

- Initiate the standard fresh air / zero calibration sequence by pressing the MODE button three times in rapid succession. The 5-second countdown will begin.
- Press and hold the down arrow key and then press the MODE button before the end of the 5-second countdown. Continue to hold the down arrow.
- 3. The fresh air/zero calibration is complete when the instrument begins another 5-second countdown for the gas calibration. If gas calibration is not required, allow the countdown to reach 0 without pressing the MODE button.

If the PHD6 still fails to calibrate after this procedure is attempted, contact Honeywell.


4.2.3 Fresh air calibration in a contaminated atmosphere

To fresh air calibrate the PHD6 in a contaminated atmosphere, connect a cylinder of "zero air" containing 20.9% oxygen and no contaminants to the PHD6 and flow gas to the instrument. Then perform the fresh air calibration. See figure 4.1 above for setup.

4.3 Gas Calibration

Once the fresh air / zero calibration has been successfully completed, the PHD6 will automatically proceed to the automatic gas calibration countdown screen.

Press the MODE button before the countdown is complete to initiate the gas calibration. The screen will immediately show "APPLY GAS" and then list the sensors for calibration and the expected levels of calibration gas.

Note: Honeywell recommends the use of multi-component calibration gas for calibrating the PHD6.

Apply calibration gas. The readout will change to a numerical display almost immediately and show the current readings along with the expected calibration gas value.

If multiple cylinders are required to complete the calibration, the PHD6 will prompt the user to apply the next cylinder as needed.

As sensors are calibrated, the PHD6 will briefly show the reserve values for each sensor. The

reserve values give an indication of the remaining sensitivity of the sensors. When the reserve value for a specific sensor reaches 0%, it is time to replace the sensor.

The oxygen sensor is tested for response to diminished oxygen levels during gas calibration. Honeywell multi-gas calibration cylinders contain approximately 18.0% oxygen. In order to pass the gas calibration, the PHD6 must register an oxygen reading below 19.5% during gas calibration. If the detector fails to register the reduced oxygen levels during the gas calibration, it will show "Check O2 Sensor Response". Press MODE to acknowledge.

See section 4.3.2 below if the oxygen sensor does not detect the drop in oxygen level and fails the gas calibration.

Note: Disconnect the calibration assembly as soon as the calibration is complete.

4.3.1 Gas calibration failure: All sensors except oxygen

When there is a gas calibration failure, the display will show CAL Error and display the sensor whose calibration has failed.

If the instrument fails to recognize the correct type or concentration of calibration gas, it will show "no GAS".

When gas calibration is due, the PHD6's display will show the warning symbol while intermittently displaying the calibration bottle in the gas readings screen.

The PHD6 will also display a "Needs Cal" message for any sensors that are currently due for calibration during instrument start-up.

Possible causes of gas calibration failure and remedies:

- 1. Empty calibration gas cylinder. Verify that there is calibration gas in the cylinder.
- 2. Expired calibration gas cylinder. Verify that the expiration date on the cylinder has not passed.
- Calibration gas setting does not correspond to calibration gas concentration. If the values on the calibration cylinder differ from the calibration gas settings in the PHD6, the PHD6's calibration gas settings must be changed to match the new values. Changing the calibration gas settings can be done manually through the MODE button or through BioTrak II using an IrDA link to the instrument.
- 4. LEL only: Type of calibration gas (standard) has changed significantly. LEL calibration gas may be based on several different response standards. Methane, propane and pentane are the most common. If using a new cylinder of calibration gas, make sure that the type and amount of combustible gas is identical to that of the previous bottle. Honeywell offers calibration gases in Methane, Propane Equivalent and Pentane Equivalent.
- 5. Dead sensor. Replace sensor.
- 6. Instrument problem. Return the instrument to Honeywell. Call the phone number on the front of this manual.

4.3.2 Gas calibration failure: Oxygen sensors

Honeywell multi calibration gas cylinders contains approximately 18.0% oxygen. The reduced oxygen level in the calibration gas cylinder allows the oxygen sensor's response to be tested in the same manner as the toxic and LEL sensors.

If the O2 sensor fails to register a reading below 19.5% during the gas calibration, the display will show "Check O2 Sensor Response". Press MODE to continue.

If the oxygen sensor fails to register the drop in oxygen during the gas calibration while being challenged with calibration gas containing less than 19.0% oxygen, it should be considered out of tolerance and retired from service immediately.

See section 5.2.4 under Gas Values for more information on the O2 sensor check.

WARNING A sensor that cannot be calibrated or is found to be out of tolerance should be replaced immediately. An instrument that fails calibration may not be used until testing with known concentration test gas determines that accuracy has been restored, and the instrument is once again fit for use.

Possible causes and remedies for oxygen sensor failure:

1. Calibration gas cylinder does not contain a reduced level of oxygen. Verify that the cylinder contains less than 19.0% oxygen.

To challenge the oxygen sensor without calibration gas, hold your breath for about 10 seconds and then **slowly** exhale directly onto the face of the sensor (in the same way you would attempt to fog up a piece of glass). If the descending oxygen alarm is set to 19.5%, the instrument should go into alarm after a few seconds. If the oxygen sensor fails to go into alarm during the exhalation test, the oxygen sensor must be replaced.

- 2. Oxygen sensor has just been replaced and has not had time to stabilize.
- 3. Oxygen sensor failure.

4.4 Special Calibration Instruction for NDIR CO₂ sensor

The Infrared CO_2 sensor requires two different gas sources for full calibration. The reason for this is that it is effectively impossible to zero calibrate a CO_2 sensor in ambient air because there is an unknown and varying amount of background CO_2 present in the atmosphere.

4.4.1 CO₂ Sensor True Zero

To determine if the CO_2 sensor requires zero calibration, connect the PHD6 to a cylinder of calibration gas that contains 0.00% CO_2 while the instrument is in normal operation.

If the reading shows 0.00% CO_2 , then the CO_2 sensor does not require zero calibration. Disconnect the cylinder from the PHD6.

If the reading shows anything other than 0.00% CO_2 , leave the calibration gas on and press the MODE button three times within two seconds to initiate the zero calibration

sequence. Press MODE again when prompted to begin the zero calibration. Instruments equipped with a CO_2 sensor will automatically show the message "Press MODE if applying Zero Air" with another 5-second countdown. Press MODE again to begin the true zero calibration and follow the instructions given on the screen. Once the zero calibration is complete, remove the zero air cylinder from the instrument and proceed to the gas calibration (if necessary).

The gas calibration of the CO_2 sensor is performed during the standard gas calibration that is described above in section 4.3. The PHD6 will automatically prompt the user to apply the CO_2 calibration gas during the standard gas calibration sequence.

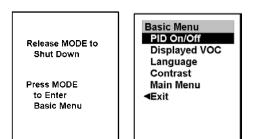
4.5 Special Calibration Instructions for NDIR-CH₄ Sensor

In many ways, the NDIR-CH₄ sensor used in the PHD6 is similar to a hot bead LEL sensor. For the purpose of calibration, they are very different. While LEL sensors can be calibrated with a number of other gases when properly configured, The NDIR-CH₄ sensor must be calibrated with methane to the exact amount shown on the calibration gas cylinder. (This is different from LEL sensors, where methane may be used for calibration, but is often done at a scale that makes the readings mimic those given by a specific amount of propane or pentane).

WARNING The NDIR CH₄ sensor in the PHD6 must be calibrated using methane (CH₄) calibration gas at the actual amount shown on the cylinder. The default calibration gas value for the NDIR-CH₄ sensor is 50% LEL. The appropriate calibration gas level for the 50% LEL default calibration gas setting is 2.50%/vol. CH₄. Use of inappropriate calibration gas may lead to inaccurate and potentially dangerous readings.

5. Menu Options

The PHD6 operating firmware includes two menu options: the Basic Menu and the Main Menu.

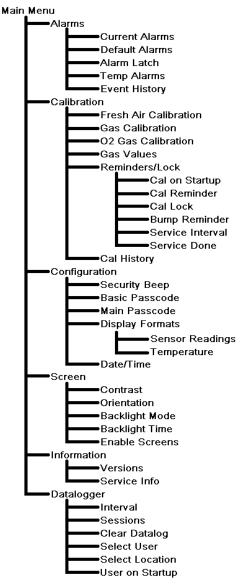

5.1 Basic Menu

The Basic Menu is a shortened version of the Main Menu that offers immediate access to a few key functions including:

- PID On/Off (enable or disable the PID sensor)
- Displayed VOC (select the target compound for the VOC sensor)
- Contrast (display's light vs. dark setting)
- Main Menu access

5.1.1 Entering the Basic Menu

To access the Basic Menu, with the PHD6 on and the current gas readings screen shown, hold the MODE button down until the PHD6 beeps four times and the "Release MODE to Shut Down" is shown. Then continue to hold the MODE Button until the Basic Menu is shown.


To navigate through the menu options, use the up and down navigation arrows to highlight the desired submenu and press MODE to enter the submenu.

5.2 Main Menu

The PHD6 is fully configurable through the Main Menu. The Main Menu contains 6 sub menus that lead to controls for the individual instrument functions.

To navigate through the menu options, use the up and down navigation arrows to highlight the desired submenu and press MODE to enter the submenu.

To navigate through the menu options, use the up and down navigation arrows to highlight the desired submenu and press MODE to enter the submenu.

Main Menu Options Diagram

5.2.1 Entering the Main Menu

There are two paths into the main menu.

If the instrument is **on**, press and hold the MODE button down for three seconds until "Shutting Down" is shown, then release the MODE button. The next screen will show "shutting down..." along with two black blocks at the bottom of the screen. Press and hold the two arrow keys while the two blocks are shown to enter the main menu.

If the instrument is **off**, press the MODE button to start the instrument. When "Starting Session, Resetting Averages" is shown along with two black blocks, press and hold the two arrow keys while the two blocks are shown to enter the main menu.

The Main Menu is the access point to 6 submenus that control virtually every aspect of the PHD6's functionality.

NOTE: Changes made in the Main Menu can have a direct affect on the PHD6's functionality and should only be made by those who are trained in proper gas detection and monitoring techniques.

5.2.2 Using the submenus.

In the Main Menu and the sub-menus, use the up and down arrows to navigate between the options and press MODE to enter. Three buttons will appear on the display to show the

functions of the MODE button and the two navigation keys on any screen that allows instrument setup changes.

5.2.3 Alarms Menu

The Alarms Menu contains the following 6 submenus (options in parenthesis). Description follows (as needed).

- **Current Alarms** (select any sensor to view current sensor alarm settings, then select any current sensor alarm to make changes)
- **Default Alarms** (scroll to view default sensor alarms for each recognized sensor plus option to Set Default Alarms for all sensors
- Alarm Latch (set on or off)

The PHD6's alarms are self-resetting unless the alarm latch is enabled. With the PHD6's alarm latch enabled, the audible and visible alarms will continue to sound after the atmospheric hazard has cleared. Press the MODE button to reset the alarms. If the alarm latch is disabled and the alarm condition is no longer present, the instrument will automatically return to normal operation, and the visible and audible alarms cease without further input from the user.

• **Temp Alarms** (enable or disable high and low temperature alarms)

If the operating temperature falls outside of the operating range of the PHD6, the instrument will go into alarm and the thermometer icon will be shown on the display.

• Event History (use up and down arrows to scroll through saved alarm events – includes time, duration and peak and average sensor readings during the event)

• Vibrator (if equipped) (enable or disable the vibrating alarm)

5.2.4 Calibration Menu

• Fresh Air Cal (initiates Fresh Air Calibration sequence)

WARNING Fresh air/zero calibrations may only be performed in an atmosphere that is known to contain 20.9% oxygen, 0.0% LEL and 0 PPM toxic gas.

- **Gas Calibration** (initiates Gas Calibration sequence (calibration gas required)
- **O**₂ **Gas Cal** (initiates true O₂ Zero Calibration sequence)

Note that this procedure requires a cylinder of calibration gas that contains 0.0% oxygen.

• **Gas Values** (select any sensor to view or change current calibration gas values).

Note: The selection of the calibration gas for the PID sensor is NOT linked to the displayed substance. A ratio is used to calculate readings for various VOCs against the calibration standard. See section 2.7 for more details on the PID gas values.

Note: In the case of the oxygen sensor, the O_2 gas setting can be used to enable or disable the oxygen sensor check that takes place during gas calibration with multi calibration gas. To disable the oxygen sensor check, select "No".

WARNING Disabling the oxygen sensor check may result in the failure to recognize an oxygen-deficient atmosphere.

Always use a multi cal gas cylinder containing 18% oxygen to calibrate the PHD6.

• Reminders/Lock (access to submenus below)

Cal on Startup (enable or disable)

When enabled, calibration is automatically initiated whenever the instrument is turned on. The calibration can be bypassed (unless Cal Due Lock is enabled) by letting the clock run out and proceeding to the current gas readings screen. Cal on Startup is usually disabled on new instruments and must be enabled by the user.

Cal Reminder: (adjust between every day and every 180 days). The default setting for standard instruments leaving the factory is 30 days.

To disable the cal reminder, set the value to 0.

Cal Lock: (enable or disable)

Enable to require calibration when the Cal Reminder is on. PHD6 automatically shuts down if Cal Lock is enabled, and calibration is due but not performed. Cal Lock is usually disabled on new instruments and must be enabled by the user.

Bump Reminder: (enable, disable and adjust between every day and every 30 days)

Used exclusively with the IQ6 Dock. Reminds the user to process the instrument in the dock. To disable set the value to 0. The Bump Reminder is

usually disabled on new instruments and must be enabled by the user.

Service Interval (enable, disable and adjust between every day and every 730 days (2 years)

The service interval is a reminder that tells the user when the instrument is due for service. The Service Interval is usually disabled on new instruments and must be enabled by the user.

Service Done (reset service date)

Used to reset the service interval following instrument service.

• Cal History (scroll through recent calibrations, includes span reserve listing – which allows for predictive maintenance)

5.2.5 Configuration Menu

• Security Beep (enable or disable)

Once enabled the PHD6 will emit a short audible beep and give a short flash on the LEDs at a userdefined interval to notify the user that the instrument is powered up and running. The Security Beep is usually disabled on new instruments and must be enabled by the owner.

• **Basic Passcode** (enable, disable and change passcode)

Enable to require the entry of a passcode to access the Basic Menu. The Basic Passcode is usually disabled on new instruments and must be enabled by the owner. To permit access to the Basic Menu, and restrict it from the Main Menu, the Basic Passcode must differ from the Main Passcode.

• Main Passcode (enable, disable and change passcode)

Enable to require the entry of a passcode to enter the Main Menu. The Main Passcode is usually disabled on new instruments and must be enabled by the owner. The Main Passcode can be used to enter both the Main Menu and the Basic Menu.

- **Display Formats** (contains submenus for sensor readings, sensor clamping and temperature)
 - Sensor readings (for toxic gases select PPM (XX) or tenths-of-a-PPM (X.X) for sensors with this capability (such as H₂S). For NDIR-CH₄ choose between LEL and CH₄ (the CH₄ reading will display in

%/Vol.) Sensors that cannot be adjusted will show "Fixed".

- **Temperature** (select display in Celsius or Fahrenheit) Most PHDs leave the factory configured to read temperature in Fahrenheit unless the customer requests otherwise.
- Language (select English, French or Spanish). Most PHDs leave the factory configured in English unless the customer requests otherwise.
- Date/Time (set time and date)

5.2.6 Screen Menu

- Contrast (screen contrast setting)
- **Orientation** (shifts display to be viewable from top or bottom of the instrument)

• **Backlight Mode** (select continuous, Timed Off or Time Auto)

Select **Continuous** to have the backlight on at all times,

Select **Timed Off** to require a MODE press or an alarm condition to activate the backlight. The default setting for most new PHD6 instruments when leaving the factory is to turn the backlight off after 20 seconds.

Select **Time Auto** to enable the automatic backlight for low light conditions.

- **Backlight Time** (set the time before the backlight turns off in Time Off Mode)
- Enable Screens (select the screens that are accessible by sequentially pressing the MODE button including: Peak, Average, STEL and TWA screens.

5.2.7 Information Menu

- Versions (view instrument serial number, software version, and time and date of instrument manufacture)
- Service Info (view Honeywells' phone contact numbers).

5.2.8 Datalogger Menu

• Interval (set datalogger interval between 1 second and 1 hour) (menu option only not available in Black Box Datalogger versions)

The datalogger samples continuously, so the data stream must be broken into intervals to be recorded. The datalogging interval defines the frequency of the breaks in the data stream. The interval may be set anywhere between one second and one hour by using the navigation arrows as detailed below. The default datalogging interval is 1 minute. At a one-minute interval, the PHD6 will log a minimum of 63 hours of data before the oldest data is overwritten by newer data.

- **Sessions** (view datalogger session data including date, time, interval, temperature and sensor minimum and maximum readings)
- Clear Datalog (clears all information from the datalogger)
- Select User (User name will be saved in the session data)

Users' names must be entered in BioTrak II to appear in the user list.

• Select Location (Location name will be saved in the session data)

Location names must be entered in BioTrak II to appear in the location list.

• User on Startup (enable or disable a prompt to select user and location at startup)

User and location names must be entered into the instrument via BioTrak II before this option can be enabled.

6. Maintenance

WARNING To prevent ignition of flammable or combustible atmospheres, disconnect power before servicing any parts in the PHD6.

6.1 Batteries

The PHD6 is powered by interchangeable alkaline and Li-lon rechargeable battery packs.

To remove the battery pack first loosen the top center screw on the back of the instrument, then gently pull the top of the battery away from the instrument. The battery is hinged from below. Remove the battery once the top clears the upper housing by pulling up and away.

CAUTION Always turn the PHD6 off prior to removing the battery pack. Removal of the battery pack with the instrument turned on may cause corruption of stored data in the PHD6.

Note: Center screw on ATEX / European version may be slightly different.

6.2 Replacing alkaline batteries

The alkaline battery pack contains three AA alkaline batteries.

WARNING The PHD6 must be located in a nonhazardous location whenever alkaline batteries are removed from the alkaline battery pack. Removal of the alkaline batteries from the battery pack in a hazardous area may impair intrinsic safety.

WARNING Use only Duracell MN1500 or Ultra MX1500, Eveready Energizer E91-LR6, Eveready EN91 batteries. Substitution of batteries may impair intrinsic safety.

To replace the alkaline batteries:

- 1. Remove the battery pack from the PHD6 as discussed in above in section 6.1.
- 2. Loosen the two screws at the top of the battery pack by turning each ¼ turn counterclockwise.
- 3. Remove the three alkaline batteries and replace them. Be sure to align the positive and negative ends in accordance with the diagram under each battery.
- 4. Reinstall the back cover plate that was removed in step 2.
- Return the battery pack to the PHD6 and re-tighten the top center screw. The PHD6 will automatically turn itself on once the battery pack is reinstalled.

6.3 Maintaining Li-Ion battery packs

The PHD6 may be equipped with a rechargeable Li-Ion (Lithium Ion) battery pack.

6.3.1 Storage guidelines for the Li-lon battery

Never store Li-Ion -version PHD6 instruments at temperatures above 30 degrees Celsius (86 degrees Fahrenheit). Li-Ion batteries may suffer deterioration resulting in damage to the internal components when stored at high temperatures. The battery may be irretrievably damaged resulting in reduced battery capacity and voltage.

Honeywell recommends leaving PHD6 instruments with Lilon rechargeable batteries on the charger when not in use.

6.3.2 Charging guidelines for Li-lon battery

The Li-Ion battery in the PHD6 should never be charged at temperatures lower than 5 degrees Celsius (40 degrees Fahrenheit) or higher than 30 degrees Celsius (86 degrees Fahrenheit. Charging at temperature extremes can permanently damage the PHD6 Li-Ion battery.

WARNING The PHD6 must be located in a nonhazardous location during the charging cycle. Charging the PHD6 in a hazardous location may impair intrinsic safety.

6.3.3 Charging procedure for Li-lon battery

WARNING Do not charge the PHD6 with any charger other than the appropriate PHD6 charger manufactured by Honeywell. Standard versions of the PHD6 must be charged with the UL/CSA-approved charger, which is part number 54-54-001. European versions of the PHD6 must be charged with the ATEXapproved PHD6 charger.

- 1. Verify that the instrument is turned off. (If it is not, press the MODE button for three seconds until the message "Release Button" appears.)
- Plug the power supply in. The red LED is labeled "Power" and will be lit whenever the charger is plugged into a power source.
- 3. Insert the PHD6 into the charging cradle bottom side down with the display facing forward. The green LED on the charger is labeled "Charge" and will blink while the battery is charging.

4. When the battery is fully charged, the green "Charge" LED will be lit and not blinking.

See section 5.3.4 for battery troubleshooting guidelines.

6.3.4 Charging with the pump attached

The PHD6 with pump attached may be charged according to the instruction given in section 6.3.3 above.

6.3.5 Battery troubleshooting

If the green "Charge" LED on the charger fails to light when the PHD6 with Li-Ion battery pack is placed in the charger, remove the instrument from the charger and press the MODE button to attempt to start the instrument.

If the battery has been inserted into the charger without the instrument, return it to the instrument prior to attempting the restart.

- 1. If the PHD6 starts and the battery icon if full, then the battery is fully charged and may be used as is. In this case, the charger has recognized that the battery is charged and will not charge it any further.
- 2. If the PHD6 fails to turn on, then the battery may be severely discharged and should be returned to the charger. The charger will then begin a very slow recharge in order to protect the battery. The green "Charge" LED may not be lit during the first four hours of the slow recharge. If the "Charge" LED has still not been lit after four hours, the battery pack or charger is probably damaged.
- 3. If the PHD6 starts and any battery level other than full is indicated, then either the battery is damaged or the charger is damaged. Call Honeywell for further instructions.

6.4 Sensors

6.4.1 Sensor replacement

The sensors in the PHD6 are located in a vented compartment at the bottom of the instrument.

To install a sensor:

- 1. Turn the PHD6 off.
- 2. Remove the battery pack as described in section 6.1. This will automatically disconnect power from the instrument.
- Remove the four screws that are located below the battery pack insertion from the back face of the PHD6.
- 4. Turn the instrument over to reveal the front face and gently remove the sensor cover.
- 5. Remove the sensor that is to be replaced.
- 6. Insert the new sensor into the appropriate location on the sensor board.
- 7. Reinstall the sensor cover by aligning it properly over the sensors and securing it with the four screws that were removed in step 3.
- 8. Reattach the battery pack and re-tighten the top center screw.
- New sensors must be allowed to stabilize prior to use according to the following schedule. The detector must be powered off and a functional battery pack must be installed for the sensor to stabilize.

Sensor	Stabilization Period
Oxygen (O ₂)	1 hour
LEL	none
PID	5 minutes
NDIR-CH ₄ or NDIR-CO ₂	1 minute
All Toxic Sensors except NO	15 minutes
NO (nitric oxide)	24 hours

Note: Steps 9 and 10 assume that the sensor stabilization period has passed.

10. Perform the Fresh Air/Zero calibration and the Gas calibration as discussed in sections 4.2 and 4.3.

6.4.2 Care and maintenance of PID sensors

The two critical components of a PID sensor are the electrode stack and the lamp. The electrode stack can be replaced in the field. The lamp can be cleaned or

replaced in the field. The frequency of maintenance to both items will vary with the type of usage and the nature of the contaminants to which the sensor is exposed.

As a general rule, baseline shifts tend to be caused by the electrode stack and losses of sensitivity tend to be caused by the lamp.

6.4.2.1 Troubleshooting the PID

When to replace the electrode stack:

- 1.Baseline reading climbs following fresh air zeroing of the sensor.
- 2. PID sensor becomes sensitive to humidity.
- 3. Baseline becomes generally unstable.

4. Baseline shifts when the instrument is in motion.

When to clean the PID lamp

Loss of sensitivity in the sensors as shown during bumptesting (reading will be low).

When to replace the PID lamp

If the cleaning of the lamp fails to correct a loss of sensitivity, the lamp should be replaced.

6.4.2.2 Cleaning and replacing PID components

To remove the lamp and stack

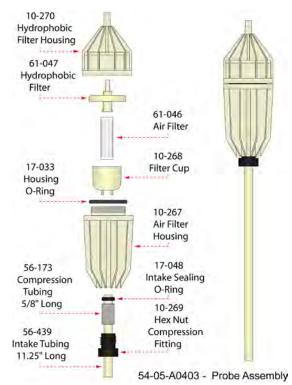
- 1. Wash your hands thoroughly.
- 2.On a clean surface, remove the PID sensor from the PHD6 as described above (section 6.4.1 steps 1-5).
- 3. Place one finger on top of the sensor and insert the stack removal tool into the two slots at the top side of the sensor body. Squeeze gently until the spring releases and the stack can be removed from the top of the sensor. The lamp is spring-loaded against the stack, so keeping a finger on top of the stack prevents their ejection from the sensor body.
- 4. Gently remove the stack and pull the lamp and spring out of the sensor body. Do not touch the top of the lamp window with bare fingers.

5.Set the spring aside.

To replace the stack or lamp

- 1.Discard the used lamp, stack or both as needed and rebuild with replacement part(s).
- 2. Drop the spring into the center of the sensor body.

3. When reinserting the lamp and electrode stack, it is essential to make sure that the lamp is fit snugly into the o-ring slot on the electrode stack – NOTE PICTURE BELOW. When inserting the lamp into the o-ring slot, it is recommended that a twisting motion is used. When properly assembled, the lamp should then be flush against the stack, and should be fully supported.


- 4. Snap the stack with lamp attached on to the sensor body so that the sensor is whole again and the stack cannot be removed without the removal tool.
- 5. The sensor should have a gasket and a filter on it. If necessary, install a sensor filter and gasket on top of the sensor.
- 6. Reinstall the sensor into the PHD6.
- 7.Reassemble the PHD6.
- 8.Calibrate the PID prior to use after the 5 minute warm up periods ends.

To clean the lamp

- 1. Follow the directions above to remove the lamp from the instrument.
- 2. Make sure your hands are clean.
- 3. Coat the cotton swab in a thin layer of lamp cleaning powder of 0.1 to 0.25 μ m α -alumina.
- 4. Pick up the lamp with the other hand. Do not touch the top of the lamp window with bare fingers.
- 5. Using the cotton swab dipped in the cleaning powder, polish the top of the lamp with a swirling motion. Cleaning typically takes about 30 seconds and is finished when the swab starts to squeak.
- 6.Reassemble the sensor and the PHD6. See steps 2-8 above in the directions to replace the stack or lamp.

6.5 Sample probe assembly

The PHD6's sample draw probe is the standard probe assembly from Honeywell. The illustration below gives a breakdown of all parts in the sample draw probe with part numbers. The sample probe handle contains moisture barrier and particulate filters designed to remove contaminants that might otherwise harm the instrument.

Sample probe filters should be replaced whenever visibly discolored due to contamination.

CAUTION: Never perform remote sampling without the sample probe and hose assembly. The sample probe handle contains replaceable filters designed to block moisture and remove particulate contaminants. If the pump is operated without the probe assembly in place, contaminants may cause damage to the pump, sensors and internal components of the PHD6.

Particulate contaminants are removed by means of a cellulose filter. The hydrophobic filter includes a Teflon™ barrier which blocks the flow of moisture as well as any remaining particulate contaminants.

6.5.1 Changing sample probe filters

The threaded sample probe handle is accesses the filters. The particulate filter is held in place by means of a clear filter cup. To replace the particulate filter, remove the old filter and cup, insert a new filter into the cup, and slide the cup back into place in the probe handle. The hydrophobic barrier filter fits into a socket in the rear section of the probe handle. (The narrow end of the hydrophobic barrier filter is inserted towards the rear of the handle.)

To avoid accidentally introducing particulate contaminants into the system, turn the sample probe upside-down prior to removing either the hydrophobic filter or the particulate filter.

The following replacement filter kits are currently available from Honeywell:

Part No.	Kit	#Parti- culate	#Hydro- phobic
54-05-K0401	Standard	10	3
54-05-K0402	Economy	10	0
54-05-K0403	Economy	30	10
54-05-K0404	Bulk	0	25
54-05-K0405	Bulk	100	0

6.5.2 Changing sample probe tubes (wands)

The standard 11.5" long butyrate probe tube is held in place with a hex-nut compression fitting and compression

sleeve. The standard probe tube can be interchanged with other custom length sections of 1/4" OD tubing, or probe tubes made of other materials (such as stainless steel).

Probe tubes are exchanged by loosening the hex-nut compression fitting, removing the old tube, sliding the compression sleeve into place around the new tube, inserting the new tube into the probe handle, then replacing and tightening the hex-nut.

Note: The sample probe must be checked for leakage (as discussed in Section 3.1.1) whenever filters or probe tubes are exchanged or replaced before being returned to service.

6.6 PHD6 Pump Maintenance

PHD6 pumps are fairly maintenance free with the exception of the replacement of the pump filters on a regular basis.

6.6.1 Replacing pump filters

- 1. Remove the two screws that hold the inlet port to the pump.
- 2. Gently pull the dust filter holder free of the pump.
- 3. Remove and replace the dust filter that is located in the holder.
- 4. The hydrophobic filter is located beneath the inlet port in the pump housing. Use a small screwdriver or other object to punch through the filter and remove it. The gasket that sits between the inlet port and the filter should come out with the filter.
- 5. Place the new hydrophobic filter with the filter side down in place of the one removed in step 4. The gasket should be located on top of the filter and should sit against the dust filter holder, which will be reinstalled in step 6.
- 6. Replace the dust filter holder (which now has a new filter in it) and secure it with the two screws removed in step 1.

Appendices

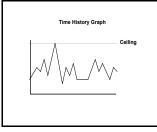
Appendix A Toxic gas measurement – Warning, Danger, STEL and TWA alarms

Many toxic substances are commonly encountered in industry. The presence of toxic substances may be due to materials being stored or used, the work being performed, or may be generated by natural processes. Exposure to toxic substances can produce disease, bodily injury, or death in unprotected workers.

It is important to determine the amounts of any toxic materials potentially present in the workplace. The amounts of toxic materials potentially present will affect the procedures and personal protective equipment that must be used. The safest course of action is to eliminate or permanently control hazards through engineering, workplace controls, ventilation, or other safety procedures. Unprotected workers may not be exposed to levels of toxic contaminants that exceed Permissible Exposure Limit (PEL) concentrations. Ongoing monitoring is necessary to insure that exposure levels have not changed in a way that requires the use of different or more rigorous procedures or equipment.

Airborne toxic substances are typically classified on the basis of their ability to produce physiological effects on exposed workers. Toxic substances tend to produce symptoms in two time frames.

Higher levels of exposure tend to produce immediate (acute) effects, while lower levels of long-term (chronic) exposure may not produce physiological symptoms for years.


Hydrogen sulfide (H_2S) is a good example of an acutely toxic substance which is immediately lethal at relatively low concentrations. Exposure to a 1,000 ppm (parts per million) concentration of H_2S in air produces rapid paralysis of the respiratory system, cardiac arrest, and death within minutes.

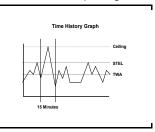
Carbon monoxide (CO) is a good example of a chronically toxic gas. Carbon monoxide bonds to the hemoglobin molecules in red blood cells. Red blood cells contaminated with CO are unable to transport oxygen. Although very high concentrations of carbon monoxide may be acutely toxic, and lead to immediate respiratory arrest or death, it is the long term physiological effects due to chronic exposure at lower levels that take the greatest toll of affected workers. This is the situation with regards to smokers, parking garage attendants, or others chronically exposed to carbon monoxide in the workplace. Exposure levels are too low to produce immediate symptoms, but small repeated doses reduce the oxygen carrying capacity of the blood over time to dangerously low levels. This partial impairment of the blood supply may lead over time to serious physiological consequences.

Because prudent monitoring programs must take both time frames into account, there are two independent exposure measurements and alarm types built into the PHD6 design.

1. Warning and Danger Alarms

OSHA has assigned some, but not all, toxic substances with a ceiling level which represents the highest concentration of a toxic substance to which an unprotected worker should ever be exposed, even for a very short time. The default Warning and Danger alarm levels in the PHD6 are less than or equal to the OSHA-assigned ceiling levels for both CO and H_2S . Never enter an environment even momentarily when concentrations of toxic substances exceed the level of either the Warning or the Danger Alarm.

2. Time Weighted Average (TWA)


The maximum average concentration to which an unprotected worker may be exposed over an eight hour working day is called the Time Weighted Average or TWA value. TWA values are calculated by taking the sum of exposure to a particular toxic gas in the current operating session in terms of parts-per-millionhours and dividing by an eight-hour period.

Time History Graph				
	Ceiling TWA (8 hour)			

3. Short Term Exposure Limits (STEL)

Toxic substances may have short term exposure limits which are higher than the eight hour TWA. The STEL is the maximum average concentration to which an unprotected worker may be exposed in any fifteen minute interval during the day. During this time, neither the eight hour TWA or the ceiling concentration may be exceeded.

Any fifteen minute periods in which the average STEL concentration exceeds the permissible eight hour TWA must be separated from each other by at least one hour. A maximum of four of these periods are allowed per eight hour shift.

Appendix B Calibration Frequency Recommendation

One of the most common questions that we are asked at Honeywell is: *"How often should I calibrate my gas detector?"*

Sensor Reliability and Accuracy

Today's sensors are designed to provide years of reliable service. In fact, many sensors are designed so that with normal use they will only lose 5% of their sensitivity per year or 10% over a two-year period. Given this, it should be possible to use a sensor for up to two full years without significant loss of sensitivity.

Verification of Accuracy

With so many reasons why a sensor can lose sensitivity and given the fact that dependable sensors can be key to survival in a hazardous environment, frequent verification of sensor performance is paramount.

There is only one sure way to verify that a sensor can respond to the gas for which it is designed. That is to expose it to a known concentration of target gas and compare the reading with the concentration of the gas. This is referred to as a "bump" test. This test is very simple and takes only a few seconds to accomplish. The safest course of action is to do a "bump" test prior to each day's use. It is not necessary to make a calibration adjustment if the readings fall between 90%* and 120% of the expected value. As an example, if a CO sensor is checked using a gas concentration of 50 PPM it is not necessary to perform a calibration unless the readings are either below 45 PPM or above 60 PPM.

*The Canadian Standards Association (CSA) requires the instrument to undergo calibration when the displayed value during a bump test fails to fall between 100% and 120% of the expected value for the gas.

Lengthening the Intervals between Verification of Accuracy

We are often asked whether there are any circumstances in which the period between accuracy checks may be lengthened.

Honeywell is not the only manufacturer to be asked this question! One of the professional organizations to which Honeywell belongs is the Industrial Safety Equipment Association (ISEA). The "Instrument Products" group of this organization has been very active in developing a protocol to clarify the minimum conditions under which the interval between accuracy checks may be lengthened.

A number of leading gas detection equipment manufacturers have participated in the development of the ISEA guidelines concerning calibration frequency. Honeywell procedures closely follow these guidelines.

If your operating procedures do not permit daily checking of the sensors, Honeywell recommends the following procedure to establish a safe and prudent accuracy check schedule for your Honeywell instruments:

- During a period of initial use of at least 10 days in the intended atmosphere, check the sensor response daily to be sure there is nothing in the atmosphere that is poisoning the sensor(s). The period of initial use must be of sufficient duration to ensure that the sensors are exposed to all conditions that might have an adverse effect on the sensors.
- 2. If these tests demonstrate that it is not necessary to make adjustments, the time between checks may be lengthened. The interval between accuracy checking should not exceed 30 days.
- When the interval has been extended the toxic and combustible gas sensors should be replaced immediately upon warranty expiration. This will minimize the risk of failure during the interval between sensor checks.
- 4. The history of the instrument response between verifications should be kept. Any conditions, incidents, experiences, or exposure to contaminants that might have an adverse effect on the calibration state of the sensors should trigger immediate re-verification of accuracy before further use.
- Any changes in the environment in which the instrument is being used, or changes in the work that is being performed, should trigger a resumption of daily checking.
- 6. If there is any doubt at any time as to the accuracy of the sensors, verify the accuracy of the sensors by exposing them to known concentration test gas before further use.

Gas detectors used for the detection of oxygen deficiencies, flammable gases and vapors, or toxic contaminants must be maintained and operated properly to do the job they were designed to do. Always follow the guidelines provided by the manufacturer for any gas detection equipment you use!

If there is any doubt regarding your gas detector's accuracy, do an accuracy check! All it takes is a few moments to verify whether or not your instruments are safe to use.

One Button Auto Calibration

While it is only necessary to do a "bump" test to ensure that the sensors are working properly, all current gas detectors offer a one-button auto calibration feature. This feature allows you to calibrate a Honeywell gas detector in about the same time as it takes to complete a "bump" test. The use of automatic bump test and calibration stations can further simplify the tasks, while automatically maintaining records.

Don't take a chance with your life. Verify accuracy frequently!

Appendix C PHD6 Sensor Information

Part No.	Description	Range	Resolution
54-54-80	LEL Combustible Gas	0 – 100% LEL	1% LEL
54-54-90	O ₂ Oxygen	0 – 30% by Volume	0.1%
54-54-01	CO Carbon Monoxide	0 – 1000 PPM	1 PPM
54-54-19	CO-H CO Minus, reduced sensitivity to H ₂	0 – 1000 PPM	1 PPM
54-54-05	CO+ CO Plus dual purpose CO / H ₂ S (Provides a non-specific readout for CO and H ₂ S)	CO: 0 – 1000 PPM H ₂ S: 0 – 200 PPM	1 PPM
54-54-02	H ₂ S Hydrogen Sulfide	0 – 200 PPM	1 PPM
54-54-14	Duo-Tox Dual Channel CO/ H_2S Provides substance specific readouts for CO & H_2S	CO: 0 – 1000 PPM H ₂ S: 0 – 200 PPM	1 PPM 1 PPM
54-54-03	SO ₂ Sulfur dioxide	0 – 25 PPM	0.1 PPM
54-54-21	NH ₃ Ammonia	0 - 100 PPM	1 PPM
54-54-18	Cl ₂ Chlorine (specific)	0 – 50 PPM	0.1 PPM
54-54-20	CIO ₂ Chlorine dioxide (specific)	0 – 5 PPM	0.01 PPM
54-54-06	NO Nitric oxide	0 – 350 PPM	1 PPM
54-54-09	NO ₂ Nitrogen dioxide	0 – 50 PPM	0.1 PPM
54-54-23	HCN Hydrogen cyanide	0 – 100 PPM	0.2 PPM
54-54-13	PH ₃ Phosphine	0 – 20 PPM	0.1 PPM
54-54-50	NDIR CO ₂ Carbon dioxide	0 – 5.00%/vol.	0.025%*
54-54-51	NDIR CH ₄ Methane	0 – 5.00%/vol.	0.05%
54-54-52	PID Volatile Organic Compound (VOCs)	0 – 3000 PPM	.1PPM

*The CO₂ sensor has an internal resolution of 0.025% but displays readings rounded to the nearest 0.01%. It will, therefore, display steps of 0.03%, 0.05%, 0.08%, 0.10%, etc.

Appendix D Electrochemical Toxic Sensor Cross-Sensitivity

The table below provides the cross-sensitivity response of the PHD6 electrochemical toxic gas sensors to common interference gases. The values are expressed as a percentage of the primary sensitivity, or the reading of the sensor when exposed to 100ppm of the interfering gas at 20°C. These values are approximate. The actual values depend on the age and condition of the sensor. Sensors should always be calibrated to the primary gas type. Cross-sensitive gases should not be used as sensor calibration surrogates without the express written consent of Honeywell.

SENSOR	CO	H2S	SO2	NO	NO2	Cl2	CIO2	H2	HCN	HCI	NH3	C2H4	C2H2
Carbon Monoxide (CO)	100	10	5	10	-15	-5	-15	50	15	3	0	75	250
Carbon Monoxide (CO+)	100	350	50	30	-60	-60	-120	50	n/d	n/d	0	75	250
Carbon Monoxide (CO-H)	100	2	0.5	3	-0.5	-0.5	-1.5	5	n/d	n/d	0.1	35	(+)
Hydrogen Sulfide (H2S)	0.5	100	20	2	-20	-20	-60	0.2	0	0	0	n/d	n/d
Sulfur Dioxide (SO2)	1	0	100	<8	-100	-70	-150	0.2	n/d	n/d	<0.1	15	100
Nitrogen Dioxide (NO2)	<0.1	-40	-2.5	<0.5	100	100	270	<0.1	n/d	n/d	<0.1	n/d	0.1
Nitric Oxide (NO)	0.1	≤15	≤10	100	≤30	15	n/d	0.1	n/d	n/d	n/d	n/d	n/d
Chlorine (Cl2) (specific)	0	-3	<1	n/d	12	100	20	0	0	0	0	0	0
Chlorine (Cl2) (non-specific)	0	-20	<5	0	120	100	300	0	n/d	n/d	0	n/d	n/d
Chlorine Dioxide (CIO2) (specific)	0	-25	-5	n/d	n/d	60	100	0	0	0	n/d	0	0
Chlorine Dioxide (CIO2) (non-specific)	0	-7	<2	0	40	<35	100	0	n/d	n/d	0	n/d	n/d
Ammonia (NH3)	<1	<10	2	n/d	0	0	n/d	0	0	0	100	0	0
Phosphine (PH3)	0.5	25	20	n/d	(-)	(-)	(-)	0.1	n/d	n/d	n/d	1	0.5
Hydrogen Cyanide (HCN) (old style 54-54-10)	0.5	200	100	-5	-70	-50	-150	0	100	65	-5	0	n/d
Hydrogen Cyanide (HCN) (new style 54-54-23)	0	0**	n/d	n/d	-70	n/d	n/d	0	100	n/d	n/d	n/d	n/d

** Sensor manufacturer rates Cross Sensitivity for (54-54-23) HCN sensor to H2S as follows for 20 PPM exposure at 20°C: "Short gas exposure in minute range; after filter saturation: ca. 40 PPM reading".

n/d = no data

Honeywell Warranty Gas Detection Products

General

Honeywell warrants gas detectors, sensors and accessories manufactured and sold by Honeywell, to be free from defects in materials and workmanship for the periods listed in the tables below.

Damages to any Honeywell products that result from abuse, alteration, power fluctuations including surges and lightning strikes, incorrect voltage settings, incorrect batteries, or repair procedures not made in accordance with the Instrument's Reference Manual are not covered by the Honeywell warranty.

The obligation of Honeywell under this warranty is limited to the repair or replacement of components deemed by the Honeywell Instrument Service Department to have been defective under the scope of this standard warranty. To receive consideration for warranty repair or replacement procedures, products must be returned with transportation and shipping charges prepaid to Honeywell, or to a Honeywell Authorized Warranty Service Center. It is necessary to obtain a return authorization number from Honeywell prior to shipment.

THIS WARRANTY IS EXPRESSLY IN LIEU OF ANY AND ALL OTHER WARRANTIES AND REPRESENTATIONS, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE. HONEYWELL WILL NOT BE LIABLE FOR LOSS OR DAMAGE OF ANY KIND CONNECTED TO THE USE OF ITS PRODUCTS OR FAILURE OF ITS PRODUCTS TO FUNCTION OR OPERATE PROPERLY.

Instrument & Accessory Warranty Periods

PHD6™	2 years from date of purchase
ToxiPro [®] , MultiPro™	2 years from date of purchase
Battery packs and chargers, sampling pumps and other components, which by their design are consumed or depleted during normal operation, or which may require periodic replacement	One year from the date of purchase

Sensor Warranty Periods

PHD6™, Cannonball <i>3</i> ™, Multi Vision™, MultiPro™, Toxi	O ₂ , LEL**, CO, CO+, H ₂ S & Duo-Tox	2 Years
Vision™, ToxiPro [®]	All Other Sensors	1 Year
All Others	All Sensors	1 Year

** Damage to combustible gas sensors by acute or chronic exposure to known sensor poisons such as volatile lead (aviation gasoline additive), hydride gases such as phosphine, and volatile silicone gases emitted from silicone caulks/sealants, silicone rubber molded products, laboratory glassware greases, spray lubricants, heat transfer fluids, waxes & polishing compounds (neat or spray aerosols), mold release agents for plastics injection molding operations, waterproofing formulations, vinyl & leather preservatives, and hand lotions which may contain ingredients listed as cyclomethicone, dimethicone and polymethicone (at the discretion of Honeywells' Instrument Service department) void Honeywells' Standard Warranty as it applies to the replacement of combustible gas sensors.

DOC022.97.80041

2100Q and 2100Qis

04/2013, Edition 2

Basic User Manual Manuel d'utilisation de base Manual básico del usuario Manual Básico do Usuário 基本用户手册 基本取扱説明書 기볺 삶용 설명서 September 2022

English	3
English Français Español	17
Español	
Português 中文	
中文	61
日本語	
한글	

Specifications

Specifications are subject to change without notice.

Specification	Details
Measurement method	Ratio turbidimetric determination using a primary nephelometric light scatter signal (90°) to the transmitted light scatter signal.
Regulatory	2100Q: Meets EPA Method 180.1
	2100Qis: Meets ISO 7027
Lamp source	2100Q: Tungsten filament lamp
	2100Qis: Light-emitting diode (LED) at 860 nm
Range	0–1000 NTU (FNU)
Accuracy	$\pm 2\%$ of reading plus stray light from 0–1000 NTU (FNU)
Repeatability	$\pm 1\%$ of reading or 0.01 NTU (FNU), whichever is greater
Resolution	0.01 NTU on lowest range
Stray light	≤ 0.02 NTU (FNU)
Signal averaging	Selectable on or off
Detector	Silicon Photodiode
Reading modes	Normal (Push to Read), Signal Averaging or Rapidly Settling Turbidity™
Calibration options	Single step RapidCal [™] for Low-Level Regulatory Reporting from 0–40 NTU (FNU)
	Full range calibration from 0–1000 NTU (FNU)
	Calibration to degrees of turbidity
Calibration logger	Records the last 25 successful calibrations
Verification logger	Logs the last 250 successful verifications
Data logger	500 records

Specification	Details
Power requirement	AC 100–240 V , 50/60 Hz (with power or USB/power module)
	4 AA alkaline batteries
	Rechargeable NiMH (for use with USB/power module)
Operating	Temperature: 0 to 50 °C (32 to 122 °F)
conditions	Relative Humidity: 0–90% at 30 °C, 0–80% at 40 °C, 0–70% at 50 °C, noncondensing
Storage conditions	-40 to 60 °C (-40 to 140 °F), instrument only
Interface	Optional USB
Sample required	15 mL (0.5 oz.)
Sample cells	Round cells 60 x 25 mm (2.36 x 1 in.) borosilicate glass with screw caps
Dimensions	22.9 x 10.7 x 7.7 cm (9.0 x 4.2 x 3.0 in.)
Weight	530 g (1.17 lb) without batteries
	620 g (1.37 lb) with four AA alkaline batteries
Meter enclosure rating	IP67 (closed lid, battery and module compartment excluded)
Protection class	Power supply: Class II
Certification	CE certified
Warranty	1 year (EU: 2 years)

General information

In no event will the manufacturer be liable for direct, indirect, special, incidental or consequential damages resulting from any defect or omission in this manual. The manufacturer reserves the right to make changes in this manual and the products it describes at any time, without notice or obligation. Revised editions are found on the manufacturer's website.

Safety information

NOTICE

The manufacturer is not responsible for any damages due to misapplication or misuse of this product including, without limitation, direct, incidental and consequential damages, and disclaims such damages to the full extent permitted under applicable law. The user is solely responsible to identify critical application risks and install appropriate mechanisms to protect processes during a possible equipment malfunction.

Please read this entire manual before unpacking, setting up or operating this equipment. Pay attention to all danger and caution statements. Failure to do so could result in serious injury to the operator or damage to the equipment.

Make sure that the protection provided by this equipment is not impaired. Do not use or install this equipment in any manner other than that specified in this manual.

Use of hazard information

A DANGER

Indicates a potentially or imminently hazardous situation which, if not avoided, will result in death or serious injury.

A WARNING

Indicates a potentially or imminently hazardous situation which, if not avoided, could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation that may result in minor or moderate injury.

NOTICE

Indicates a situation which, if not avoided, may cause damage to the instrument. Information that requires special emphasis.

Precautionary labels

Read all labels and tags attached to the instrument. Personal injury or damage to the instrument could occur if not observed. A symbol on the instrument is referenced in the manual with a precautionary statement.

This is the safety alert symbol. Obey all safety messages that follow this symbol to avoid potential injury. If on the instrument, refer to the instruction manual for operation or safety information.

This symbol indicates that a risk of electrical shock and/or electrocution exists.

Electrical equipment marked with this symbol may not be disposed of in European public disposal systems after 12 August of 2005. In conformity with European local and national regulations (EU Directive 2002/96/EC), European electrical equipment users must now return old or end-of-life equipment to the Producer for disposal at no charge to the user.

Note: For return for recycling, please contact the equipment producer or supplier for instructions on how to return end-of-life equipment, producer-supplied electrical accessories, and all auxiliary items for proper disposal.

Certification

Canadian Radio Interference-Causing Equipment Regulation, IECS-003, Class A:

Supporting test records reside with the manufacturer.

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de classe A répond à toutes les exigences de la réglementation canadienne sur les équipements provoquant des interférences.

FCC Part 15, Class "A" Limits

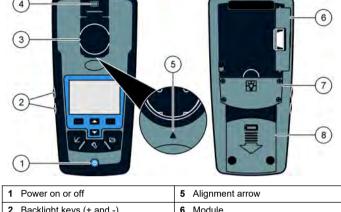
Supporting test records reside with the manufacturer. The device complies with Part 15 of the FCC Rules. Operation is subject to the following conditions:

1. The equipment may not cause harmful interference.

G-134 September 2022

G-135 September 2022 English

2. The equipment must accept any interference received, including interference that may cause undesired operation.

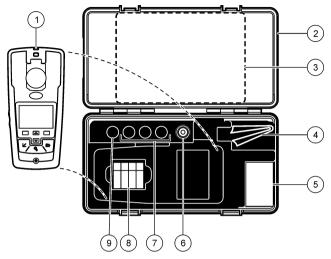

Changes or modifications to this equipment not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at their expense. The following techniques can be used to reduce interference problems:

- 1. Disconnect the equipment from its power source to verify that it is or is not the source of the interference.
- 2. If the equipment is connected to the same outlet as the device experiencing interference, connect the equipment to a different outlet.
- 3. Move the equipment away from the device receiving the interference.
- 4. Reposition the receiving antenna for the device receiving the interference.
- 5. Try combinations of the above.

Product overview

The 2100Q and 2100Q*is* portable turbidimeters measure turbidity from 0 to 1000 NTU (FNU). Primarily for field use, the portable meter operates on four AA batteries. Data can be stored and transferred to a printer, computer or USB storage device.

Figure 1 Product overview



2	Backlight keys (+ and -)	6	Module
3	Sample cell holder with lid	7	Lamp compartment
4	Attachment for lanyard	8	Battery compartment

Product components

Refer to Figure 2 to make sure that all components have been received. If any of these items are missing or damaged, contact the manufacturer or a sales representative immediately.

Figure 2 2100Q and 2100Q is components

1	2100Q or 2100Qis turbidimeter	6	Silicone oil
2	Carrying case	7	20, 100 and 800 NTU StablCal calibration standards
3	User manual and Quick reference guide	8	AA alkaline batteries (pk/4)
4	Oiling cloth	9	StablCal 10 NTU verification
5	1" sample cell (10 mL) with cap (pk/6)		standard

Installation

ACAUTION

Multiple hazards. Only qualified personnel must conduct the tasks described in this section of the document.

Install the battery

A WARNING

Explosion hazard. An expired battery can cause hydrogen gas buildup inside the instrument. Replace the battery before it expires. Do not store the instrument for long periods with a battery installed.

WARNING

Potential fire hazard. Use only alkaline or nickel metal hydride batteries (NiMH) in the meter. Other battery types or incorrect installation can cause a fire. Never mix battery types in the meter.

NOTICE

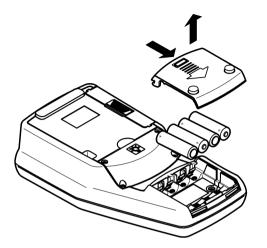
The battery compartment is not waterproof. If the battery compartment becomes wet, remove and dry the batteries and dry the interior of the compartment. Check the battery contacts for corrosion and clean them if necessary.

NOTICE

When using nickel metal hydride (NiMH) batteries, the battery icon will not indicate a full charge after freshly charged batteries have been inserted (NiMH batteries are 1.2 V versus 1.5 V for alkaline batteries). Even though the icon does not indicate complete charge, 2300 mAH NiMH batteries will achieve 90% of instrument operation lifetime (before recharge) versus new alkaline batteries.

NOTICE

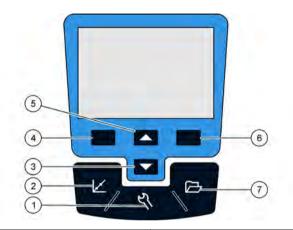
To avoid potential damage to the meter from battery leakage, remove the meter batteries prior to extended periods of non-use.


The meter can be powered with AA alkaline or rechargeable NiMH batteries. To conserve battery life, the meter will power off after 10 minutes of inactivity, the backlight powers off after 30 seconds. This time can be changed in the Power Management menu. *Note: Rechargeable batteries will only be recharged with the USB/power module. Refer to the module documentation for further information.*

For battery installation refer to Figure 3.

- 1. Remove the battery cover.
- Install 4 AA alkaline or 4 AA nickel metal hydride (NiMH) batteries. Make sure that the batteries are installed in the correct orientation.
- 3. Replace the battery cover.

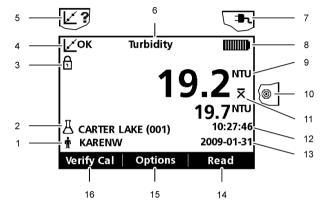
G-136 September 2022


Figure 3 Battery installation

User interface and navigation

User interface

Figure 4 Keypad description



1	SETTINGS key: select menu options for setting up the meter	5	UP key: scroll through menus, enter numbers and letters
2	CALIBRATION key: shows calibration screen, start calibration, select cal options	6	RIGHT key (contextual): read turbidity sample, selects or confirms options, opens/jumps to sub-menus
3	DOWN key: scroll through menus, enter numbers and letters	7	DATA MANAGEMENT key: view, delete or transfer stored data
4	LEFT key (contextual): access for calibration verification, cancels or exits the current menu screen to the previous menu screen		

Display description

The measurement screen shows the turbidity, unit, calibration status, date and time, operator ID (if setup) and sample ID (if setup). Refer to Figure 5.

Figure 5 Single screen display

1	Operator identification		NTU (Nephelometric Turbidity Unit) or FNU (Formazin Turbidity Unit)
2	Sample identification	10	Reading mode: Rapidly Settling Turbidity (Target icon)
3	Stability or display lock indicator	11	Reading mode: Signal Average (X-bar icon)
4	Calibration status indicator (Calibration OK=pass)	12	Time
5	Calibration status indicator (Calibration ?=fail)	13	Date
6	Parameter title	14	Read (contextual: OK, Select)
7	AC power icon	15	Options (contextual)
8	Battery icon	16	Verification calibration

Navigation

The meter contains a Settings menu, Reading Options menu, Calibration Options menu and Calibration Verification Options menu to change various options. Use the **UP** and **DOWN** keys to highlight different options. Push the **RIGHT** key to select an option. There are two ways to change options:

 Select an option from a list: Use the UP and DOWN keys to select an option. If check boxes are shown, more than one option can be selected. Push the LEFT key under Select.

Note: To deselect check boxes, push the LEFT key under Deselect.

- 2. Enter an option value using the arrow keys: Push the UP and DOWN keys to enter or change a value.
- 3. Push the RIGHT key to advance to the next space.
- 4. Push the RIGHT key under OK to accept the value.

Startup

Turn the meter on and off

• Push the **ON/OFF** key to turn on or turn off the meter. If the meter does not turn on, make sure that the batteries, or the module, are properly installed or that the AC power supply is properly connected to an electrical outlet.

Note: The Auto-Shutoff option can also be used to turn off the meter. Additional information is available on the manufacturer's website.

Change the language

There are three options to set the language:

- The display language is selected when the meter is powered on for the first time.
- The display language is selected when the power key is pushed and held.
- The language can be changed from the Settings menu.
- 1. Select a language from the list. Confirm with OK.
- 2. Push Done when the update is complete.

Change the date and time

The date and time can be changed from the Date & Time menu.

- 1. Push the SETTINGS key and select Date & Time.
- 2. Update the time and date information:

Option	Description
Format	Select one of the formats for the date and time: yyyy-mm-dd 24h yyyy-mm-dd 12h dd-mm-yyyy 24h dd-mm-yyyy 12h mm/dd/yyyy 24h mm/dd/yyyy 12h
Date	Enter the current date
Time	Enter the current time

The current date and time will be shown on the display.

After the date and time setup, the meter is ready to take a reading.

Standard operation

Use a sample ID

The sample ID tag is used to associate readings with a particular sample location. If assigned, stored data will include this ID.

- 1. Select Sample ID in the Settings menu.
- 2. Select, create or delete a sample ID:

Option	ption Description	
Current ID	Select an ID from a list. The current ID will be associated with sample data until a different ID is selected.	
Create a New Sample ID	Enter a name for a new sample ID.	
Delete Sample ID	Delete an existing sample ID.	

Use an operator ID

The operator ID tag associates readings with an individual operator. All stored data will include this ID.

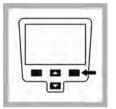
- 1. Select Operator ID in the Settings menu.
- 2. Select, create or delete an operator ID:

Option	Description
Current ID	Select an ID from a list. The current ID will be associated with sample data until a different ID is selected.
Create a New Operator ID	Enter a name for a new operator ID (maximum 10 names can be entered).
Delete Operator ID	Delete an existing operator ID.

Advanced operation

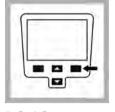
Calibrate the turbidimeter with StablCal® Standards

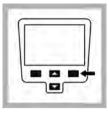
Note: For best accuracy use the same sample cell or four matched sample cells for all readings during calibration. Insert the sample cell in the instrument cell compartment so the diamond or orientation mark aligns with the raised orientation mark in front of the cell compartment.



1. Push the CALIBRATION key to enter the Calibration mode. Follow the instructions on the display.

Note: Gently invert each standard before inserting the standard.


2. Insert the 20 NTU StablCal Standard and close the lid. *Note: The standard to be inserted is bordered.*


3. Push **Read**. The display shows Stabilizing and then shows the result.

|--|

4. Repeat Step 2 and 3 with the 100 NTU and 800 NTU StablCal Standard. Note: Push Done to complete a 2 point calibration.

5. Push **Done** to review the calibration details.

6. Push Store to save the results. After a calibration is complete, the meter automatically goes into the Verify Cal mode. Additional information is available on the manufacturer's website.

Reading modes

- 1. Push the UP or DOWN key to enter the Reading Options menu.
- 2. Select Reading Mode to select one of the following options:

Option	Description
Normal (Default setting)	The normal mode reads and averages three readings. The result is shown after the reading.

Option

Description

Signal Average

Rapidly

Settling

(RST)

Turbiditv™

0

The Signal Average mode compensates for reading fluctuations caused by drifting of sample particles through the light path.

The X-bar icon is shown on the display when signal averaging is on.

The Signal Average mode measures 12 times and starts to show the average after three readings. The final result is the average of all 12 readings.

The Rapidly Settling Turbidity (RST) mode calculates and continuously updates the turbidity reading of the sample to a confidence of 95%, based on the accumulated trend of the real time measured values.

The RST mode is best used on samples that settle rapidly and continuously change in value. The reading is based on a correctly prepared sample that is homogeneous at the beginning of the reading. It is best applied to samples that are greater than 20 NTU. The sample must be mixed thoroughly by inversion immediately before inserting it into the meter.

The target icon is shown on the display when the Rapidly Settling Turbidity is on.

The Rapidly Settling Turbidity reads and calculates five readings while showing intermediate results.

Maintenance

ACAUTION

Multiple hazards. Only qualified personnel must conduct the tasks described in this section of the document.

Clean the meter

The meter is designed to be maintenance-free and does not require regular cleaning for normal operation. Exterior surfaces of the meter may be cleaned as necessary.

Note: Do not clean the meter with solvents to avoid damaging the material.

1. Clean the meter with a dust- and lint-free dry or slightly damp cloth. A mild soap solution can also be used for liposoluble contamination.

Apply silicone oil to a sample cell

Sample cells and caps must be extremely clean and free from significant scratches. Apply a thin coating of silicone oil on the outside of the sample cells to mask minor imperfections and scratches that may contribute to light scattering.

Note: Use only the provided silicone oil. This silicone oil has the same refractive index as the sample cell glass.

1. Clean the inside and outside of the cells and caps by washing with a laboratory glass cleaning detergent. Follow with multiple rinses with distilled or demineralized water.

2. Apply a small bead of silicone oil from the top to the bottom of the cell.

3. Use the provided oiling cloth to spread the oil uniformly. Wipe off the excess so that only a thin coat of oil is left. Make sure that the sample cell is almost dry with little or no visible oil. Note: Store the oiling cloth in a plastic storage bag to keep the cloth clean.

Store the sample cells

NOTICE

Do not air dry the sample cells.

Note: Always store the sample cells with caps on to prevent the cells from drying.

- 1. Fill the sample cells with distilled or demineralized water.
- 2. Cap and store the sample cells.
- 3. Wipe the outside of the sample cells dry with the a soft cloth.

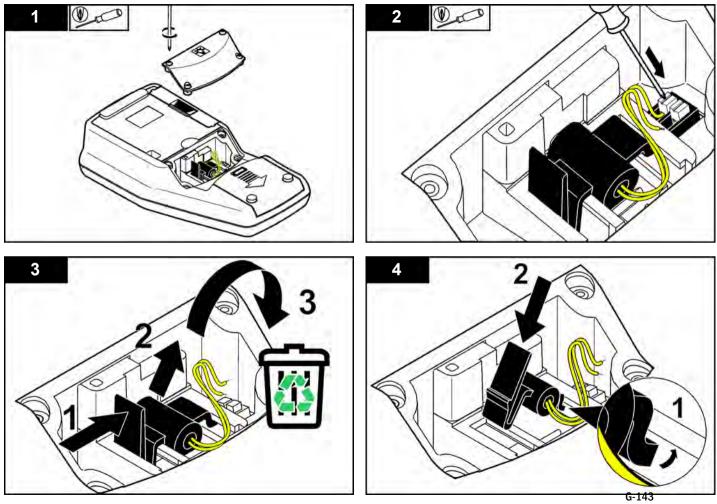
Replace the battery

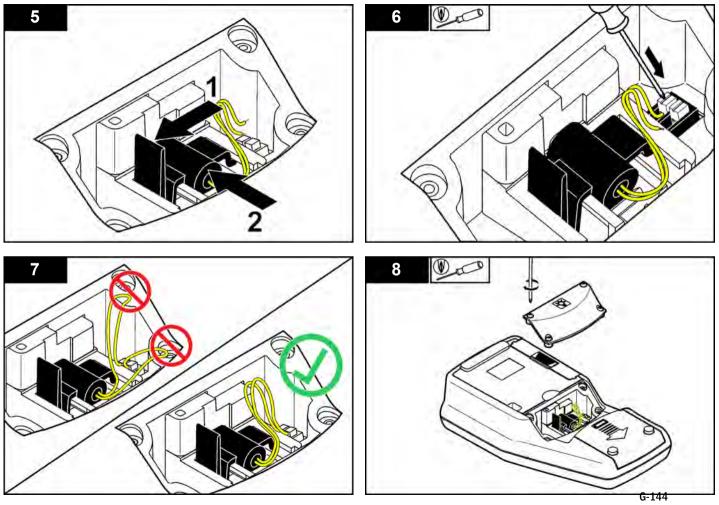
WARNING

Explosion hazard. An expired battery can cause hydrogen gas buildup inside the instrument. Replace the battery before it expires. Do not store the instrument for long periods with a battery installed.

A WARNING

Potential fire hazard. Use only alkaline or nickel metal hydride batteries (NiMH) in the meter. Other battery types or incorrect installation can cause a fire. Never mix battery types in the meter.


For battery replacement refer to Install the battery on page 6.


- 1. Remove the battery cover.
- 2. Remove the batteries.
- Install 4 AA alkaline or 4 AA nickel metal hydride (NiMH) batteries. Make sure that the batteries are installed in the correct orientation.
- 4. Replace the battery cover.

Replace the lamp

ACAUTION

 $\ensuremath{\mathsf{Burn}}$ Hazard. Wait until lamp cools down. Contact with the hot lamp can cause burns.

Troubleshooting

Refer to the following table for common problem messages or symptoms, possible causes and corrective actions.

Error/Warning	Description	Solution
Close lid and push Read.	The lid is open or lid detection failed.	Make sure that the lid is closed during reading and re-read.
Low Battery!	Battery is low.	 Insert new batteries Connect USB/power module if rechargeable batteries are used
ADC Failure!	Hardware error causing reading to fail.	Repeat the reading.
Detector signal too low!	Insufficient light on the 180° detector.	Check for obstructed light path.Check the lamp.
Overrange!	Turbidity too high- caused probably by calibrating with RapidCal [™] only.	Calibrate the upper range.Dilute the sample.
Underrange!	The measured absorbance is below the calibration range.	Repeat calibration
Please check the lamp!	Signals are too low on the 90° and 180° detector.	2100Q: The lamp is defective. Change the lamp (refer to Replace the lamp on page 12). 2100Qis: Contact technical support.

Error/Warning	Description	Solution						
Temperature too high! Switch off instrument.	Temperature has exceeded the meter limits (>60 °C or >140 °F).	Turn off the meter and let it cool down.						
RST: Average value!	Solids are settling too slowly. The reading mode is not suitable for this sample.	Select Normal or Signal Average reading mode.						
Confidence level is < 95%	The reading mode Rapidly Settling Turbidity did not meet the range of ≥ 95% confidence.	 Invert the sample several times so that the solids allocate. Repeat the reading again. Switch to the Normal reading mode if the sample is stable and does not have settable solids. 						
Standard value out of range. Insert standard and push Read	Used incorrect standard value for the reading.	Insert the appropriate standard and read again.						
ID already in use. Enter new ID	The Operator or Sample ID is unavailable as it is already assigned.	Create a new ID.						
Error - Security Please set password before activating security	No password is created.	Create a new password.						
Please enter at least one character.	Password must contain minimum of one character.	Create a password of at least one character.						
Password incorrect. Please retry.	Incorrect password was entered.	Enter the appropriate password.						

Error/Warning	Description	Solution
Please disconnect the USB cable from your computer.	Data storage does not respond while connected to the meter and the computer.	Disconnect the USB cable from the meter and try sending data again.
USB module memory full. Delete data and try again.	Data storage is full.	 Connect USB/power module to the computer. Download the stored data to the computer.
		3. Delete Data Log on the module.
Delete Last Reading Failed!	Error in the data storage.	Turn the meter off and on. If the error message still occurs, contact
Delete Data Log failed!		technical support.
Can't read data set!		
Can't store data!		
Can't store to the Reading Log!		
Can't store to the Verify Cal Log!		
Error storing data!		
Error reading data!		

Appendix C: Field Data Sheets and Chain of Custody Forms

Form DW1 – Dry Weather Outfall Investigation Form Form DW2 – Trash Assessment Form Chain-of-Custody Form – Boise City Water Quality Laboratory Chain-of-Custody Form – Analytical Labs, Inc.

Form DW-1 DRY WEATHER OUTFALL INVESTIGATION FORM

Outfall Information												
Outfall ID:												
Station Type: <u>Outfall</u>		Location:										
Lat: Lon:		Receiving Water:										
Station Config.: (circle one) Box culver	<u>Circular</u>	DI structure	<u>Elliptical</u>	Manhole	Open ditch, lined	Open ditch, unlined						
Material: (circle one) <u>ADS</u> <u>CMP</u>	<u>Concrete</u>	<u>Earthen</u>	<u>PVC</u> <u>Ri</u>	<u>p rap RCP</u>	<u>SMP</u> Size	: (Inches)						
Comments:												
Drainage Area (acres):	Lanc	Use:										
	Site	e Condition	n Informat	ion								
Personnel:	Date	e/Time On-si	ite:			MDT / MST						
Comments:												
	· · · · · · · · · · · · · · · · · · ·											

Field Quantitative Results											
Component	Component										
Antecedent Dry Conditions Met: Y / N (see notes for clarification)	Temperature – DO Meter:	_ C									
Previous Storm Date: Storm Total: inches	Dissolved Oxygen:	_ mg/L									
Flow Depth: inches Flow Width: inches	Conductivity:	_ uS									
Velocity (Flow Probe): fps Flow: cfs	pH:S.U. pH temp:	_ C									
Velocity (Bucket Method) volume used: (circle one) 500ml 1L 5 gallon	Total Chlorine:	_ mg/L									
	Total Copper:	mg/L									
Bucket Method Trial: 1:, 2:, 3: sec.	Phenols:	mg/L									
Flow: cfs (see notes for flow calculation resource)	Turbidity:	_ NTU									
Notes: Antecedent dry conditions require >72 hours of < 0.10 inches of precipitation. Flow Calculator - \\APPWSUS\ACHDFiles\Groups\ROWDS\STORMWATER\OU		s_151123									

Form DW-1 DRY WEATHER OUTFALL INVESTIGATION FORM

Page 2 of 2

Sample Collection Information

	Initial Grab Sample	itial Grab Sample QCA Field Duplicate QCB Field Blai (fill in appropriate sequential number) (fill in appropriate sequential number) (fill in appropriate sequential number)								
<u>Component</u>	Date/Time	Date/Time	Date/Time	<u>Labeled</u>						
E. coli - 250mL sterile plastic										
TSS – 5L plastic										
TP – 500mL plastic										
Detergents – 500mL plastic										
Ortho-P – 500mL sterile plastic (To be filtered)										
Ortho-P – 250mL sterile plastic (Filtered Sample)										
Notes: Date/Time recorded on the Lat	COC for QC samples will k	be the collection date at 12:00. Fie	Id Blanks will be filled with ultra	a-pure						

water from WQL.

Investigation Event Qualitative Results

Observed?	<u>Component</u>	<u>Comments/I</u>	Description	(circle one, if appropriate)							
	GPS										
	Photos										
	Sedimentation										
	Staining	Oily	Flow line	Paint							
	Flow observed	Trickle	Moderate	Substantial							
	Odor	Sewage	Sulfide	Rancid/Sour	Petroleum						
	Color	Clear	Green	Brown	Orange	Other					
	Vegetation	Excessive	Inhibited								
	Floatables (trash NOT included)	Sewage	Suds	Petroleum							
	Structural condition	Good	Fair	Poor							
	Clarity	Clear	Cloudy	Silty							
	Illicit discharge	Unlikely	Potential	Obvious							
	Trash observed	No	Yes – see Tra	ash Assessment Fo	orm (Form 2)						

Date/Time Off-site:

MDT / MST (circle one)

	Investigation Event Qualitative Resu	(determined in office, post-inspection)
Component	Comments/Description	(circle one)
Compliance status	IN compliance	OUT of compliance

FORM DW-2 TRASH ASSESSMENT FORM

	Outfall Information	
Outfall ID:	-	
Station Type: <u>Outfall</u> Location:		
Lat: Lon:	Receiving Water:	
Comments:		
Personnel:		
Date/Time On-site:	MDT / MST (circle one)	Note: This is the "Start Date/Time"
Component	<u>Value</u>	<u>Unit</u>
Antecedent dry period		Hours
Total precipitation - previous storm _	Inches Res	ult/Analysis Date:

Trash Evaluation	Includes: 🗆 M	S4								
Component	Observed? (check (√) if yes)	Comments/Description (circle one, if appropriate)								
Photos										
Trash observed		Optimal – No trash observed on first glance. Close examination yields <10 pieces.								
		Suboptimal- On first glance, little or no trash observed. Close examination yields 10-50 pieces.								
		Marginal – Trash evident in low to medium levels (51-100 pieces).								
		Sub marginal – Trash distracts the eye on first glance. Litter and debris >100-400 pieces. Evidence of human use apparent: cans, bottles, clothes, food wrappers, blankets.								
		Poor – Site is significantly impacted by trash. Evidence of excessive dumping. Littler observed >400 pieces.								

Page 1 of 2

FORM DW-2 TRASH ASSESSMENT FORM

Page 2 of 2

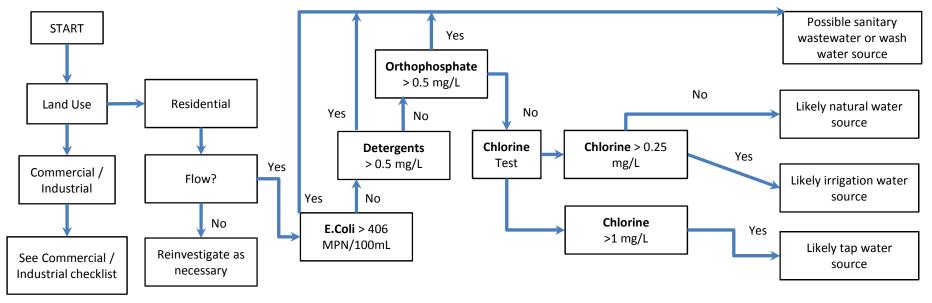
Ę	est		otentia check			Potential Source (check up to 2)									
Type of Trash	*Rank 1, Most - 12, Lest	Dumping	Littering	Upstream	Unable to Determine	Household	Construction	Commercial	Industrial	School	Transient	Unable to Determine			
Automotive															
Biohazard															
Business															
Cigarette Butts															
Construction															
Fabric/Clothing															
Food Packaging															
Food Waste															
Household															
Shopping Cart															
Toxic															
Yard Waste															

*Only rank types of trash present in evaluated area from 1 through 12 (1 is most prevalent, 12 is least prevalent).Do not rank types of trash that are not present in evaluated area.

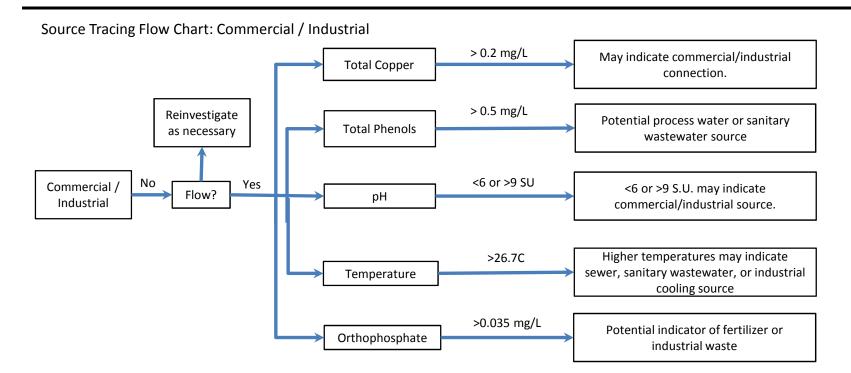
Comments:_____

Date/Time Off-site:

MDT / MST (circle one)


Ada County Highway District

Attn: Adam V	/an Patter	า				Matrix Type Components																									
3775 Adams Street Garden City, Idaho 83714–6418 Tel. (208) 387–6268 Fax (208) 387–6391 Purchase Order: Project: DWOS Sampler(s):							210B	8000	40C	TKNPSTORP PAI-DK01	TP—EPA 200.7 Orthophosphate—EPA 365.1	–EPA 1664		Diss. Cd, As, Cu, Pb, Hg, Ni, Cr —EPA 200.8 Lordonon SM 22405	MI 23405 3213D	90	NO ₃ +NO ₂ / NO ₂ —EPA 353.2	00 NH ₃ - F		Unle	ess sp	Organophosphate Pest.—EPA 8141 33 39 7 39 39 39 39 39 39 39 39 39 39 39 39 39	d	\ 8260	Containers						
Lab#	Begin Date	End Date	Begin Time	End Time	Sample Identification	Water Grab	Grab Commosite	Grab Composite	Grab Composite	Grab Composite	Grab Composite	Grab Composite	BOD ₅ —SM 5210B	COD—Hach 8000	TDS-SM 2540D	TKNPSTO	TP—EPA 200.7 Orthophosphate	Oil & Grease—EPA 1664	Total As, Cd,	Diss. Cd, As, Cu, Pb, F	E. Coli—SM 9213D	D.O4500 - O G	NO ₃ +NO ₂ / N	NH ₃ -SM 4500 NH ₃ - F		TrPH-1664 A SGT HEM	Organochlori	Organophosp	BNAEPA 8270	VOCs EPA 8260	Number of Containers
						X	X			>			x x				×										4				
Relinquished by (sign) Date & Time Transferred Received by (sign)				Received by (sign)							Co	omn	nent	:s/Sp	beci	ial I	nsti	uct	tions	:											


CLIENT CODE=						CHAIN	OF CUS	TODY	RE	CO	RD								
CLIENT INFORMATION:					PROJE	CT INFORMATIC		ANALYTICAL LABS, INC.											
Project Manager:					Project Name:				1804 N. 33rd Street • Boise, ID 83703										
Company:						PWS Number:]	(208) 342-5515 • Fax: (208) 342-5591 • 1-800-574-5773 Website: www.analyticallaboratories.com									
Address:						Purchase Order Number: E-mail: ali@analyticallaboratories. TESTS REQUESTED			com										
						Required Due Date:													
Phone:			Fax:			E-mail Address:						/ /	/ /			/ /	/ /	/ /	
Sampled by: (Pl	ease print)	I			Transpo	nsported by: (Please print)			1										
Lab ID	Date Sampled	Tin Sam		S	ample De	nple Description (Source)		Sample Matrix		Remarks:						emarks:			
Invoice to: (If dif	fferent than a	above a	addres	s)		Special Instructions:													
	tories, Inc. er	rors in	the con	duct of a test	or procedu	eparation and testing re their liability shall of data.													
Note: Samples	are discard	ed 21 (days a	fter results	are report	ed. Hazardous sar	nples will be re	turned to cli	ent or	dispo	sed of	at clie	nt exp	ense.					-
Relinquished By: (Signature)			Print	Name:	Company:					Date:			Time:						
Received By: (Signature)			Print	rint Name:		Company:	Company:					Date:			Time:				
Relinquished By: (Signature)			Print	Name:		Company:	Company:				Date:			Time:					
Received at Laboratory By: (Signature)				Print	t Name: Company:			An	Analytical Laboratories					Date:			Time:		
SAMPLE RE	CEIPT	Total #	t of Co	ontainers:	Cha	ins of Custody Sea	als Y / N / NA	Intact: Y	/ N / NA Temperature Received:					Condition: G-153					
			STAYS WITH		YELLOW: LAB	•		SAMPLE									er 2022		

Appendix D: Source Tracing Flow Chart

Source Tracing Flow Chart: Residential

Appendix E: Thresholds for Documented Flowing Outfalls

Specific water quality thresholds will be used in conjunction with loading calculations, specific source information, and other program criteria to make the determination whether to discontinue monitoring at any individual previously documented flowing outfall. As defined in the Permit "the sample results must be evaluated to identify feasible actions necessary to eliminate such flows and ensure compliance of Part 1.D of the Permit". If sample analytical results are in exceedance of any of the thresholds listed in Table E-1 for a given outfall, then they must be evaluated to identify feasible actions necessary to eliminate flows. Annual sampling is required until justification exists that the discharge complies with Part 1.D of the permit. If sample analytical results are not in exceedance of any thresholds listed in Table E-1 for a given outfall is considered an allowable discharge and does not require additional sampling or evaluation. Outfalls with allowable discharges and outfalls with no observed flow are to be reinvestigated on a five year rotation.

	Table E-1. Thresholds for Wa	ter Quality Parameters	
Constituent	Threshold	Basis	Source
рН	6.5 - 9.0	Idaho Aquatic Life	IDAPA 58.01.02.250.01.a
Temperature	22 C 19 C	Salmonid Spawning – Peak Salmonid Spawning - Max. daily average	IDAPA 58.01.02.250.02b
Turbidity	Not to exceed 50 NTU greater than background - instantaneous	Idaho Aquatic Life	IDAPA 58.01.02
Dissolved oxygen (DO)	6.0 mg/L	Salmonid Spawning	IDAPA 58.01.02.278.01.0 2.278.01
Conductivity	>50 and <1500	Typical US River Observations	EPA
Total chlorine	0.019 mg/L CMC 0.011 mg/L CCC	Idaho Aquatic Life	IDAPA 58.01.02
Total copper	1.3 mg/L 1.0 mg/L	National Primary Drinking Water National Secondary Drinking Water	IDAPA 58.01.02
Total phenols	21 mg/L	Idaho Human Health Consumption (Water/Organism)	IDAPA 58.01.02
E. coli	406 CFU/100 mL	Idaho Criterion for Primary Contact Recreation; single sample	IDAPA 58.01.02.251.01.c
Total suspended solids	80 mg/L (14 day)	Idaho Aquatic Life; Lower Boise River TMDL 14-day target	Lower Boise River TMDL (1999)
Total phosphorus	0.07 mg/L	Eutrophication	Boise River TMDL
Dissolved orthophosphate	0.07 mg/L	Guideline threshold – no specific criteria	
Detergents as Surfactants	Presence	Indicative of illicit connection – should not be present in dry weather flows	

ACHD may continue or increase the sampling frequency of an outfall until sufficient data exist to determine that a discharge is allowable under the permit requirements and will no longer require annual sampling.

Appendix H: CSDC Program Manual

Ada County Highway District

3775 Adams Street Garden City, Idaho 83714 Phone: 208 387 6264 Fax: 208 387 6391

CONSTRUCTION SITE DISCHARGE CONTROL PROGRAM MANUAL

November 2018

Table of Contents

1.0	Introdu	ction		1
2.0	CSDC G	oals an	d Objectives	1
3.0	Definiti	ons		2
4.0	Constru	iction S	ite Discharge Control Program	5
5.0	Constru	iction F	unoff Ordinances/Regulatory Mechanisms	5
	5.1	Applic	cable Policies	5
	5.2	Applio	cation of Policies	5
	5.3	Joint	nspection /Enforcement	5
6.0	Constru	iction S	tormwater Management	5
	6.1	Adopt	ed Manuals/Documents	5
	6.2	Erosic	on and Sediment Control Requirements	6
	6.3	Dewa	tering Requirements	6
		6.31	Construction Dewatering	6
		6.32	General Dewatering	6
		6.33	Utility Vault Dewatering	6
		6.34	Exempted Activities – Allowable Non-Stormwater Discharges	7
7.0	Permits	, Plans	and Administration	7
	7.1	Types	of Permits	7
	7.2	Types	of Erosion and Sediment Control Plans	7
	7.3	Permi	t Application Process and Submittals	9
		7.31	Zone	9
		7.32	Subdivision	9
		7.33	Capital Projects	9
	7.4	Permi	t Revocation	9
	7.5	Varia	nce and Waivers	
		7.51	Variances	
		7.52	Waivers	
		7.	522 Small Construction Waiver/Low Erosivity Waivers (CGP)	
		7.	523 ESC Plan Waivers	10
8.0	Plan Re	view, A	pprovals, and Inspections	10
	8.1	Roles	and Responsibilities	

	8.2	Plan Requirements11			
	8.3	Routing, Pla	an Review, and Inspection Procedures by Project Type	12	
		8.31 Zone		12	
		8.311	Routing	12	
		8.312	Plan Review and Approval Process	12	
		8.313	Inspection	12	
		8.32 Subd	livision	13	
		8.321	Routing	13	
		8.322	Plan Review and Approval Process	13	
		8.323	Inspection	13	
		8.33 Capit	tal Projects	14	
		8.331	Routing	14	
		8.332	Plan Review and Approval Process	14	
		8.333	Inspection	14	
		8.334	NOI/NOT/SWPPP Requirements	15	
	8.4	ESC Inspect	ion Procedures	16	
	8.5 Rev	iewer/Inspe	ctor Qualifications	18	
9.0	Enforce	ment		18	
	9.1	Enforcemer	nt Response Policy (ERP)		
	9.2	Factors in S	electing the Appropriate Enforcement Response	19	
	9.3	Enforcemer	nt Options	19	
		9.31 Vei	rbal Warnings	20	
		9.32 Writ	ten Notices	21	
		9.33 Escal	lated Enforcement	21	
	9.4	Joint Enford	ement Actions	21	
	9.5 Cor	nplaint Resp	onse	21	
	9.6	CGP Genera	al Permit Violation Referrals	21	
10.0	Databas	e and Recor	d Keeping	22	
	10.1	Annual Rep	orting and Tracking	22	
	10.2 TR	AKIT		23	
11.0	Constru	ction Progra	m Education and Training	24	
	11.1	Training and	d Outreach	24	
	11.2	Erosion and	Sediment Control/Storm Water Inspectors	24	
	11.3	ACHD Const	truction Inspectors	24	

11.4	Plan Reviewers	24
11.5	Third-Party Inspectors and Plan Reviewers	.24
11.6	Construction Operator Education	.24

APPENDICES

Appendix A.	Permits
	NPDES MS4 Phase I Permit
	NPDES MS4 Phase II Permit
	NPDES Construction General Permit
Appondix P	Policy

Appendix B. Policy

Policy 8300 Construction Site Discharge Control Program

Policy 6000 Permits and Construction

Appendix C. Adopted Erosion Control Design Manuals

Catalog of Stormwater Best Management Practices for Idaho Cities and Counties

Idaho Construction Site Erosion and Sediment Control Field Guide

Appendix D. Construction Dewatering Checklist

General Dewatering Permit

Dewater/Discharge Permit for Utility Vaults

Temporary Highway Use Permit Application

Small Project Erosion Control Plan

Erosion and Sediment Control Plan/SWPPP Review Checklist

Stormwater Construction Site Inspection Report

CSDC Prioritization Criteria

Appendix E. MS4 Contact List

- Appendix F. Spill Response Plan
- Appendix G. NOV and NOV Fact Sheet
- Appendix H. Fact Sheets

Commercial Landscaping Concrete Cuttings and Slurry Crawl Space and Groundwater Dewatering Mobile Business Sidewalk & Parking Lots Sidewalk Cleaning Sidewalk Construction and Concrete Waste Management Swimming Pools and Spas

Appendix I. Ordinances and Codes

Boise City - Construction Site Erosion Control Ordinance Chapter 8-17 Garden City – Erosion and Sediment Control Ordinance Chapter 15 Ada County Code

Appendix J. Procedure Guidance

ESC Plan Review Dewatering ESC Violations

1.0 INTRODUCTION

In compliance with the 1987 reauthorization of the Clean Water Act (CWA), the Environmental Protection Agency (EPA) was required to issue National Pollutant Discharge Elimination System (NPDES) permits to all point sources and stormwater dischargers. EPA issued a Phase I NPDES Municipal Separate Storm Sewer System (MS4) Permit (No. IDS-027561) to ACHD and five Co-Permittees within the Boise Area which include: Boise City, Garden City, Idaho Transportation Department District 3, Ada County Drainage District #3, and Boise State University in November 2000 and a second cycle permit in December 2012. The Permit requires the Co-Permittees to develop programs and regulations to control the quality of stormwater runoff from construction sites. The EPA issued a Phase II NPDES MS4 Permit (No IDS. 028185) in October 2002 to ACHD that includes the cities of Eagle, Meridian, and urbanized unincorporated Ada County. ACHD's Construction Site Discharge Control (CSDC) Program is implemented throughout Ada County due to complexities associated with implementing different standards based on permit boundaries. Countywide implementation provides consistent expectations for the regulated community wherever they may be working within Ada County in the public Right of Way (ROW). The Phase I and Phase II NPDES Permits are located in Appendix A.

To meet NPDES requirements, ACHD has adopted CSDC Program Policy Section 8300. Policy 8300 is used in conjunction with Policy 6000 – Permits and Inspection (Appendix B) to govern projects affecting ACHD's right-of-way. The CSDC Manual was developed to outline the procedures and support policies for implementation of the CSDC Program.

2.0 CSDC GOALS AND OBJECTIVES

The purpose of the CSDC Program is to meet NPDES MS4 permit requirements by reducing to the Maximum Extent Practicable (MEP) the discharge of pollutants from public and private construction activity within ACHD's jurisdiction. This program is implemented through ordinances, policies, manuals describing construction stormwater management and specifications, plan review and approval, construction site inspections, enforcement response policy for construction site management program, construction general permit violation referrals, and construction program education and training.

ACHD specifically regulates the following construction activities subject to the CSDC program:

- Temporary Highway Use Permits;
- Implementation of construction contracts;
- Activities performed by ACHD's Maintenance Department;
- Capital improvement projects, and
- Acceptance of new roads that are part of subdivisions.

Program specific objectives include:

- Review of erosion and sediment control and dewatering plans for ACHD projects or projects impacting the ROW;
- Prioritized inspection of construction sites and enforcement of control measures for permitted work;
- Investigating, tracking, and resolving complaints originating from construction sites in a timely and consistent manner;
- Assisting in construction site operators in correcting problems and violations of the policy;
- Coordination with other agencies in an efficient manner and avoid duplication;

- Review of dewatering plans for internal ACHD projects or contractor permitted work; and
- Review of license agreement applications for direct storm drain connections.

3.0 **DEFINITIONS**

Words and phrases as used in this section when capitalized are defined as follows:

"ACHD" or "Ada County Highway District" is a body politic and corporate of the state of Idaho, which has jurisdiction over and is specifically responsible for all county secondary and city Highways in Ada County.

"ACHD Spill Response Plan" a document providing ACHD Staff guidance on responsibilities, operating procedures, implementation, and training, associated with spill response in the ACHD right-of-way by ACHD staff or ACHD contractor.

"Adjoining Property" means property where erosion, sedimentation, or construction material impacts are occurring and the cause of impact is directly related to a Construction Activity or Land Disturbing Activity adjoining or upstream from such property.

"Approved ESC Plan" means either a Small Project ESC Plan or a Site-Specific ESC Plan approved by ACHD and attached to the Permit issued to Permittee.

"Best Management Practices (BMPs)" means physical, structural, and/or managerial practices that, when used alone or in combination, control activities including, but not limited to, site run-off, spillage and leaks, and waste disposal, and prevent or reduce the discharge of pollutants directly or indirectly to waters of the United States. BMPs may include activity schedules, prohibition of practices, design standards, educational activities, and treatment requirements.

"CGP SWPPP" means a Stormwater Pollution Prevention Plan that meets all the requirements outlined in the EPA issued Construction General Permit. This permit regulates construction site stormwater discharges.

"Co-Permittees" mean Boise City, Garden City, Idaho Transportation Department District 3, Ada County Drainage District #3, Boise State University, City of Eagle, City of Meridian, and urbanized unincorporated Ada County.

"Construction Activity" means activities related to a construction project, including, but not limited to, Land Disturbing Activities, crushing, screening, and hauling of soil and rock, explosive and abrasive blasting, implosion, handling of building materials, concrete, stone and tile cutting, operation of motorized and non-motorized machinery, operation of motor vehicles on the site, staging areas, parking areas, storage areas, or any access routes to the construction site.

"Dewatering" means the discharge of surplus water from a Land Disturbing Activity or Construction Activity into ACHD storm drain system or MS4.

"General Dewatering" means simple potable or uncontaminated water flushing's such as fire hydrants, where minimal BMP's are necessary to minimize impacts to the storm water system.

"Construction Dewater" means dewatering required because of construction and land disturbing activities.

"Environmentally Sensitive Sites" means any construction or building site with one or more of the following characteristics:

- All right-of-way work in areas where the predevelopment grades are greater than 10 percent;
- Ground disturbance of natural vegetative buffer within 50 feet of a wetland and or water body;
- Land Disturbing Activity or dewatering activities near or on known sites contaminated by listed Pollutants or listed by the federal Environmental Protection Agency or the Idaho State Department of Environmental Quality as a "Superfund" or a "brownfield" or site of concern as those terms are used by the governing agencies.

"Erosion and Sediment Control (ESC) Plan" means a plan, either a "Small Project ESC Plan" or a "Site Specific ESC Plan" containing provisions, at a minimum, addressing Material containment, Pollutant spill prevention and setting forth BMPs to be utilized during Construction Activity or Land Disturbing Activity.

"ESC Specialist" or "CSDC Staff" means erosion and sediment control personal or consultant who provides technical support and assistance to ACHD Staff and permit holders.

"Grading" means excavating, filling (including hydraulic fill) or stockpiling of earth material or any combination thereof, including the land in its excavated or filled condition.

"Highways" or "Highway" shall have the meaning as set forth in Idaho Code section 40- 109(5), together with all public rights-of-way as defined in Idaho Code section 40-117(6), as those code sections may be amended from time to time, which highways are under the jurisdiction of ACHD, and as are now existing and as the same may be laid out, widened, relocated, acquired and vacated or otherwise transferred in the future.

"Land Disturbing Activity" means the use of any land by any person that results in a change in the natural cover or topography that may cause erosion and contributes to or alters the quality and or quantity of stormwater runoff.

"Landscaping" means mowing, seeding, sodding and other landscaping activities that are not Land Disturbing Activities.

"Material" means soils, sand, gravel, clay, or any other organic or inorganic material that is not municipal, refuse, or defined elsewhere in this policy.

"Maximum Extent Practicable" (MEP) shall mean the technology-based discharge standard for municipal separate storm sewer systems established by the Federal Water Pollution Control Act, as Amended by the Clean Water Act of 1977, particularly §402(p).

"MS4" means a municipal separate storm sewer system as defined in 40 C.F.R. 122.26(b)(8), as updated and amended from time to time, that is under the jurisdiction of either ACHD or a Co-Permittee of a current NPDES Permit and any related structural or nonstructural connections.

"NPDES Permit" means National Pollutant Discharge Elimination System Permit issued by the Environmental Protection Agency.

"Permittee" shall mean an Applicant to whom a Temporary Highway Use Permit is issued.

"Person" shall have the meaning set forth in Idaho Code Section 40-117(1).

"Plan Designer" means an individual who has received certification from the City of Boise (https://pds.cityofboise.org/building/bld/erosion/training/) or another general purpose government entity who is a Co-Permittee with ACHD in a NPDES Permit and whose certification is derived either through successful completion of a Plan Designer Certification program or demonstrated competence.

"Policy" means the Construction Site Discharge Control Program Policy.

"Pollutant" means objects including, but not limited to, dredged soils, solid waste, incinerate residue, sewage, garbage, sewage sludge, munitions, chemical waste, biological materials, radioactive materials, wrecked or discarded equipment, rock, sand, silt, clay, dust, cellar dirt, industrial, municipal and agricultural waste, gases entrained in water, paints, oil, and other automotive fluids, soil, rubbish, trash, debris, refuse, heavy metals, hazardous waste, road sanding materials, yard waste from commercial landscaping operations, animal waste, materials that result from the process of constructing a building or structure, and nauseous or offensive matter of any kind, which, when discharged to water, cause or contribute to water pollution.

"Responsible Person" means any Person with operational control over site activities and day-to-day operational control of Plan requirements and Permit conditions at the site of any Construction Activity or Land Disturbing Activity who has received certification from the City of Boise or another general-purpose government entity who is a Co-Permittee with ACHD in a NPDES Permit.

"Sediment" means solid material, either mineral or organic, that is or has been in suspension or is being moved from its site of origin due to erosion.

"Sedimentation" means the process or action of depositing sediment.

"Site Specific Erosion and Sediment Control Plan" or "Site Specific Plan" means an Erosion and Sediment Control Plan required for land disturbing activities less than an acre for a specific location wherein Construction Activity is to take place and is not eligible for consideration and approval under a Small Project ESC Plan. The Site-Specific Plan shall include such standard requirements as may from time to time be adopted by ACHD.

"Small Project Erosion and Sediment Control Plan" or "Small Project Plan" means an Erosion and Sediment Control (ESC) Plan required under this section for routine activities (e.g., maintenance) disturbing an area of less than 600 square feet, with no more than 50 feet of lineal trench in the right-of-way, which does not impact any Environmentally Sensitive Sites. The Small Project Plan shall include such standard requirements as may from time to time be adopted by ACHD.

"Temporary Highway Use Permit" shall mean a permit issued by ACHD pursuant to the ACHD Policy Manual to any Person who desires to perform any work on a Highway, or encroaches on a Highway unless the area under ACHD jurisdiction is nominal and adjacent to property under the jurisdiction, authority and control of a general purpose government entity who is a Co-Permittee with ACHD in a NPDES Permit and requires an Erosion and Sediment Control Plan pursuant to a Construction Site Discharge Control Program for the adjacent property.

"Variance" means a modification of the requirements of the Policy based on hardship.

"Waiver" means being excused from compliance with this Policy by ACHD for a specific Construction Activity or Land Disturbing Activity.

4.0 CONSTRUCTION SITE DISCHARGE CONTROL PROGRAM

ACHD's NPDES Permits authorize the discharge of storm water associated with construction activity (as defined in 40 CFR 122.26(b) (14) (x) and (b) (15)), from the MS4, only when such discharges are authorized under an appropriate NPDES permit. ACHD's Construction Site Discharge Control Program was developed to meet the requirements of Construction Site Runoff Control Program section of the NPDES permits.

5.0 CONSTRUCTION RUNOFF ORDINANCES/REGULATORY MECHANISMS

5.1 Applicable Policies

ACHD manages the CSDC Program through both policy Section 8300 – Construction Discharge Control Program and policy Section 6000 – Permits and Inspection.

5.2 Application of Policies

Policy Section 8300 applies to <u>all</u> construction activity and <u>all</u> land disturbing activity, within the right of way under the jurisdiction of ACHD, within the corporate limits of Ada County. Through policy Section 6000, specifically policy Section 6007, ACHD monitors all construction and maintenance activities under ACHD jurisdiction and in subdivision developments through a comprehensive construction contract administration process.

5.3 Joint Inspection /Enforcement

ACHD implements the Construction Site Discharge Control Program throughout Ada County; however, enforcement capabilities and contacts vary depending on jurisdiction. ACHD's Erosion Sediment Control (ESC) Specialist coordinates with other entities to address ESC issues when needed.

To meet NPDES Phase I MS4 Permit requirements, the City of Boise and Garden City have implemented their own Erosion and Sediment Control Programs within their respective corporate city limits. Each city has adopted a Construction Site Erosion Control Ordinance. Other cities within Ada County such as Meridian, Eagle, Star, Kuna, and the remaining unincorporated Ada County, do not have specific ESC ordinances. Instead, these areas that are covered under the NPDES MS4 Phase II Permit rely on Code Enforcement and nuisance ordinances to address ESC problems. Appendix E contains an MS4 Contact List that includes government agencies, irrigation districts and sewer districts contact information that is useful in addressing ESC issues.

6.0 CONSTRUCTION STORMWATER MANAGEMENT

6.1 Adopted Manuals/Documents

ACHD has adopted the Idaho Department of Environmental Quality's *Catalog of Stormwater Best Management Practices for Idaho Cities and Counties* for erosion and sediment control practices. Additionally, the *Idaho Construction Site Erosion and Sediment Control field guide* is a quick reference for commonly used erosion and sediment control practices. This guide is distributed to persons involved in land disturbing activities i.e. homebuilders, general contractors, planners, designers, and inspectors. These documents are available in Appendix C.

6.2 Erosion and Sediment Control Requirements

An ESC Plan must be prepared and signed by a Plan Designer in a format set forth by ACHD. It shall describe the proposed Construction Activity or Land Disturbing Activity and the proposed Best Management Practices (BMPs) to be employed to prevent and control water quality impacts during and after construction. BMPs, as applicable to the site, shall be provided for control of sediment, flow conveyance, tracking, non-storm water management, waste management, and final site stabilization. Provisions for maintenance, inspection, and repair of controls and protection of Adjoining Property, as well as Material containment and Pollutant spill prevention must also be included as applicable.

6.3 Dewatering Requirements

Dewatering is separated into three types: construction dewatering, general dewatering, and utility vault dewatering. The following is a description of each activity and associated requirements.

6.31 Construction Dewatering

A construction dewatering permit requires a Dewatering Plan that consists of a site-specific narrative and map and must address the discharge of uncontaminated water into the ACHD storm drain system. Policy 6007.12.8 outlines the specific required elements of a Dewatering Plan. If construction dewatering continues for longer than 30 days, analytical monitoring is required for pollutants of concern and turbidity. Appendix D includes the Construction Dewatering Review Checklist.

6.32 General Dewatering

General dewatering is typically simple potable water flushing activities such as fire hydrants, where minimal Best Management Practices (BMPs) are necessary to prevent pollutants from entering the storm water system. General dewatering permits usually cover many locations throughout Ada County where the setup and procedures are the same for all locations. A General Dewatering Permit (Appendix D) consists of a list of requirements the permit holder agrees to meet by signing the form.

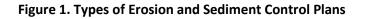
6.33 Utility Vault Dewatering

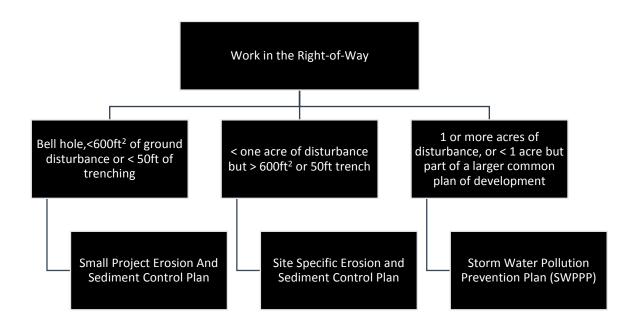
The dewatering permit for utility vaults allows surplus water from utility vaults to be discharged into ACHD's storm drain system. Laboratory analytical results from a minimum of three representative samples must be submitted to ACHD for review, prior to permit issuance. The analytical parameters and method required for submittal and list of BMPs are included on the Dewater/Discharge Permit for Utility Vaults, available in Appendix D.

- 6.34 Exempted Activities Allowable Non-Stormwater Discharges Non-stormwater discharges do not consist entirely of stormwater. The NPDES Permits allow some non-stormwater discharges that include:
 - Water line flushing or other potable water sources
 - Landscape irrigation and lawn water
 - Rising groundwater
 - Uncontaminated pumped groundwater
 - Foundation and footing drains
 - Water from crawl space pumps
 - Residential air condition condensation
 - Springs
 - Individual residential car washes
 - Flows from riparian habitats and wetlands
 - Flows from firefighting activities and training
 - Building wash down
 - Street sweeping

7.0 PERMITS, PLANS AND ADMINISTRATION

7.1 Types of Permits


A permit is required to perform any work within ACHD's public ROW within Ada County.


- Temporary Highway Use Permit Permits issued by ACHD pursuant to Section 6008 of ACHD Policy Manual to any person who desires to perform any work on a highway, or encroaches on a highway. Appendix D of this document includes a copy of a Temporary Highway Use Permit application as reference. A Temporary Highway Use Permit is also issued for work that is considered routine activities, such as maintenance, disturbing an area of less than 600 square feet with no more than 50 feet of lineal trench in the right-of-way, which does not impact any Environmentally Sensitive Sites.
- Dewatering Permit- Permits issued by ACHD that allows the holder to discharge uncontaminated water (both stormwater and non-stormwater) into ACHD's storm drain system provided that the discharges are not a source of pollution to waters of the United States and the type of water discharged is authorized and remains at all times compliant with ACHD's NPDES Permits. For more description of the types of dewatering permits and requirements see section 6.3.
- Construction General Permit (CGP) NPDES Permit- A permit issued by EPA Region 10 that is currently required for construction sites equal to or greater than one acre or for projects part of larger common plan of development that discharge or have the potential to discharge to water of the U.S. (Appendix A). Application for these permits is made directly to EPA Region 10.

7.2 Types of Erosion and Sediment Control Plans

An Erosion and Sediment Control Plan is required as part of ACHD's Temporary Highway Use Permit and before beginning any construction activity in the ACHD ROW unless it is

specifically exempted in ACHD Policy 8300. Landscaping performed by any person under license to ACHD is exempted so long as pollutants or materials will not enter the storm drain system. The Temporary Highway Use Permit holder is responsible for ensuring his contractor and/or subcontractor and all other persons entering the site abide by the conditions of the permit. There are three different types of ESC plans ACHD accepts outlined in Figure 1 below.

- Small Project Erosion and Sediment Control Plan An ESC plan for work that disturbs less than 600 square feet with no more than 50 feet of lineal trench in the right-of-way, and does not impact any Environmentally Sensitive Sites. These plans do not require review by an ESC Specialist. A Small Project ESC Plan (Appendix D) consists of a list of required BMPs that covers the work authorized by a valid Temporary Highway Use Permit. The Small Project ESC Plan is signed by the Temporary Highway Use Permit holder stating all requirements of the ESC plan will be met.
- Site Specific Erosion and Sediment Control Plan An ESC plan required for a specific location where construction activity is to take place with less than one acre of disturbance, greater than 600 square feet, or 50 feet of lineal trench. The specific requirements of the plan are included in Appendix D, ESC Plan/SWPPP Review Checklist. Site Specific ESC Plans require review by an ESC specialist and are a requirement of a Temporary Highway Use Permit.
- Storm Water Pollution Prevention Plan (SWPPP) An ESC plan for construction sites that disturb one or more acres or are a part of a larger common plan over one acre of disturbance. The SWPPP identifies potential sources of storm water pollution at a construction site and describes storm water controls to reduce or

eliminate pollutants in storm water discharges, and identifies procedures the contractor will implement to comply with the terms and conditions of the CGP. A SWPPP meets ACHD's CSDC program requirements for a Site Specific ESC Plan and may be submitted in lieu of a Site Specific ESC Plan.

7.3 Permit Application Process and Submittals

The Permit application process is addressed by three separate processes, depending on project type (Zone, Subdivision, or Capital project) described below. ACHD has designated Inspectors for each project type. Section 8.1 provides specific information on roles and responsibilities.

ESC/SWPPP plans can be assigned to the ESC Specialist through TRAKiT (a database for tracking permits, inspections and violations), emailed, delivered digitally on a CD, or provided on paper copies. Plans that are emailed, delivered digitally on a CD, or provided by paper copies will be scanned then loaded onto the TRAKiT System

7.31 Zone

Any work in the ROW will be managed by the Construction desk. Plans submitted to the Construction Administrative Specialist will be assigned to an ESC Specialist though TRAKiT for review and approval.

7.32 Subdivision

Any development with newly constructed public roads will be managed by the Planning and Development Services desk. Plans submitted to the Planning and Development Services desk will be assigned to an ESC Specialist though TRAKiT for review and approval.

7.33 Capital Projects

Capital projects are projects where funding comes from the state or federal level. Plans for Capital projects are received through the Capital Projects Construction Administrator and have their own paper-based system that is kept with the Capital Projects desk, not associated with TRAKiT. The administrator will deliver three paper copies to the ESC Specialist which then will be reviewed for completeness using the CSDC review checklist. When plan review is completed and approved, the project name and acreage of the project is entered into a spreadsheet named "Plan Reviews.xlsm" and is kept in the current ESC Specialists staff folder on the S drive.

7.4 Permit Revocation

Temporary Highway Use Permits may be suspended or revoked if the construction activity is not in full compliance with ACHD policies. If a Temporary Highway Use Permit is suspended, revoked, or has expired, all work covered by the Temporary Highway Use Permit shall cease until a new permit is issued. A detailed description of the revocation process is defined in Policy 6000 Section 6007.21.2 - Modification or Revocation of Permit.

7.5 Variance and Waivers

ACHD may grant a variance or waiver based on Policy 8300. Requests for a variance or waiver must be in writing, set forth by factual basis to support the request, and must comply with the goals of the NPDES MS4 permits. ACHD may place conditions on a variance or waiver based on the topography of the construction site, the planned method of construction, or any other conditions necessary for the protection of the storm drain system. These are unusual & should be utilized sparingly.

7.51 Variances

Variances are only granted upon showing undue hardship because of characteristics of the site and the variance request is not in conflict with the public interest.

- 7.52 Waivers
 - 7.522 Small Construction Waiver/Low Erosivity Waivers (CGP) EPA's stormwater regulations allow NPDES permitting authorities to waive NPDES permitting requirements for stormwater discharges from small construction sites if:
 - The construction site disturbs less than five acres, but more than one acre, and
 - The rainfall erosivity factor ("R" in the revised universal soil loss equation, or RUSLE value) is less than five during the period of construction activity.

If a LEW waiver is granted, the developer is no longer required to have a full SWPPP; however, ACHD's requirements for a sitespecific ESC still apply.

7.523 ESC Plan Waivers

A site-specific ESC Plan Waiver is available to bonded contractors awarded ACHD contracts to perform work in the ROW. The types of projects that may be eligible for this waiver include:

- Crackseals
- Thin Lift Overlays with rotomill and without rotomill
- Miscellaneous concrete such as replacement of broken sidewalk and curb
- Miscellaneous Pedestrian Ramps including installation of new ramps and replacement of old ramps

8.0 PLAN REVIEW, APPROVALS, AND INSPECTIONS

8.1 Roles and Responsibilities

The roles and responsibilities associated with ESC plan review, approval and inspection of construction sites vary based on the project type and roles within ACHD. Descriptions of the work ACHD staff perform related to the CSDC Program and the roles and responsibilities they fulfill are described below.

• ESC Specialist - ESC Specialists perform implementation activities required by Policy 8300 including ESC plan review, approval, inspection, inspection support,

permit tracking, record keeping, and enforcement. Zone Inspectors and Subdivision Inspectors will also carry out inspection and enforcement activities within their areas of responsibility. The ESC Specialist provides technical support and assistance to ACHD Staff, Temporary Highway Use Permit holders, and the general public.

- ACHD Project Inspectors are responsible for oversight and implementation of the SWPPP by contractors on ACHD Capital projects. Project Inspectors conduct site visits and perform testing of roads. While doing these inspections they also inspect the sites for stormwater compliance. Depending on the severity of the findings, ESC problems can be addressed by the inspector, contractor, or forwarded to the ESC Specialist to address.
- Subdivision inspectors are responsible for inspecting new subdivision construction where the roads being built will be accepted by ACHD at the end of the project. Subdivision Inspectors conduct site visits and do testing of roads, as well as make observations for stormwater compliance. Depending on the severity of the findings the problems can either be addressed by the Inspectors, Responsible Person, or forwarded to ESC Specialist.
- Zone Inspectors are responsible for inspecting all Temporary Highway Use Permits in the Right-of-Way in designated sections of Ada County. They conduct site checks and do testing to ensure all rules are being followed and roads or sidewalks are being replaced correctly. While doing these inspections they also inspect the sites for stormwater compliance. Depending on the severity of the findings the problems can either be addressed by the Inspectors, Responsible Person, or forwarded to ESC Specialist to address.

8.2 Plan Requirements

All ESC Plans must be prepared and signed by a Plan Designer in a format set forth by ACHD. The plan must describe the proposed Construction Activity or Land Disturbing Activity and the proposed Best Management Practices (BMPs) to be employed to prevent and control water quality impacts during and after construction. BMPs, as applicable to the site, shall be provided for control of sediment, flow conveyance, tracking, non-storm water management, waste management, final site stabilization, maintenance, inspection, and repair of controls and protection of Adjoining Property. Provisions for Material containment as well as Pollutant spill prevention must also be included.

Required Elements of ESC Plan Include:

- A site drawing of existing and proposed conditions including:
- North arrow, scale, date
- Excavations, grades, paved areas, pond elevations, structures and utilities
- Property boundaries and lot lines
- Drainage easements
- Benchmark
- Surface water and wetlands, drainage patterns, and watershed boundaries, if present
- Location of existing vegetative cover

- Location and types of BMPs
- Location and schedule of soil disturbance
- A BMP inspection and maintenance schedule
- Final stabilization measures

The ESC Specialist will use the Erosion and Sediment Control Plan/SWPPP Review Checklist, Appendix D, to ensure all required elements have been included in the ESC plan. Plan deficiencies will be noted on the form and communicated to the Responsible Person via email or phone communication.

- 8.3 Routing, Plan Review, and Inspection Procedures by Project Type
 - 8.31 Zone

Any work in the ROW will be managed by the Construction desk.

8.311 Routing

ESC Plans submitted to the Construction Administrative Specialist will be assigned to an ESC Specialist though TRAKiT for review and approval.

8.312 Plan Review and Approval Process

Each Zone ESC plan must meet the requirements outlined in Section 8.2. The ESC Specialist completes the review of the ESC plan and uses the CSDC Inspection Prioritization Criteria to determine a total numerical value from 0-10 that determines how frequently a site will be inspected. This process is outlined in Appendix D. The ESC Specialist enters the prioritization number and attaches the plan review checklist into TRAKiT for all permits. The ESC Specialist uses TRAKiT to document and record all aspects of the plan routing, review, and approval process. A Procedure Guidance (PG) detailing the Zone plan routing, review and approval process is available in Appendix J.

8.313 Inspection

ACHD has the right to inspect any ACHD-permitted construction site or any construction site that requires a Temporary Highway Use Permit or Dewatering Permit.

Zone Inspectors visit sites as time allows, typically two times during the period of construction. Zone Inspectors will make general site observations to determine if ESC problems are occurring. If Zone inspectors see ESC problems that need corrected and need assistance, the ESC Specialist will be contacted.

The ESC Specialist schedules zone permit inspections based on the frequency determined by the Inspection Prioritization Criteria described in section 8.312.The ESC Specialist will also conduct inspections based on complaints received, referrals, and problems observed, when warranted.

8.32 Subdivision

Any development with newly constructed public roads will be managed by the Planning and Development Services desk.

8.321 Routing

Plans submitted to the Planning and Development Services desk will be assigned to an ESC Specialist though TRAKiT for review and approval. Digital Plans too large for submitting over email can be submitted to ACHD's Dropbox FileShare. The procedures for communication between the ESC Specialist and the ROWDS Administrative Assistant to verify if a subdivision plan set has been accepted and setup for review is included in the PG detailing subdivision plan routing, review, and approval process in Appendix J.

8.322 Plan Review and Approval Process

Each Subdivision ESC/SWPPP must meet the requirements outlined in Section 8.2. The ESC Specialist completes the review of the ESC plan and uses the CSDC Inspection Prioritization Criteria to determine a total numerical value from 0-10 that determines how frequently a site will be inspected. This process is outlined in Appendix D. The ESC Specialist enters the prioritization number and attaches the plan review checklist into TRAKiT for all permits. The ESC Specialist uses TRAKiT to document and record all aspects of the plan review and approval process.

8.323 Inspection

ACHD has the right to inspect any ACHD-permitted construction site or any construction site that is requiring a Temporary Highway Use Permit or Dewatering Permit.

Subdivision Inspectors make ESC observations during subdivision inspections. All inspections are initiated by the contractor and dictated by work being schedules on the project site. Not all projects follow the timeline given on the permit. Issues may arise that accelerate or halt construction. If Subdivision Inspectors see ESC problems needing assistance, inspectors will contact an ESC specialist.

The ESC Specialist schedules subdivision permit inspections based on the frequency determined by Inspection Prioritization Criteria described in section 8.312. Subdivisions often require more frequent inspections due to the length of time construction is occurring and large area of disturbance. The ESC Specialist will also conduct inspections based on complaints received, referrals, and problems observed, when warranted.

- 8.33 Capital Projects
 - 8.331 Routing

Capital Projects do not use the TRAKiT system. Instead, paper copies of ESC/SWPPP's are submitted to the Capital Projects Construction Administrator from the Contractor. The Administrator delivers three paper copies to the ESC Specialist for review. Once approved and stamped by the ESC Specialist, one copy is retained by Construction Administration, one copy is for the contractor, and one copy remains on the construction site in the job trailer. A Procedure Guidance (PG) detailing the Capital Projects plan routing, review, and approval process is available in Appendix J.

8.332 Plan Review and Approval Process

Each Capital Project ESC/SWPPP plan must meet the requirements outlined in Section 8.2. A Construction Site Discharge Control Prioritization Score will be assigned by the ESC Specialist during plan review based on the criteria in Appendix D. The SWPPP is reviewed by ESC Specialist to ensure that it consists of all required SWPPP elements. If additions/corrections are to be made the ESC Specialist will directly contact the Contractor. When the ESC/SWPPP has met all of ACHD's requirements all three copies are stamped for approval and the CSDC Prioritization Score is handwritten on the front cover of the plans. The ESC Specialist tracks all of the reviews by priority score and disturbed acres electronically at S:\STORMWATER\Staff\ Plan_Reviews.xlsm. The paper copies are returned back to the Construction Administrator.

8.333 Inspection

Capital Projects Inspectors conduct stormwater inspections weekly and after 0.25" rainfall events, in conjunction with the contractor. Currently, the Inspection Prioritization Score is not used by Capital Projects to determine frequency of inspections. The Inspector submits the Stormwater Construction Site Inspection Report (located in Appendix D) to the Capital Projects Construction Supervisor who signs and delivers the inspection reports to the Construction Administrator. The Construction Administrator retains a copy of the inspection report in the construction project folder and provides the original to the contractor for the official SWPPP binder.

The ESC Specialist typically does not inspect Capital Project sites. Most often if complaint warrants an inspection, the ESC Specialist will contact the Project Inspector. The ESC Specialist will assist as requested.

8.334 NOI/NOT/SWPPP Requirements

The Construction General Permit (CGP) outlines a set of provisions construction operators must follow to comply with the requirements of the NPDES stormwater regulations. The CGP covers any site one acre and above that discharge to impaired waters of the U.S, including smaller sites that are part of a larger common plan of development or sale. Construction projects that disturb one or more acres are subject to three major requirements. The contractor must:

- Submit a permit application or Electronic Notice of Intent (eNOI) prior to the start of construction.
- Develop, submit, and fully implement an approved erosion and sediment control plan or approved Storm Water Pollution Prevention Plan (SWPPP) prior to initiating any on-site earth disturbing activities. This plan specifies the measures that will be put in place to prevent and/or control erosion and sediment run-off.
- Submit a Notice of Termination (NOT) when the following criteria have been met:
 - Final stabilization of the site has been achieved as defined in the permit;
 - All temporary erosion and sediment controls have been removed; and
 - No potential remains for construction-related sediment discharge to surface waters.

The Contractor must apply for coverage under the CGP and ensure and document that discharges are not likely to jeopardize the continued existence of any federally listed endangered or threatened species or result in the adverse modification or destruction of habitat that is federallydesignated as critical under the Endangered Species Act (ESA), or Historical Landmarks through the Idaho State Historical Society (SHPO).

The contractor must also determine whether an EPA approved or established TMDL exists that specifically addresses its discharge and if so, take necessary actions to be consistent with the assumptions and requirements of the approved TMDL. To make this determination, the operator will need to: (1) determine the water body the construction site discharges into and has the potential to impact; (2) identify if there is an approved TMDL for that water body; (3) determine if that TMDL includes specific requirements (e.g., waste load allocation or load allocation) applicable to its construction site; and (4) if so incorporate TMDL requirements into the SWPPP and implement necessary steps to comply.

A SWPPP is prepared for construction staff, contractors, and regulators. The purpose of the SWPPP is to identify potential

pollutant sources that may affect the quality of discharges associated with construction activity, to identify nonstormwater discharges, and to design the use and placement of BMPs to effectively prohibit the entry of pollutants from the construction site into the storm drain system during construction. Erosion and sediment source control BMPs must be considered for both active and inactive (previously disturbed) construction areas. The plan is designed to show the contractor when, how, and where physical BMPs will be installed. It also demonstrates to the regulators what methods will be used to achieve compliance with water quality laws. A template is available online for informational purposes to assist contractors in preparing a SWPPP. The template was designed using potential narrative discussion and listing BMPs. The template does not cover every conceivable situation that may be applicable to the project. Available technical resources should be consulted as needed to address unique conditions.

The two major parts of a SWPPP include the narrative section and Site-Specific Maps. The plan sheets are the most important part of the erosion control plan. All temporary and permanent erosion control features shall be shown on the contract plans and, as necessary, specified in the contract provisions. In addition to the BMPs, plan sheets shall show the clearing and grubbing limits, cut and fill slope lines, topography, impervious surfaces, drainage features, environmentally sensitive areas and associated buffer zones, receiving waters, and stormwater treatment areas. The plan sheets will be used by the contractor to install the physical BMPs, and by the regulators in evaluating the site for compliance.

Prior to the commencement of any clearing, grading, or excavation of any project subject to the CGP, a SWPPP must be prepared, approved and implemented.

8.4 ESC Inspection Procedures

ESC Specialist inspections are conducted in response to observations by local government personnel, citizens' complaints, request by Project Inspectors, and scheduled based on the CSDC Inspection Prioritization Criteria. All inspections where deficiencies are found are entered into TRAKiT as well as corrective action and follow up inspection. Deficiencies are documented and communicated to the Responsible Person. In accordance with the NPDES Permit (II.B.d.i.), Inspections of construction sites must include, but not be limited to:

- As applicable, a check for coverage under the CGP by reviewing any authorization letter or Notice of Intent (NOI) during initial inspections;
- Review applicable ESC plan/SWPPP to determine if control measures have been installed, implemented, and maintained as approved;

- Assessment of compliance with the Co-Permittees' ordinances/requirements related to storm water runoff, including the implementation and maintenance of required control measures;
- Assessment of the appropriateness of planned control measures and their effectiveness;
- Visual observation of non-storm water discharges, potential illicit connections, and potential discharge of pollutants in storm water runoff;
- Education or instruction related to storm water pollution prevention practices, as needed or appropriate; and
- A written or electronic inspection report.

Situations will arise where earthwork is being done for a project for which no ESC Plan has been submitted and no Temporary Highway Use Permit has been obtained. These situations should be reported to the Construction Services Desk: 208-387-6280 or to the corresponding Inspector.

If an Inspector observes a problem, a deviation from the ESC Plan, or a violation of the Temporary Highway Use Permit, the Responsible Person listed on the permit should be contacted. If that individual is not available on the site, the person in charge at that time should be made aware of the situation and given a time frame for correcting all problems as listed in the Compliance Schedule, Table 1, below.

COMPLIANCE SCHEDULE							
VIOLATION	COMPLIANCE DEADLINE						
Drop inlet protection	24 hours						
Spill Containment	Immediately						
Dust Abatement	End of business						
Construction Entrance/ Access Control	48 hours						
Track out	End of business						
Slope Stabilization	48-72 hours (size dependent)						
Erosion Control	48 hours						
Sediment Control	24 hours						

TABLE 1 COMPLIANCE SCHEDULE

Deficiencies should be documented with a Notice of Violation. The Notice of Violation (NOV) and NOV Fact Sheet (Appendix G) should be given directly to the Responsible Person. If the Responsible Person (RP) is not on site, the NOV should be posted at the construction entrance with the Notice of Intent (NOI) and SWPPP. The RP should be contacted by telephone, if possible. An entry should be made in TRAKIT for the inspection, NOV, compliance deadline, and subsequent compliance/ noncompliance.

If the Plan deviation was a result of unanticipated conditions, such as a change in the construction schedule, failure of a BMP, or unexpected site conditions, the Inspector and RP may agree to modifications at that time. Such changes should be annotated on the Permittee's plan by the RP or their agent. ACHD inspectors should not modify Permittee's plans unless ACHD is the owner/operator. Other documentation may be collected during an inspection in the form of photographs or copies of the site plan. Collect documentation proportionate to the potential seriousness of the violations observed and compliance history. All violations and verbal warning are recorded in TRAKiT. Photos are stored at S:\STORMWATER\Stormwater Quality Pictures\Erosion and Sediment.

When a construction site is found to be in non-compliance during a follow-up inspection conducted within the timeframe identified, a second Notice of Violation should be issued and the RP contacted. Section 9, Enforcement, describes the escalating enforcement response policy and factors in selecting the appropriate enforcement response. Policy 8300 allows for a stop work order and permit revocation. Prior to issuing a stop Work Order the ESC Specialist should coordinate with development services staff, zone inspection staff, or other senior staff who have been involved with the development or construction site.

8.5 Reviewer/Inspector Qualifications

ESC Specialist and ACHD Inspectors are trained and knowledgeable in erosion and sediment control and have completed their Responsible Person and/or Plan Designer training through Boise City. See section 11.0 Construction Program Education and Training for more information. ACHD is required to use qualified individuals, knowledgeable in the technical review of ESC plans/SWPPPs, to conduct such reviews (NPDES Phase I Permit II.B.1.c.iii and g).

9.0 ENFORCEMENT

9.1 Enforcement Response Policy (ERP)

Enforcement is integral for program success and required by the Phase I NPDES Permit. The Phase I NPDES Permit requires Co-Permittees to develop and implement a written escalating enforcement response policy (ERP) appropriate to their organization. The ERP must address repeat violations through progressively stricter responses as needed to achieve compliance. Each ERP must describe how the Co-Permittee will implement the following types of enforcement response, as available, based on the type of violation:

- Verbal Warnings: Verbal warnings are primarily consultative. At a minimum, verbal warnings must specify the nature of violation and required corrective action.
- Written Notices: Written notices must stipulate the nature of the violation and the required corrective action, with deadlines for taking such action.
- Escalated Enforcement Measures: The organization must have the legal ability to employ any combination of enforcement actions below (or their functional equivalent):
- The ERP must indicate when to initiate a Stop Work Order. Stop work orders must require that construction activities be halted, except for those activities directed at cleaning up, abating discharge, and installing appropriate control measures.

Co-Permittees must also include use of other escalating measures under local or state legal authorities, such as assessing monetary penalties. The CSDC ERP is implemented through policy Section 6007.

9.2 Factors in Selecting the Appropriate Enforcement Response

The basic approach in making a violation determination involves using the language in the policy and/or permit condition as a guide to determine whether the information collected demonstrates that a violation has occurred. The inspector should, at this point, have a good understanding of what regulatory requirement was violated, and how. The Notice of Violation (NOV) is used initially to inform a contractor of noncompliance after an initial verbal warning. Deadlines for compliance are provided in sections 9.31-9.33. Compliance determinations must be based solely on the factual information collected and professional judgment. A determination of the appropriate enforcement action is based on the nature and severity of the violation and other relevant factors. These factors must be considered when a violation has occurred to promote consistent and timely use of enforcement remedies. Factors that will determine the appropriate enforcement action include:

Factors relating to impact

- Magnitude of the violation;
- Imminent endangerment to human health/welfare or to the environment;
- Duration of the violation;
- Effect of the violation on the receiving water;
- Whether circumstances beyond the control of the responsible party exist, such as unpredictable accidents or unexpected Acts of Nature.
- Causes a violation of the NPDES permit;
- Has a toxic effect on the aquatic life uses of the receiving water body; and
- Duration of non-compliance.

Factors relating to responsible party

- Compliance history of the responsible party;
- Economic benefit realized by the responsible party while operating in noncompliance with the requirements;
- Chronic violations by responsible party;
- Good faith of the responsible party; and
- Honest intention to remedy noncompliance coupled with actions that support intention.

9.3 Enforcement Options

The types of administrative enforcement options for the CSDC program include:

- Inspector-initiated corrective action;
- A verbal warning, with a deadline for correction. Verbal warnings should be documented in TRAKiT;
- A Notice of Violation, with specifications of corrections, a deadline, and a warning about the consequences of noncompliance. A NOV Fact sheet should be provided with all first time offenders. The NOV should also be logged into TRAKIT; and
- Revoking the Temporary Use Permit which is comparable to a stop-work order, with a warning about the consequences of noncompliance.

Section 8300 of ACHD's Policy Manual provides, "In the event the provisions set forth under the Approved Site Plan have not been met, the Responsible Person will be given a written notice of the violation and a time period in which to correct the deficiencies causing the violation. If the corrections have not been made within the designated time period or additional violations occur, ACHD may issue a stop work order". The Notice of Violation (NOV) notifies the Permittee or the designated Responsible Person of the problem. The notification document also describes the required corrective action and provides a time period in which the corrective action must be completed. A NOV does not require a signature from the Responsible Person.

If the corrective action is not completed in the specified time period, the Temporary Use Permit may be revoked. If the corrections are not made within the time period or additional violations have occurred, ACHD may issue a stop work order. The policy further provides that ACHD may issue a stop work order for failure to comply with the Approved Site Plan, independently of any other violations that may have occurred under the Temporary Highway Use Permit.

ACHD can initiate corrective action and assess the actual and administrative costs against the permit holder. The violator may be required to pay all costs of investigation, administrative overhead, out-of-pocket expenses, the cost of administrative hearings, the costs of suit, and reasonable attorney's fees. If no reasonable effort at corrective action is occurring, or if the situation is an emergency, the inspector may initiate corrective action and assess the actual and administrative costs against the permit holder.

Additionally, with coordination of permit staff, the permit holder's bond can be sought or revoked to pay for cleanup costs and to prevent the contractor from starting new jobs.

Table 2 lists the appropriate enforcement response initiated by the ESC Specialist based on the type of violation.

Enforcement Responses			
Type of Violation	Response		
Minor violation - relatively minor or	Phone call or site visit with verbal		
infrequent	warning		
Violation of permit condition, plan, or	Notice of Violation		
standards			
Failure to correct problem or repeated	Roveko Temperany Uso Permit		
violations	Revoke Temporary Use Permit		
Significant Violation	Revoke Temporary Use Permit		
Emergency Situation	Temporary or permanent injunction		

TABLE 2 ENFORCEMENT RESPONSES

9.31 Verbal Warnings

Verbal Warnings may be provided and a contractor given 2 to 3-day period to correct all problems.

9.32 Written Notices

If a Notice of Violation is issued, the contractor has a 48-hour period to correct all problems.

9.33 Escalated Enforcement

A Stop Work Order written on a NOV is effective immediately as outlined in section 6007.18.3. Additional remedies can be civil penalties outlined in Section 6007.22.1. If the severity of the situation warrants the inspector may escalate the ERP as quickly as needed as outline in Policy Section 6007.18.3.

9.4 Joint Enforcement Actions

Situations may arise when a problem affects more than one jurisdiction or when ACHD may lack the enforcement authority or options to address a problem. In these cases, ACHD may respond in coordination with another entity depending on the severity of the issue. See Section 5.3 for more information.

9.5 Complaint Response

Complaints may be received from a variety of sources ranging from the general public, contractor, government agencies, or ACHD staff. Complaint responses are addressed via telephone or email for resolution. If a complaint does not involve ACHD permitted or ACHD owned projects, the complaint is referred to the appropriate entity using the MS4 Contact List in Appendix E.

One way complaints regarding erosion and sediment can be initiated from the general public is through a form on the ACHD website, called *Tellus*. These complaints are first received through the Public Relations Department, directed to the appropriate Department, and assigned to the appropriate staff. Once the problem is addressed, a response is sent back in reverse order. A second common way complaints are received is through the Telanswer Stormwater Hotline. The caller is connected directly to the ESC Specialist. These complaints are logged under the Illicit Discharge Program unless the complaint is about an active site with a Temporary Highway Used Permit. In this case, the complaint is logged in TRAKIT. Lastly, complaints can be referred to the ESC Specialist from other agencies, the front desk, and other ACHD employees. These complaints are addressed and then the ESC Specialist will follow-up by notifying the person/agency filing the complaint what was done to address the problem.

If a complaint is found to be associated with a Zone or Subdivision permitted project, a site inspection should be conducted. If the complaint is regarding an ACHD Capital Project, depending on the severity, the Project Inspector, the Capital Projects Construction Coordinator, or the Capital Projects Construction Supervisor will be contacted depending on who is lead of the project with the complaint.

9.6 CGP General Permit Violation Referrals

For construction projects which are subject to the NPDES Construction General Permit and do not respond to educational efforts and joint enforcement actions, section 5.3, ACHD may provide to EPA information regarding construction project operators which cannot demonstrate that they have appropriate NPDES Permit coverage and/or site operators deemed by ACHD as not complying with the NPDES Construction General Permit. Information may be submitted to the EPA NPDES Compliance Hotline in Seattle, Washington, by telephone, at (206) 553-1846, and include, at a minimum, the following information:

- Construction project location and description;
- Name and contact information of project owner/ operator;
- Estimated construction project disturbance size; and
- An account of information provided by the Permittee to the project owner/ operator regarding NPDES filing requirements.

Prior to reporting GCP violation to EPA, discuss the violation with the Stormwater Quality Supervisor.

10.0 DATABASE AND RECORD KEEPING

ACHD records CSDC program information in various ways, including NPDES annual reports, TRAKiT, and review and inspection checklists.

10.1 Annual Reporting and Tracking

Information relating to permits and inspections are tracked on an ongoing basis through TRAKiT and compiled annually. Training attendance records for training activities are maintained by stormwater staff and reported annually in the NPDES annual report. Stormwater Quality Staff is responsible for compiling the following data for the annual reports as stated in the NPDES Phase I MS4 Permit (IV.C.3.iv) and NPDES Phase II Permit (IV.B.2.c-d):

- Phase I A summary of the number and nature of public education programs; the number and nature of complaints received by the Co-Permittee(s), and followup actions taken; and the number and nature of inspections, formal enforcement actions, or other similar activities as performed by the Co-Permittee(s) during the reporting period.
- Phase II A summary of the number and nature of inspection, formal enforcement actions, and/or other similar activities performed. A summary list of any water quality compliance-related enforcement actions received from regulatory agencies other than EPA. Such actions include, but are not limited to, formal warning letters, notices of violation, field citations, or similar actions. This summary should include dates, project synopsis, and actions taken to address the compliance issue(s).

In preparation for the annual report, a summary report is generated in TRAKiT for all permits that were assigned to the ESC Specialist for the reporting year, September 30th – October 1st. A pivot table is created to review the data. The column titles available through the report generated in TRAKiT are; Attachment Total, Conditions Total, Notes Total, Restrictions Total, Fees Due, Restrictions Summary, Loc_RecordID, Record_Type, Record_Status, Site_Addr, Tgroup, ACTIVITYNO, CONTACT, DATE_DUE, DATE_DUE_DATETIME, DATE_RECEIVED, DATE_RECEIVED_DATETIME, DATE_SENT, DATE_SENT_DATETIME, LOCKID, NOTES, RECORDID, REMARKS, REVIEWGROUP, REVIEWTYPE, STATUS, DESCRIPTION, and SITE_SUBDIVISION. The data is used to quantify required elements of the CSDC Program.

10.2 TRAKIT

ACHD has integrated TRAKiT into the development review and permitting process. The CSDC program utilizes TRAKiT for program documentation such as plan reviews, plan approvals, inspection documentation, and providing information for annual reports.

To log onto the TRAKiT System an ESC Specialist will need a Citrix Login (<u>https://ctx.achdidaho.org/vpn/index.html</u>) user name and password.

Once access is gained through Citrix a TRAKiT Login user name and password is necessary.

A detailed Procedure Guidance (PG) for navigating ESC plan routing, review, and approval in TRAKiT is available in Appendix J. A PG for conducting ESC inspections is currently being developed.

11.0 CONSTRUCTION PROGRAM EDUCATION AND TRAINING

11.1 Training and Outreach

All training and outreach are tracked and reported annually to the EPA in compliance with the NPDES MS4 permits. Information and education activities of the CSDC Program include technical assistance provided as an ongoing part of program activities. Technical assistance efforts can include:

- Performing site visits;
- In-person and telephone consultations, with follow-up as needed;
- Development and distribution of Fact Sheets;
- Assistance with permitting requirements; and
- Referrals to other local, state or federal agencies for relevant information.

11.2 Erosion and Sediment Control/Storm Water Inspectors

Storm Water Inspectors at a minimum must obtain Responsible Person (RP) training through Boise City. RP certification is valid for 3 years. The ESC Specialist also conducts in-house training for ACHD staff, as needed, to keep certifications current.

11.3 ACHD Construction Inspectors

CSDC Staff provide annual power point training to ACHD staff on best management practices and procedures for notifying appropriate personnel of noncompliance.

11.4 Plan Reviewers

Plan Reviewers must obtain a Plan Designer (PD) Certification offered through the Boise City Planning and Development Department, Erosion and Sediment Control Program.

11.5 Third-Party Inspectors and Plan Reviewers

Training and certification for third-party Inspectors is available through the Boise City Program. RP and PD certifications are offered through the Boise City Planning and Development Department, Erosion and Sediment Control Program. Receipt of the Boise City certifications based on other training courses is at the discretion of Boise City staff.

11.6 Construction Operator Education

Training and certification for construction site operators is conducted through the Boise City Program. Construction projects are required to have an RP directly in charge of all sites of construction activity regulated by Policy 8300. The individual who prepares the plan must obtain a PD certification. RP and PD certifications are offered through the Boise City Planning and Development Department, Erosion and Sediment Control Program. Receipt of the Boise City certifications based on other training courses is at the discretion of Boise City staff.

In addition, CSDC staff distributes Fact Sheets summarizing erosion and sediment control requirements and BMPs to the regulated community. These Fact Sheets are available in Appendix H and address:

- Commercial Landscaping
- Concrete Cuttings and Slurry
- Crawl Space and Groundwater Dewatering
- Mobile Business

- Parking Lots and Sidewalks
- Sidewalk Cleaning
- Sidewalk Construction and Concrete Waste Management
- Swimming Pools and Hot Tubs

Appendix I: ACHD Facility SWPPPs

Stormwater Pollution Prevention Plan

Ada County Highway District Adams Street Maintenance Facility 3700 & 3730 Adams Street Garden City, Idaho 83714

March 2021 SWPPP CONTACT

Ada County Highway District 3775 Adams Street Garden City, Idaho 83714 (208) 373-6100 Monday-Friday 8AM to 4:30PM

Revisions

Date	Revision	Description
	Number	
December 2015	Rev 0	See old SWPPP
November 2019	Rev 1	Update for current site conditions
March-July 2021	Rev 2	Site specific updates

This SWPPP is a living document that is intended to replace the 2015 SWPPP. As such, it can be modified as facility operations are altered. Alterations include but are not limited to new structures, construction, or additional BMPs. Any modifications should be documented in the above revision section. Additionally, the SWPPP will be updated if new information regarding facility compliance or documentation is deemed necessary.

Page intentionally left blank

Table of Contents

1.1 Facility Background 5 1.1 Facility Information 5 1.2 Site Description 5 1.3 Site Maps. 6 1.4 Contact Information and Responsible Parties. 6 1.4 Contact Information and Responsible Parties. 6 1.5 Drainage Areas 7 1.6 Discharge Locations. 8 1.6.1 Unauthorized Non-stormwater Discharge Documentation 9 9 Section 2: Potential Pollutant Sources. 9 2.1 Potential Pollutant Sascicated with Industrial Activity 9 2.2 Spills and Leaks. 9 2.4 Facility Features and Structure Descriptions. 11 2.4 Facility Features and Structure Descriptions. 11 2.4 A A-10. 12 2.4 A A-10. 12 2.4 S A-11 12 2.4 S A-12 13 2.4 A A-10. 12 2.4 A A-10. 12 2.4 A A-10. 12 2.4 S A-11 12 2.4 S A-12 13 2.4 A A-10. 12 2.4 A A-10. 12 2.4 A A-10. 12 2.4 S A-11	Section 1: Facilities Description and Contact Information	5
1.2 Site Description 5 1.3 Site Maps 6 1.4 Contact Information and Responsible Parties 6 1.5 Drainage Areas 7 1.6 Discharge Locations 8 1.6.1 Unauthorized Non-stormwater Discharge Documentation 9 Section 2: Potential Pollutants Succes 9 2.1 Potential Pollutants Associated with Industrial Activity 9 2.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge 10 2.4 Facility Features and Structure Descriptions 11 2.4.2 A-8 11 2.4.3 A-9 12 2.4.4 A-10 12 2.4.5 A-11 12 2.4.5 A-11 12 2.4.5 A-12 12 2.4.6 A-12, A-12.1, and adjacent 12 2.4.6 A-12, A-13 13 2.4.7 A-13 13 2.4.7 A-13 14 2.4.10 14 2.4.10 14 2.4.10 14 2.4.10 12 2.4.5 A-11 12 2.4.6 A-12, A-12.1, and adjacent 13 2.4.7 A-13 13	1.1 Facility Background	5
1.3 Site Maps61.4 Contact Information and Responsible Parties.61.5 Drainage Areas71.6 Discharge Locations.81.6.1 Unauthorized Non-stormwater Discharge Documentation9Section 2: Potential Pollutant Sources.92.1 Potential Pollutants Associated with Industrial Activity92.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge102.4 Facility Features and Structure Descriptions.112.4.1 A-7.112.4.2 A-8.112.4.3 A-9.122.4.4 A-10.122.4.4 A-10.122.4.5 A-11.122.4.6 A-12, A-12.1, and adjacent.132.4.7 A-13.132.4.8 A-14142.4.9 A-15142.4.10 A-16 through A-20, excluding A-18.142.4.10 A-16 through A-20, excluding A-18.142.4.10 A-16 through A-20, excluding A-18.142.4.11 A-18.142.4.12 A-21.152.4.14 Magnesium Chloride Tanks.152.4.15 Sanders Racks, Water Trucks, & Portable Tanks.162.4.17 Wash Bays & Decant Station.172.4.18 Pump Shed18Section 3: Stormwater Control Measures.193.1.1 Non-Stormwater Discharges to Drains.193.2 Outdoor Loading and Unloading of Materials.203.2 Weicle and Equipment Fueling.203.2 Weicle and Equipment Fueling.203.2 Weicle and Equipment Fueling.203.2 Vehicle and Equipment Fueling. <td>1.1.1 Facility Information</td> <td>5</td>	1.1.1 Facility Information	5
1.3 Site Maps61.4 Contact Information and Responsible Parties.61.5 Drainage Areas71.6 Discharge Locations.81.6.1 Unauthorized Non-stormwater Discharge Documentation9Section 2: Potential Pollutant Sources.92.1 Potential Pollutants Associated with Industrial Activity92.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge102.4 Facility Features and Structure Descriptions.112.4.1 A-7.112.4.2 A-8.112.4.3 A-9.122.4.4 A-10.122.4.4 A-10.122.4.5 A-11.122.4.6 A-12, A-12.1, and adjacent.132.4.7 A-13.132.4.8 A-14142.4.9 A-15142.4.10 A-16 through A-20, excluding A-18.142.4.10 A-16 through A-20, excluding A-18.142.4.10 A-16 through A-20, excluding A-18.142.4.11 A-18.142.4.12 A-21.152.4.14 Magnesium Chloride Tanks.152.4.15 Sanders Racks, Water Trucks, & Portable Tanks.162.4.17 Wash Bays & Decant Station.172.4.18 Pump Shed18Section 3: Stormwater Control Measures.193.1.1 Non-Stormwater Discharges to Drains.193.2 Outdoor Loading and Unloading of Materials.203.2 Weicle and Equipment Fueling.203.2 Weicle and Equipment Fueling.203.2 Weicle and Equipment Fueling.203.2 Vehicle and Equipment Fueling. <td>1.2 Site Description</td> <td>5</td>	1.2 Site Description	5
1.4 Contact Information and Responsible Parties. 6 1.5 Drainage Areas 7 1.6 Discharge Locations. 8 1.6.1 Unauthorized Non-stormwater Discharge Documentation 9 Section 2: Potential Pollutant Sources. 9 2.1 Potential Pollutants Associated with Industrial Activity 9 2.2 Spills and Leaks. 9 2.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge 10 2.4.1 A-7. 11 2.4.2 A.8 11 2.4.3 A.9 12 2.4.4 A-10. 12 2.4.6 A-12, A-12.1, and adjacent. 13 2.4.7 A-13 13 2.4.8 A-14 14 2.4.9 A-15 14 2.4.9 A-16 12 2.4.6 A-12, A-12.1, and adjacent. 13 2.4.7 A-13 13 2.4.7 A-13 14 2.4.9 A-16 14 2.4.10 A-16 through A-20, excluding A-18 14 2.4.10 A-16 through A-20, excluding A-18 14 2.4.1 A-18 15 2.4.13 Fueling Stations 15 2.4.14 Magnesium Chloride Tanks 15 <tr< td=""><td></td><td></td></tr<>		
1.5 Drainage Areas71.6 Discharge Locations81.6.1 Unauthorized Non-stormwater Discharge Documentation9Section 2: Potential Pollutant Sources92.1 Potential Pollutants Associated with Industrial Activity92.2 Spills and Leaks92.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge102.4 Facility Features and Structure Descriptions112.4.1 A-7112.4.2 A-8112.4.3 A-9122.4.4 A-10122.4.5 A-11122.4.6 A-12, A-12.1, and adjacent132.4.7 A-13132.4.8 A-14142.4.9 A-15142.4.10 A-16 through A-20, excluding A-18142.4.11 A-18142.4.12 A-21152.4.13 Fueling Stations152.4.15 Sanders Racks, Water Trucks, & Portable Tanks162.4.16 Material Storage Piles162.4.17 Wash Bays & Decant Station172.4.18 Hauring Stations152.4.19 Containment Areas18Section 3: Stormwater Discharges to Drains193.1 Minimize Exposure193.1 Minimize Exposure193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Fueling203.2.3 Outdoor Storage of Raw Materials203.2.4 Vehicle and Equipment Fueling203.2.4 Vehicle and Equipment Fueling203.2.4 Vehicle and Equipment Fueling203.2.4 Vehicle and Equipment Fueling	•	
1.6.1 Unauthorized Non-stormwater Discharge Documentation9Section 2: Potential Pollutant Sources92.1 Potential Pollutants Associated with Industrial Activity92.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge102.4 Facility Features and Structure Descriptions112.4.2 A-8.112.4.3 A-9.122.4.6 A-12, A-12.1, and adjacent122.4.7 A-13132.4.10 A-16 through A-20, excluding A-18.142.4.12 A-21.152.4.13 Storder Trucks, & Portable Tanks.152.4.14 Magnesium Chloride Tanks.152.4.15 Stormwater Control Measures193.1 Minimize Exposure193.1 Minimize Exposure193.2 Good Housekeeping193.2 Good Housekeeping193.2 Uvehicle and Equipment Fueling.193.2 Uvehicle and Equipment Fueling.203.2 Vaste Handling and Unloading of Materials.203.2 Vaste Handling and Unloading of Materials.203.2 Vehicle and Equipment Fueling.203.2 Vehicle and Equipment Fueling.203.2 Vehicle and Equipment Cleaning.203.2 Vehicle and E	1.5 Drainage Areas	7
1.6.1 Unauthorized Non-stormwater Discharge Documentation9Section 2: Potential Pollutant Sources92.1 Potential Pollutants Associated with Industrial Activity92.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge102.4 Facility Features and Structure Descriptions112.4.2 A-8.112.4.3 A-9.122.4.6 A-12, A-12.1, and adjacent122.4.7 A-13132.4.10 A-16 through A-20, excluding A-18.142.4.12 A-21.152.4.13 Storder Trucks, & Portable Tanks.152.4.14 Magnesium Chloride Tanks.152.4.15 Stormwater Control Measures193.1 Minimize Exposure193.1 Minimize Exposure193.2 Good Housekeeping193.2 Good Housekeeping193.2 Uvehicle and Equipment Fueling.193.2 Uvehicle and Equipment Fueling.203.2 Vaste Handling and Unloading of Materials.203.2 Vaste Handling and Unloading of Materials.203.2 Vehicle and Equipment Fueling.203.2 Vehicle and Equipment Fueling.203.2 Vehicle and Equipment Cleaning.203.2 Vehicle and E	1.6 Discharge Locations	8
2.1 Potential Pollutants Associated with Industrial Activity92.2 Spills and Leaks92.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge102.4 Facility Features and Structure Descriptions112.4.1 A-7112.4.2 A-8112.4.3 A-9122.4.4 A-10122.4.5 A-11122.4.6 A-12, A-12.1, and adjacent132.4.7 A-13132.4.8 A-14142.4.9 A-15142.4.10 A-16 through A-20, excluding A-18142.4.11 A-18142.4.13 Fueling Stations152.4.14 Magnesium Chloride Tanks152.4.15 Sanders Racks, Water Trucks, & Portable Tanks162.4.19 Containment Areas162.4.19 Containment Areas183.1 Non-Stormwater Control Measures193.1 Non-Stormwater Control Measures193.2 Oved Housekeeping193.2 Vehicle and Equipment Fueling193.2 Vehicle and Equipment Fueling203.2 A Waste Handling and Disposal203.2 A Waste Handling and Disposal20		
2.2 Spills and Leaks. 9 2.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge 10 2.4 Facility Features and Structure Descriptions. 11 2.4.1 A-7. 11 2.4.2 A-8. 11 2.4.3 A-9. 12 2.4.4 A-10. 12 2.4.5 A-11. 12 2.4.6 A-12, A-12.1, and adjacent. 13 2.4.8 A-14. 14 2.4.9 A-15. 14 2.4.10 A-16 through A-20, excluding A-18. 14 2.4.1 A-8. 14 2.4.1 A-8. 14 2.4.1 A-8. 14 2.4.1 D-16 through A-20, excluding A-18. 14 2.4.1 D-16 through A-20, excluding A-18. 14 2.4.1 D-16 through A-20, excluding A-18. 15 2.4.1 Shorders Racks, Water Trucks, & Portable Tanks. 15 2.4.1 Shorders Racks, Water Trucks, & Portable Tanks. 16 2.4.1 Wagnesium Chloride Tanks. 15 2.4.1 Wagnesium Chloride Tanks. 16 2.4.1 Wagnesium Chloride Tanks. 16 2.4.1 Storage Piles. 16 2.4.1 Wagnesium Chloride Tanks. 16 2.4	Section 2: Potential Pollutant Sources	9
2.2 Spills and Leaks. 9 2.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge 10 2.4 Facility Features and Structure Descriptions. 11 2.4.1 A-7. 11 2.4.2 A-8. 11 2.4.3 A-9. 12 2.4.4 A-10. 12 2.4.5 A-11. 12 2.4.6 A-12, A-12.1, and adjacent. 13 2.4.8 A-14. 14 2.4.9 A-15. 14 2.4.10 A-16 through A-20, excluding A-18. 14 2.4.1 A-8. 14 2.4.1 A-8. 14 2.4.1 A-8. 14 2.4.1 D-16 through A-20, excluding A-18. 14 2.4.1 D-16 through A-20, excluding A-18. 14 2.4.1 D-16 through A-20, excluding A-18. 15 2.4.1 Shorders Racks, Water Trucks, & Portable Tanks. 15 2.4.1 Shorders Racks, Water Trucks, & Portable Tanks. 16 2.4.1 Wagnesium Chloride Tanks. 15 2.4.1 Wagnesium Chloride Tanks. 16 2.4.1 Wagnesium Chloride Tanks. 16 2.4.1 Storage Piles. 16 2.4.1 Wagnesium Chloride Tanks. 16 2.4	2.1 Potential Pollutants Associated with Industrial Activity	9
2.4 Facility Features and Structure Descriptions. 11 2.4.1 A-7. 11 2.4.2 A-8. 11 2.4.2 A-8. 11 2.4.3 A-9. 12 2.4.4 A-10. 12 2.4.5 A-11 12 2.4.6 A-12, A-12.1, and adjacent. 13 2.4.7 A-13 13 2.4.7 A-13 13 2.4.8 A-14 14 2.4.9 A-15 14 2.4.10 A-16 through A-20, excluding A-18. 14 2.4.11 A-18 14 2.4.11 A-18 14 2.4.12 A-21 15 2.4.13 Fueling Stations. 15 2.4.14 Magnesium Chloride Tanks. 15 2.4.15 Sanders Racks, Water Trucks, & Portable Tanks. 15 2.4.16 Material Storage Piles 16 2.4.17 Wash Bays & Decant Station 17 2.4.18 Pump Shed 18 2.4.19 Containment Areas 18 Section 3: Stormwater Control Measures. 19 3.1.1 Non-Stormwater Discharges to Drains. 19 3.1.2 Outdoor Storage of Raw Materials. 19 3.2.1 Vehicle and Equipment Fueling <t< td=""><td></td><td></td></t<>		
2.4.1 A-7. 11 2.4.2 A-8. 11 2.4.3 A-9. 12 2.4.4 A-10. 12 2.4.5 A-11. 12 2.4.6 A-12, A-12.1, and adjacent. 13 2.4.7 A-13. 13 2.4.8 A-14. 14 2.4.9 A-15. 14 2.4.10 A-16 through A-20, excluding A-18. 14 2.4.12 A-21. 15 2.4.13 Fueling Stations. 15 2.4.14 Magnesium Chloride Tanks. 15 2.4.15 Sanders Racks, Water Trucks, & Portable Tanks. 15 2.4.16 Material Storage Piles 16 2.4.17 Wash Bays & Decant Station. 17 2.4.18 Pump Shed 18 2.4.19 Containment Areas 18 Section 3: Stormwater Control Measures. 19 3.1 Minimize Exposure. 19 3.1 Non-Stormwater Discharges to Drains 19 3.1 2 Outdoor Storage of Raw Materials. 19 3.2 Vehicle and Equipment Fueling 19 3.2 Vehicle and Equipment Fueling 20 3.2 Vehicle and Equipment Gleaning. 20 3.2 Waste Handling and Disposal 20	2.3 Monitoring Requirements & Effluent Limits for Stormwater Discharge	10
2.4.2 A-8. 11 2.4.3 A-9. 12 2.4.4 A-10 12 2.4.5 A-11 12 2.4.6 A-12, A-12.1, and adjacent. 13 2.4.7 A-13 13 2.4.8 A-14 14 2.4.9 A-15 14 2.4.10 A-16 through A-20, excluding A-18. 14 2.4.11 A-18 14 2.4.12 A-21 15 2.4.13 Fueling Stations 15 2.4.14 Magnesium Chloride Tanks. 15 2.4.15 Sanders Racks, Water Trucks, & Portable Tanks 16 2.4.17 Wash Bays & Decant Station 17 2.4.18 Pump Shed 18 2.4.19 Containment Areas 18 Section 3: Stormwater Control Measures 19 3.1.1 Non-Stormwater Discharges to Drains 19 3.1.2 Outdoor Storage of Raw Materials 19 3.2.1 Vehicle and Equipment Fueling 19 3.2.1 Vehicle and Equipment Fueling 19 3.2.2 Vehicle and Equipment Gleaning 20 3.2.4 Waste Handling and Disposal 20	2.4 Facility Features and Structure Descriptions	11
2.4.3 A-9. 12 2.4.4 A-10. 12 2.4.5 A-11. 12 2.4.6 A-12, A-12.1, and adjacent. 13 2.4.7 A-13. 13 2.4.8 A-14. 14 2.4.9 A-15. 14 2.4.10 A-16 through A-20, excluding A-18. 14 2.4.11 A-18. 14 2.4.13 Fueling Stations. 15 2.4.14 Magnesium Chloride Tanks. 15 2.4.15 Sanders Racks, Water Trucks, & Portable Tanks. 16 2.4.17 Wash Bays & Decant Station. 17 2.4.18 Pump Shed 18 2.4.19 Containment Areas 18 Section 3: Stormwater Control Measures. 19 3.1.1 Non-Stormwater Discharges to Drains 19 3.1.2 Outdoor Storage of Raw Materials. 19 3.2.1 Vehicle and Equipment Fueling 19 3.2.2 Vehicle and Equipment Cleaning. 20 3.2.3 Outdoor Loading and Unloading of Materials 20 3.2.4 Waste Handling and Disposal 20	2.4.1 A-7	11
2.4.4 A-10. 12 2.4.5 A-11. 12 2.4.6 A-12, A-12.1, and adjacent. 13 2.4.7 A-13. 13 2.4.8 A-14. 14 2.4.9 A-15. 14 2.4.10 A-16 through A-20, excluding A-18. 14 2.4.11 A-18. 14 2.4.13 Fueling Stations. 15 2.4.14 Magnesium Chloride Tanks. 15 2.4.15 Sanders Racks, Water Trucks, & Portable Tanks. 16 2.4.16 Material Storage Piles 16 2.4.17 Wash Bays & Decant Station. 17 2.4.18 Pump Shed 18 2.4.19 Containment Areas 18 Section 3: Stormwater Control Measures. 19 3.1 Minimize Exposure 19 3.1.1 Non-Stormwater Discharges to Drains 19 3.2.1 Vehicle and Equipment Fueling 19 3.2.1 Vehicle and Equipment Fueling 19 3.2.2 Vehicle and Equipment Fueling 20 3.2.3 Outdoor Loading and Unloading of Materials 20 3.2.4 Waste Handling and Disposal 20	2.4.2 A-8	11
2.4.5 A-11 12 2.4.6 A-12, A-12.1, and adjacent 13 2.4.7 A-13 13 2.4.8 A-14 14 2.4.9 A-15 14 2.4.10 A-16 through A-20, excluding A-18 14 2.4.11 A-18 14 2.4.12 A-21 15 2.4.13 Fueling Stations 15 2.4.14 Magnesium Chloride Tanks 15 2.4.15 Sanders Racks, Water Trucks, & Portable Tanks 16 2.4.16 Material Storage Piles 16 2.4.17 Wash Bays & Decant Station 17 2.4.18 Pump Shed 18 2.4.19 Containment Areas 18 Section 3: Stormwater Control Measures 19 3.1 Minimize Exposure 19 3.1.2 Outdoor Storage of Raw Materials 19 3.2.1 Vehicle and Equipment Fueling 19 3.2.2 Vehicle and Equipment Fueling 19 3.2.3 Outdoor Loading and Unloading of Materials 20 3.2.4 Waste Handling and Disposal 20	2.4.3 A-9	12
2.4.6 A-12, A-12.1, and adjacent. 13 2.4.7 A-13 13 2.4.8 A-14 14 2.4.9 A-15 14 2.4.10 A-16 through A-20, excluding A-18 14 2.4.11 A-18 14 2.4.12 A-21 15 2.4.13 Fueling Stations 15 2.4.14 Magnesium Chloride Tanks 15 2.4.15 Sanders Racks, Water Trucks, & Portable Tanks 16 2.4.16 Material Storage Piles 16 2.4.17 Wash Bays & Decant Station 17 2.4.18 Pump Shed 18 2.4.19 Containment Areas 18 Section 3: Stormwater Control Measures. 19 3.1 Minimize Exposure 19 3.1.2 Outdoor Storage of Raw Materials. 19 3.2.1 Vehicle and Equipment Fueling 19 3.2.1 Vehicle and Equipment Fueling 19 3.2.2 Vehicle and Equipment Cleaning 20 3.2.4 Waste Handling and Disposal 20		
2.4.7 A-13 13 2.4.8 A-14 14 2.4.9 A-15 14 2.4.10 A-16 through A-20, excluding A-18 14 2.4.10 A-16 through A-20, excluding A-18 14 2.4.11 A-18 14 2.4.12 A-21 15 2.4.13 Fueling Stations 15 2.4.14 Magnesium Chloride Tanks 15 2.4.15 Sanders Racks, Water Trucks, & Portable Tanks 16 2.4.16 Material Storage Piles 16 2.4.17 Wash Bays & Decant Station 17 2.4.18 Pump Shed 18 2.4.19 Containment Areas 18 Section 3: Stormwater Control Measures. 19 3.1 Minimize Exposure 19 3.1.2 Outdoor Storage of Raw Materials 19 3.2.1 Vehicle and Equipment Fueling 19 3.2.1 Vehicle and Equipment Fueling 19 3.2.2 Vehicle and Equipment Cleaning 20 3.2.3 Outdoor Loading and Unloading of Materials 20 3.2.4 Waste Handling and Disposal 20		
2.4.8 A-14142.4.9 A-15142.4.10 A-16 through A-20, excluding A-18142.4.11 A-18142.4.11 A-18142.4.12 A-21152.4.13 Fueling Stations152.4.14 Magnesium Chloride Tanks152.4.15 Sanders Racks, Water Trucks, & Portable Tanks162.4.16 Material Storage Piles162.4.17 Wash Bays & Decant Station172.4.18 Pump Shed182.4.19 Containment Areas18Section 3: Stormwater Control Measures193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.2 Good Housekeeping193.2 I Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
2.4.9 A-15142.4.10 A-16 through A-20, excluding A-18142.4.11 A-18142.4.11 A-18142.4.12 A-21152.4.13 Fueling Stations152.4.14 Magnesium Chloride Tanks152.4.15 Sanders Racks, Water Trucks, & Portable Tanks162.4.16 Material Storage Piles162.4.17 Wash Bays & Decant Station172.4.18 Pump Shed182.4.19 Containment Areas18Section 3: Stormwater Control Measures193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.2 Good Housekeeping193.2 I Vehicle and Equipment Fueling193.2.1 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
2.4.10 A-16 through A-20, excluding A-18.142.4.11 A-18.142.4.12 A-21.152.4.13 Fueling Stations.152.4.14 Magnesium Chloride Tanks.152.4.15 Sanders Racks, Water Trucks, & Portable Tanks.162.4.16 Material Storage Piles.162.4.17 Wash Bays & Decant Station.172.4.18 Pump Shed182.4.19 Containment Areas18Section 3: Stormwater Control Measures.193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Fueling203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
2.4.11 A-18142.4.12 A-21152.4.13 Fueling Stations152.4.14 Magnesium Chloride Tanks152.4.15 Sanders Racks, Water Trucks, & Portable Tanks162.4.15 Material Storage Piles162.4.17 Wash Bays & Decant Station172.4.18 Pump Shed182.4.19 Containment Areas18Section 3: Stormwater Control Measures193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.2 Good Housekeeping193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
2.4.12 A-21152.4.13 Fueling Stations152.4.14 Magnesium Chloride Tanks152.4.15 Sanders Racks, Water Trucks, & Portable Tanks162.4.16 Material Storage Piles162.4.17 Wash Bays & Decant Station172.4.18 Pump Shed182.4.19 Containment Areas18Section 3: Stormwater Control Measures193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.2 Good Housekeeping193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
2.4.14 Magnesium Chloride Tanks.152.4.15 Sanders Racks, Water Trucks, & Portable Tanks.162.4.15 Sanders Racks, Water Trucks, & Portable Tanks.162.4.15 Material Storage Piles162.4.17 Wash Bays & Decant Station172.4.18 Pump Shed182.4.19 Containment Areas18Section 3: Stormwater Control Measures.193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.1.2 Outdoor Storage of Raw Materials.193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
2.4.15 Sanders Racks, Water Trucks, & Portable Tanks.162.4.16 Material Storage Piles162.4.17 Wash Bays & Decant Station172.4.18 Pump Shed182.4.19 Containment Areas18Section 3: Stormwater Control Measures193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.1.2 Outdoor Storage of Raw Materials193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20	2.4.13 Fueling Stations	15
2.4.16 Material Storage Piles162.4.17 Wash Bays & Decant Station172.4.18 Pump Shed182.4.19 Containment Areas18Section 3: Stormwater Control Measures193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.1.2 Outdoor Storage of Raw Materials193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
2.4.17 Wash Bays & Decant Station.172.4.18 Pump Shed182.4.19 Containment Areas18Section 3: Stormwater Control Measures.193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.1.2 Outdoor Storage of Raw Materials193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
2.4.18 Pump Shed182.4.19 Containment Areas18Section 3: Stormwater Control Measures193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.1.2 Outdoor Storage of Raw Materials193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
2.4.19 Containment Areas18Section 3: Stormwater Control Measures193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.1.2 Outdoor Storage of Raw Materials193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
Section 3: Stormwater Control Measures193.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.1.2 Outdoor Storage of Raw Materials193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20	·	
3.1 Minimize Exposure193.1.1 Non-Stormwater Discharges to Drains193.1.2 Outdoor Storage of Raw Materials193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
3.1.1 Non-Stormwater Discharges to Drains193.1.2 Outdoor Storage of Raw Materials193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
3.1.2 Outdoor Storage of Raw Materials193.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
3.2 Good Housekeeping193.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20	-	
3.2.1 Vehicle and Equipment Fueling193.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
3.2.2 Vehicle and Equipment Cleaning203.2.3 Outdoor Loading and Unloading of Materials203.2.4 Waste Handling and Disposal20		
3.2.3 Outdoor Loading and Unloading of Materials 20 3.2.4 Waste Handling and Disposal 20		
3.2.4 Waste Handling and Disposal20		
- · ·		

3.3 Maintenance	21
3.3.1 Vehicle and Equipment Maintenance and Repair	21
3.3.2 Building and Ground Maintenance	21
3.3.3 Building Repair, Remodeling, & Construction	22
3.4 Spill Prevention and Response	22
3.5 Erosion and Sediment Controls	23
3.6 Management of Runoff	23
3.7 Storage of Winter Maintenance Materials	23
3.8 Dust Generation and Vehicle Tracking	
3.9 Employee Training	23
Section 4: Inspections and Records	24
4.1 Inspections and Assessments	24
4.2 Record Retention	25
Section 5: Corrective Actions	25
Section 6: SWPPP Modifications	25
Section 7: References and Resources	25
Appendix A. Vicinity Map	
Appendix B. Drainage Areas and Outfalls Map	
Appendix C. Site Map	
Appendix D. Stormwater Routine Facility Inspection Form	

Section 1: Facilities Description and Contact Information

1.1 Facility Background

Ada County Highway District (ACHD) is a permittee under the National Pollutant Discharge Elimination System (NPDES) Phase I and Phase II Municipal Storm Sewer System (MS4) permits. The NPDES permits require permittees develop and implement Storm Water Pollution Prevention Plans (SWPPPs) for all permittee-owned material storage facilities and maintenance yards located within the permit area. Both the Adams and Cloverdale Maintenance Facilities are located within the Phase I permit area and are covered under Permit No: IDS-027561 (Permit). This SWPPP is intended to meet Permit requirement II.B.4.f of the Boise Area NPDES MS4 Permit and prevent the discharge of stormwater pollutants into receiving waters through the implementation of site-specific Best Management Practices (BMPs).

1.1.1 Facility Information	
Facility Name:	Ada County Highway District Adams Street Maintenance Facility
Facility Street Address:	3700 & 3730 Adams Street Garden City, Idaho 83717
Facility Mailing Address:	3775 Adams Street Garden City, Idaho 83714
Facility Phone Number	
During Working Hours:	[8am-4:30pm] (208) 387-6100
Owner Name:	Ada County Highway District
Owner Address:	3775 Adams Street
	Garden City, Idaho 83714
Operator Company Name:	Garden City, Idaho 83714 Ada County Highway District
Operator Company Name: Operator Company Address:	
	Ada County Highway District 3775 Adams Street
Operator Company Address:	Ada County Highway District 3775 Adams Street Garden City, Idaho 83714 43°37'46.56″ N

1.2 Site Description

The Ada County Highway District (ACHD) facility located in Garden City, Idaho, is a distribution and maintenance facility that serves Ada County, Idaho. Located on approximately 11 acres, the facility is surrounded on three sides with residential homes and light use industrial/commercial properties. The northern boundary of the facility is the Boise River.

The Adams Street facility meets the requirements under the Spill Prevention Control and Counter measures (SPCC) Oil Pollution Prevention regulations by having an aboveground oil storage capacity exceeding 1,320 gallons. The Adams facility retains an updated SPCC plan that outlines the procedures, methods and equipment used at the facility to prevent and respond to spills of liquid materials. A copy of the SPCC plan and corresponding documents is in the Adams Superintendent's office, the on-call superintendents go bag, on the Q drive of ACHD's server, and at the facilities maintenance building. The Adams Street facility is also required to have an Accidental Spill Prevention Plan (ASPP) by Garden City as part of an Indirect Discharge Permit to discharge into the sanitary sewer from the decant and wash stations. A copy of the ASPP is also available in the Adams Superintendents office, on the Q drive of ACHD's server, and the facilities maintenance building.

1.3 Site Maps

Please see Appendix A for the vicinity map, Appendix B for site outfalls and drainage areas, and Appendix C for site specifics.

1.4 Contact Information and Responsible Parties

The following people are involved in implementing and modifying the SWPPP.

Responsible Officials:				
Deputy Director of Main	ntenance	208-387-6322 (o)		
Responsibilities: Ensure overall compliance of all ACHD owned maintena				owned maintenance
	facilities wit	hin the county.		
Maintenance Manager		208-387-6319 (o)		208-919-4623 (c)
	•		dination between mainte	
			onsistent environmental	compliance, and provide
	-	•	liance related issues.	
Maintenance Superinte		208-387-6327 (o)		208-484-0389 (c)
	Responsibil	ities: Direct, coordi	nate and ensure that BM	Ps are implemented;
	budget for o	construction of new	BMPs, modification of e	xisting BMPs and
	maintenand	e of existing BMPs.	Direct and educate empl	loyees working at the
	Adams facil	ity of their roles and	d responsibilities in imple	menting this SWPPP.
	Participate	in compliance evalu	ations and inspections of	f the facility.
Traffic Superintendent		208-387-6192 (o)		208-860-6655 (c)
	Responsibil	ities: Direct, coordir	nate and ensure that BMI	Ps are implemented;
	budget for a	construction of new	BMPs, modification of e	xisting BMPs and
	maintenand	e of existing BMPs.	Direct and educate empl	loyees working at the
	Adams facil	ity of their roles and	d responsibilities in imple	menting this SWPPP.
	Participate	in compliance evalu	ations and inspections of	f the facility, as needed.
Environmental Programs Coordinator 208-387-6279 (o) 208-608-3983 (c)				208-608-3983 (c)
	Responsibil	ities: Initial develop	ment of the SWPPP and u	updates, as needed, for
	compliance	support. Participat	e in compliance evaluatio	ons and inspections of
	the facility a	as needed.	•	-
	,			

Broom Crew Chief

208-387-6337 (o)

208-919-5694 (c)

Responsibilities: Monthly inspections and documentation. Maintenance and implementation of BMPs, as needed, around the facility.

1.5 Drainage Areas

Stormwater at the Adams facility is drained by multiple catch basins, storm drains, and channels. All drainage areas at this facility drain to one of the two outfalls, infiltrates onsite, or are discharged via the sanitary sewer. There are three (3) distinct drainage areas that make up the facility site. The majority of stormwater from the facility enters into a piped system on the western border discharging into the Boise River, this outfall is referred to as Adams Outfall #1 (AOF1). Stormwater from the area on the west side of the Broom Shed, A-14, drains to a system discharging to the Boise River through an outfall referred to as Adams Outfall #2 (AOF2). A site map showing the drainage areas and outfalls is in located in Appendix B (areas labeled as D1, D2, and D3).

• Drainage Area 1 consists of the Carpentry Shop (A-11) on the east side of the facility and the surrounding area. Surface water near the shop flows into a storm drain inlet which is connected to perforated pipe that is 12-feet long and runs parallel to the east fence line. Collected stormwater from this drainage area seeps into the surrounding soil via a perforated pipe. This area is predominately impervious excluding the area adjacent to the A-11 which is primarily highly compacted soil and gravel.

Potential pollutants in this area include:

- Sediment from erosion of unpaved areas
- Traffic paints and solvents
- Drainage Area 2 consists of roof drains from the Broom Shed (A-14) and a small area to the north and south of A-14. There are two catch basins in this system, one of which is now covered by a roof and the other on the northwest corner of A-14. This area is conveyed to AOF2 on the northeast property boundary.

Potential pollutants in this area include:

- o Oil from vehicle/equipment leaks and wash bay area
- Sediment from track out and wash bay area
- Roof runoff from adjacent buildings
- o Traffic paints
- Material storage runoff
- Drainage Area 3 is the largest area of the yard which conveys stormwater through a series of catch basins and sand and grease traps to the main storm drain outfall, AOF1, on the northwest perimeter of the facility. Stormwater runoff from this area is combined with upstream effluent from approximately 85 acres prior to being discharged into the Boise River. Materials and equipment stored in this drainage area consist of material stockpiles, equipment/fleet storage, paint storage, decant & wash area, sand & salt shed, sander racks, vehicle refueling area,

secondary containment areas, and magnesium chloride tanks. Portions of this drainage area are paved, rotomilled, or remain as gravel. The decant and wash bay areas are located within this drainage area. If an overflow or a spill were to occur from the decant and wash bay area, the water would be conveyed to adjacent catch basins. The western and northern perimeters have raised berms or Eco blocks to retain stormwater onsite. See Appendix B, Drainage Areas and Outfall Map, of this document for additional information.

Potential pollutants in this area include:

- o Oil from vehicle or equipment leaks
- o Oil from mechanics shop tanks
- o Overflow from secondary containment areas
- o Sediment from stockpiles, decant & wash bay area, and unpaved surfaces
- o Gas and diesel from fuel dispensing stations
- o Traffic paint & solvents
- o Chlorides from sand/salt stockpile and raw salt stored in shed
- Material storage runoff
- o Roof runoff from adjacent buildings

1.6 Discharge Locations

The Adams Street facility has two stormwater outfalls conveying directly into the Boise River. The primary outfall (AOF1) is located approximately 35 feet north of the facilities northwest corner and consists of an 18" PVC pipe recessed in the riverbank (Photo 1). This outfall takes drainage from the facility as well as the adjacent 85 acres. The second outfall (AOF2) discharges approximately 550 feet upstream from of AOF1 through a 16" corrugated metal pipe (Photo 2).

Photos 1 & 2. From left to right, AOF1 and AOF2

1.6.1 Unauthorized Non-stormwater Discharge Documentation

There are no known unauthorized non-stormwater discharge locations onsite. ACHD commits the manpower, equipment, and materials required to expeditiously control and remove any quantity of spills that could potentially be harmful to health or the environment. If an unauthorized non-stormwater discharge is observed, the responsible person will document said event on the monthly inspection. Documentation will include the source, amount discharged, cleanup activities, how to prevent future occurrences, and other pertinent reportable information defined in the SPCC and the ASPP. For further information regarding spill response within the facility, refer to the SPCC, ASPP, and ACHDs overall Spill Response Plan, file paths for the documents are located in Section 7. References and Resources.

Section 2: Potential Pollutant Sources

2.1 Potential Pollutants Associated with Industrial Activity

Throughout the facility there are potential pollutants that could spill, leak, or drip. Below are industrial activities that occur at the facility and their potential pollutant.

Table 1. Adding industrial Activities and Associated Foliatants			
Industrial Activity	Associated Pollutants		
Fueling and Vehicle Maintenance	Oil, gas, diesel, or hydraulic fluid		
Salt Stockpiling	Chlorine		
Stockpiling of construction debris, sand, sweeper debris, dirt, riprap, or rubble	Sediment, Oil, Gas, Diesel, or bacteria		
Street Sweeper and Vehicle Washing	Sediment or Bacteria		
Decant and Wash Bay Area	Sediment, Oil, Gas, Diesel, Hydraulic Fluid or Bacteria		
Yard Drum Storage (A-18) and Secondary Containment Area	Oils, tackifiers, or petroleum products		
Paint & Solvent Storage	Potentially Hazardous Liquids		

Table 1. Adams	Industrial	Activities a	and Associate	d Pollutants
	maastinai	,		

2.2 Spills and Leaks

Throughout the facility there are areas that have the potential to have leaks or spills. Spills and leaks that are observed during the site walks are documented on the inspection reports. Minor hydraulic drips occur from the removal of the sanders racks. Staff are trained to clean up any spills or leaks observed onsite.

Location	Discharge Point	
Decant Water Treatment	AOF1 and AOF2	
Fueling Station	AOF1	
Sander Racks	AOF1	
Vehicle Storage	AOF1 and AOF2	
Yard Drum Storage (A-18)	AOF1	
Secondary Containment Area	AOF1	
Paint & Solvent Storage	AOF1	

Table 2. Industrial Activity	and Correlated Discharge Point

2.3 Monitoring Requirements & Effluent Limits for Stormwater Discharges

The Boise River, in parts, is a 303(d) listed river. Due to its listing, the river has three Total Maximum Daily Loads (TMDLs) for sediment, total and dissolved phosphorus, and bacteria. Discharge limits are set forth by IDAPA 58.01.02 Surface Water Quality Criteria for Primary Contact Recreation.

TMDL	Pollutant of Concern	Discharge Limit	
Sediment	Sediment Total Suspended Solids 50 mg/		
Phosphorus	Total Phosphorus Dissolved Phosphorus	.	
Bacteria E-Coli Instantaneous- 406MPN/		Instantaneous- 406MPN/100 mL Chronic- 126 MPN/100mL	

Table 3. Boise River Monitoring Requirements

Following the NPDES Phase 1 Permit, ACHD is required to conduct an outfall investigation on 20% of the ACHD outfall inventory, requiring one site visit for each outfall over the permit term. If flow is observed, sampling and chemical analysis is completed. Monitoring pollutants of concern includes turbidity, pH, temperature, dissolved oxygen, dissolved and total phosphorus, total suspended solids, E. Coli, chlorine, total copper, phenols, and detergents. All flow observations are monitored during three different irrigation time periods set by the Dry Weather Outfall Screening Plan. If a flow is above program benchmarks for one or more irrigation time periods, sampling every five to seven days over a 30-day time period is enacted. This will continue until quality has improved or flow has been eliminated. Past monitoring of the outfalls is documented in Tables 4 and 5, Dry Weather Monitoring at AOF1 & AOF2. Additionally, both outfalls are visually monitored monthly and observations are documented on the Stormwater Routine Facility Inspection Report.

Date	Flow	Sampling Completed	Sampling Results		
5/15/2009	Moderate	No	NA	NA	
1/27/2015	Dry	No	NA		
			Temperature (°C)	12.2	
			Dissolved Oxygen (mg/L)	8.56 mg/L @ 13°C	
			Conductivity (uS/cm)	46.0 @ 13°C	
E /E /201E	5/5/2015 0.217 CFS	0.217 CFS Yes	Turbidity (NTU)	3.65	
5/5/2015			pH (s.u.)	7.85 s.u.	
			Total Chlorine (mg/L)	0 mg/L	
			Total Copper (mg/L)	0 mg/L	
			Phenols (mg/L)	0 mg/L	
1/25/2016	Dry	No	NA		
	8/27/2019 Moderate Yes		Temperature (°C)	18.63 °C	
8/27/2019		Yes	Dissolved Oxygen (mg/L)	7.62	
			Conductivity (uS/cm)	61.96	

Table 4. Dry Weather Monitoring at AOF1 (ACHD Inventory No. 3n2E05_11)

			Turbidity (NTU)	1.67
			pH (s.u.)	7.85
			Total Chlorine (mg/L)	0
			Total Copper (mg/L)	0
			Phenols (mg/L)	0
			E. Coli (MPN)	17.1
			TSS (mg/L)	24.1
			ORP (mg/L)	0.0158
			Total P (mg/L)	0.0228
			Detergents (mg/L)	0.01
5/25/2020	0.0018 CFS	Yes	Temperature (°C)	15.75
			Dissolved Oxygen (mg/L)	7.09
			Conductivity (uS/cm)	79.7
			Turbidity (NTU)	2.83
			pH (s.u.)	7.9
			Total Chlorine (mg/L)	0
			Total Copper (mg/L)	0
			Phenols (mg/L)	0
			E. Coli (MPN)	54.8
			TSS (mg/L)	6.03
			ORP (mg/L)	0.0276
			Total P (mg/L)	0.0535
			Detergents (mg/L)	0.05

Table 5. Dry Weather Monitoring at AOF2 (3n2E05_24)

Date	Flow	Sampling Completed	Sampling Results
5/15/2009	Dry	No	NA
8/28/2013	Dry	No	NA
5/2/2019	Dry	No	NA

2.4 Facility Features and Structure Descriptions

2.4.1 A-7

The administrative office, A-7, is used for office purposes. The SWPPP and copies of the ASPP & SPCC are in the superintendent's office. Roof runoff from this area drains to drainage area 3 with outfall to the Boise River, AOF1.

2.4.2 A-8

The mechanics shop, A-8, is located adjacent to the administrative office building is used for general mechanical maintenance of vehicles and equipment. This building also houses the oil storage room containing four (4) above ground storage tanks (ASTs) containing various grades of motor oil. The oil room acts as secondary containment and has no discharge outlet. The concrete floor of the mechanic

shop drains into a trough that lies along the axis of the shop. The trough is connected to the sanitary sewer system through a series of oil separator tanks. Spills within the mechanic shop tend to be small and cleaned up immediately by ACHD personnel. Located within an outdoor secondary containment structure along the north wall of the building is a 720-gallon used oil AST. The containment structure is open to the atmosphere with no drain. The roof drains on this building are connected to the storm drain system on the East and West and discharge via drainage area 3 to AOF1. There is an ice machine located on the eastern side of the building with an outfall to an injection well.

Photos 3 &4 From left to right, A-7 & A-8

2.4.3 A-9

A small portion of traffic operations is in building A-9. Roof runoff from this area drains to drainage area 3 and is conveyed to the Boise River via AOF1.

2.4.4 A-10

The main location for traffic operations is in structure A-10. This structure contains administration offices, the TMC, sign shop, and a storage area. Roof runoff from this area drains to drainage area 3 and ultimately the Boise River via AOF1.

2.4.5 A-11

A-11 is the Traffic Operations primary storage location for chemicals and paints. Flammable containment storage lockers located within A-11 provide storage for flammable chemicals such as paints, as well as other potentially harmful chemicals. Along the outside wall of A-11 is a metal storage locker used to store fuel and Honda generators.

Photos 5-7 From left to right, A-9, A-10, and A-11

2.4.6 A-12, A-12.1, and adjacent

Building A-12 contains a bay which holds up to sixteen 250-gallon totes of marking paint. The totes are stored within an asphalt containment berm that measures 19-feet by 20-feet and is 3-inches high (total capacity of 710 gallons). The floor of the bay is constructed of impervious material. Roof runoff from this area drains to the Boise River via drainage area 3. An outdoor impervious three-walled secondary containment area is located to the north of A-12; the area is approximately 22-feet by 86-feet and at the low point 2-inches high. The area is sloped to the northeast with approximate capacity of 1800 gallons. If containment berms were to fail, runoff from this area would discharge the Boise River via drainage area 3 and outfall AOF1. A-12.1 houses the Satellite Accumulation Area (SAA) and Waste Storage Area (WSA) for paint related waste from products such as methanol.

Photos 8-10 From left to right, A-12, A-12.1, and adjacent

2.4.7 A-13

Building A-13 stores daily used chemicals for the paint crew, parts washer, and approximately 20 gallons of methanol stored within the striper truck during the off season. Roof runoff from this area drains to drainage area 3 discharging to the Boise river.

2.4.8 A-14

This structure contains all sweeper brooms, there is a spill kit located on the southeast corner outside of the building. Within the striper bay of the building, approximately 20 gallons of methanol is stored within the paint striper during the off season. Roof runoff from this building drains to either drainage area 2 or 3 with outfalls to the Boise River via AOF1 or AOF2.

Photos 11-12 From left to right, A-13 and A-14

2.4.9 A-15

A 500-gallon propane AST is located on the north side of the building. The double-walled tank is protected on three sides by jersey barriers and bollards, and the building on the 4th side. There is an emergency shut off switch for the tank's pump located on the east side of the building (at least 25 feet away from tank), with signage directing where the shut off switch is located. The covered shed is mainly used as an indoor materials storage location. Depending on the time of year, products such as Elastoflex may be stored in the southern part of the building. Outdoor storage of Elastoflex may occur to the to the west of A-20. Drainage from this area flows to drainage area 3 with outfall to the Boise River.

2.4.10 A-16 through A-20, excluding A-18

This area houses multiple small machines, traffic lighting, and miscellaneous parts. The area is covered to prevent surface water runoff, however roof runoff from this area either drains to drainage area 2 or 3 with outfall to the Boise River via AOF1 and AOF2.

2.4.11 A-18

A-18 is located along the northern fence line and adjacent to A-17 and A-19. The covered shed houses products such as drums of oils, used Flashphalt, Slide, and other types of hazardous waste depending on the time of year. 55-gallon drums (plastic and steel) and 5-gallon pails (plastic) are stored within the shed on containment decks which act as secondary containment. If containment were to fail from this area it would drain to drainage area 3 with outfall to the Boise river via AOF1.

Photos 13-14 from left to right, A-15 and A-20-17

2.4.12 A-21

Structure A-21 contains multiple sand and salt stockpiles as well as blue dye. The structure was installed in December of 2017 and is approximately 13,200 square feet. The shed has an asphalt berm along the east edge to prevent runoff. If the berm was to fail, runoff would be discharged into the Boise River via drainage area 3.

2.4.13 Fueling Stations

There are two fuel dispensing stations within the Adams facility. A diesel pump with Underground Storage Tank (UST) and gasoline pump with UST are both located between the A-8, mechanics shop, and A-10, traffic operations, total storage between the two structures is 20,000 gallons. Both fueling islands are equipped with spill kits and are controlled through a centrally located keypad. The fueling stations are not covered and the area is graded to prevent runoff. There is a ½ inch deep, three-inch wide channel that has been cut into the asphalt in a 10-foot perimeter outside the fueling islands to catch any small spills that may occur during the fueling of vehicles. This area drains to the main storm drain system discharging through AOF1 and drainage area 3.

2.4.14 Magnesium Chloride Tanks

The Adams Street facility houses six (6) 10,500-gallon magnesium chloride tanks. The tanks are stored in concrete secondary containment with drain valves remaining closed. Drain valves are to only be opened after careful inspection to ensure there are no contaminants in the collected rainwater. Inflow and outflow of the tanks is metered, and volume continuously monitored. Inspections of tanks occurs at least once a month or daily during winter operation season. If containment were to fail, liquids from this area would discharge to either the sanitary sewer via the wash bay & decant station, see section 2.4.17, or to the Boise River via drainage areas 2 or 3.

Photos 15-17 from left to right, A-21, fueling islands, and magnesium chloride tanks

2.4.15 Sanders Racks, Water Trucks, and Portable Tanks

Sander racks house the sand and sand/salt dispersing equipment (spreaders) that can be attached to dump trucks. The spreaders are operated by hydraulics and occasionally residual hydraulic oil may seep out of the lines. It is the operator's responsibility to ensure hydraulic lines on the spreaders are fully empty before storage. If any drips are encountered, absorbent pads or floor dry will be used to clean up and disposed of properly. ACHD also has multiple water trucks capable of containing 1300 or 3000 gallons of product and portable tanks capable of containing 100, 160, 200, or 6000 gallons of product. Runoff from these areas enters the adjacent storm drain system in drainage area 3 discharging to the Boise river via AOF1.

2.4.16 Material Storage Piles

Material storage stockpiles are located on the northwest side of the site. Examples of materials stored include sand, gravel chips, fill, rock, woody debris, excavated materials, and sediment debris pile. Storage of erodible materials should be located away from storm drains and be kept in a neat organized fashion. A berm was installed that wraps around the stockpiles to ensure runoff does not enter the adjacent storm drain system. Stormwater runoff that is collected from this area is removed using sweeper trucks periodically when pooling is observed. If the berm was to fail, runoff the area would enter the adjacent storm drain system in in drainage area 3 discharging to the Boise river via AOF1.

Photos 18-19 from left to right, sanders rack and material storage piles

2.4.17 Wash Bays & Decant Station

The facility has a wash bay & truck decant station located to the east of building A-15 and north of the magnesium chloride tanks. Liquid waste from this system is conveyed to discharge to Garden City's Sanitary Sewer System. Liquid and solid waste from sweepers and vacuum trucks are removed from the equipment at the decant station which then passes through a rock filter prior to being conveyed to the pump and treatment system. When deemed necessary, by the Broom Crew Chief, solids that settle at the bottom of the decant station are collected, dried, and hauled off-site to the appropriate disposal location. A max fill line is painted along the walls of the decant structure, to depict when to stop using the station and reduce the risk of an overflow event. The wash bay station includes the area just north of the magnesium chloride tanks. The area is used to washout sweeper trucks after dropping larger sediment at the decant station. The decant and wash bay liquid waste, wastewater, is comingled in structure 18 prior to being pumped in the 18,000 gallon above ground weir tank. The weir tank was installed in November of 2018 to increase settling time of liquids prior to being discharge to the Garden City Sanitary Sewer. Liquids from this operation are designed to drain to the treatment system and ultimately the sanitary sewer. It is important staff demonstrate good housekeeping to ensure runoff stays contained and does not discharge to the storm drain system. In general, if wastewater or stormwater runoff was to bypass the installed system, runoff from this area would either discharge to AOF1 or AOF2 depending on exact location and flow direction.

Photo 20. Decant Station

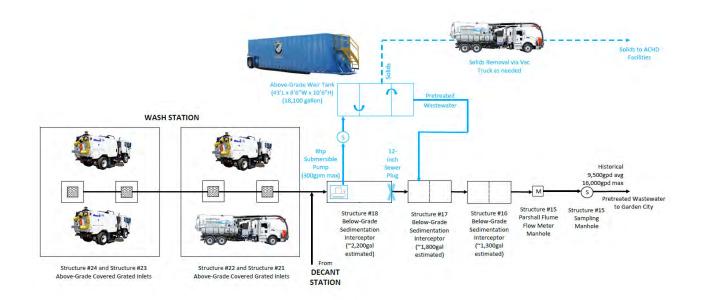


Figure 1. Decant & Wash Bay Treatment System Process Flow Diagram

2.4.18 Pump Shed

A pump shed is located between the decant station and magnesium chloride tanks. This shed has a well that can pump an upwards of 400 gallons a minute. Operators use the shed to fill and washout out their equipment throughout the day.

2.4.19 Containment Areas

There are two outdoor containment areas located on the western border of the facility. Both areas contain chip seal related equipment. During the winter, equipment is stored empty. However, during chip seal season, equipment trailers may contain up to 250 gallons of differing types of chipping oil. The containment berm is designed to store up to approximately 3,400 gallons of liquid. Distributor trucks only contain minor residual and are stored on drip pad. If there was a containment failure, these areas would discharge to drainage area 3 and ultimately the Boise River via AOF1.

Photos 21 and 22. Distributor truck pad on the left and containment pad on the right

Section 3: Stormwater Control Measures

This section discusses the day-to-day operations, procedures, and Best Management Practices (BMPs) implemented at the facility for good housekeeping and pollution prevention.

3.1 Minimize Exposure

The following structural controls and BMPs are used to minimize the exposure of industrial activities to rain, snow, snowmelt, and runoff.

3.1.1 Non-Stormwater Discharges to Drains

Storm drains within the facility are regularly inspected and cleaned out to reduce potential sediment entering the area. Discharges to Waters of the State can occur via the storm drain system.

- Storm drains within the facility should have fabric catch basin inserts (witches' hats) or above grate protection.
- Above grate protection and catch basin inserts should be inspected monthly and replaced or cleaned if excess sediment has built up. Sediment buildup around the catch basins should be regularly inspected and removed.
- Ensure stockpiles and adjacent materials are properly contained to limit the amount of nonstormwater discharging to the system.

Depending on the spilt material, if a non-stormwater discharge is observed related to petroleum, staff is to reference the SPCC, ASPP, and Spill Response Plan for appropriate procedures, documentation, and reporting requirements.

3.1.2 Outdoor Storage of Raw Materials

Raw materials that are stored outside on the site include soil, chips, debris, spoils, aggregate. To minimize exposure and protect materials during rain, snow, and wind the following are to be considered:

- Sweep paved areas weekly and as needed to reduce sediment accumulation.
- Stockpiles should not be placed adjacent to catch basins. If placed adjacent to catch basins, berms shall be installed around the pile to reduce runoff potential.
- Spill kits with clean up materials shall be stored adjacent to outdoor storage areas.
- Prior to rain event, stockpiles may be covered to reduce run-off.
- Salt shall always be stored within the salt storage shed, A-21.

3.2 Good Housekeeping

The following BMPs are implemented onsite to reduce exposed areas and ensure the site maintains good housekeeping practices.

3.2.1 Vehicle and Equipment Fueling

Vehicle and equipment fueling are closely regulated to reduce the potential of gas or diesel from entering the system. A ½ inch deep, 3-inch wide channel has been cut into the asphalt in a 10-foot perimeter outside the fueling islands to catch small spills that may occur during the fueling of vehicles.

The following shall be maintained to minimize employee exposure and ensure good housekeeping procedures are following:

- There are spill kits located at the fueling station to mitigate leaks or drips.
- Spill kit contents includes absorbent pads, booms, pillows, quick-dry, goggles, gloves, and disposal bag.
- Additional spill kit supplies are in the mechanics shop or weld shop for floor dry.
- Employees are instructed to stay with the vehicle while fueling, avoid topping off, and are trained yearly in proper fueling and cleanup procedures. Additionally, a SOP for fueling has been created and is available for employee viewing.
- Additional spill prevention and tanker delivery procedures are in the Adams SPCC plan (section 9.0).

3.2.2 Vehicle and Equipment Cleaning

Vehicles and equipment are cleaned at the wash bay and decant station. Water from this system is discharged to the sanitary sewer system.

• The area is paved, regularly swept, and sloped for wash water collection.

3.2.3 Outdoor Loading and Unloading of Materials

Below are the minimum considerations for loading and unloading material.

- Ensure forklifts operators are trained in proper loading and unloading to prevent spills.
- Maintain tidiness of disposal and storage areas.
- Limit delivery vehicle contents when storm drains are adjacent.
- If leaks occur during transfer, contain the leak using appropriate spill cleanup materials with nearby spill kit, and report and record or report as necessary according to the SPCC, ACHDs Spill Response Plan, other relevant regulations, and the Stormwater Routine Facility monthly inspection.
- During dry weather, move stockpiles slowly to reduce generating dust or spray water.

3.2.4 Waste Handling and Disposal

An important part of the facilities operations includes waste tracking including generation, storage, disposal, recycling, and reuse. Waste streams are characterized prior to disposal and tracking logs are located in the SWPPP binder onsite.

- Chemicals, materials, quantities, and Safety Data Sheets (SDS) are stored onsite either with Fleet, Traffic, or locatable in the Q drive.
- Storage containers are inspected regularly to determine container integrity, identify any leaks or spills, labeled and ensure lids are secure.
- If stored outside, scrap metal and other waste shall be stored in a covered container.

- Less toxic substitute materials shall be used when deemed possible by the waste handling contractor.
- Chemical specific SOPs have been generated by the waste handling contractor and are in the Superintendent's office for review.
- The Facilities Coordinator has records of the waste manifests for the yard.

3.2.5 Contaminated or Erodible Surface Areas

Sediment can be transported to receiving waters through erosion of unpaved areas of the facility, permanent sand and gravel storage and temporary stockpiles. The following activities are to be performed to address potential pollutants from contaminated and/or erodible surface areas:

- Keep erodible material as far away as possible from catch basins.
- Consider use of check dams to dissipate sediment in channelized areas.
- Consider covering piles with plastic tarps or installing berms around the perimeter if sediment discharge is observed.
- Inspect and maintain catch basin inserts that are collecting sediment.
- Maintain raised berms around the perimeter to keep stormwater onsite.
- Contaminated material shall be sampled prior to disposal and stored appropriately.

3.3 Maintenance

The following procedures and BMPs are in place to maintain site equipment and reduce the potential of spills and leaks. Maintenance records are maintained digitally through Asset Works and must be maintained for five years.

3.3.1 Vehicle and Equipment Maintenance and Repair

Vehicles and equipment maintenance and repair is necessary for an organized facility. Vehicles and heavy machinery go through a rigorous maintenance screening prior to use to ensure the equipment is functioning as designed and there are no leaks. The following practices are implemented when performing equipment and vehicle repair:

- Prior to use, vehicles and equipment are inspected for leaks and drips.
- When vehicle maintenance is required, vehicles are stored inside the mechanics shop.
- Drip pans may be placed under vehicles or equipment if leaks are a concern.
- Drip pans associated with this activity should be properly disposed of in a timely fashion.
- Spill kit materials are located in the mechanics shops and placed throughout the facility for use as needed.

3.3.2 Building and Ground Maintenance

Building and ground maintenance practices are important to reduce potential stormwater runoff impacts. Keeping areas clean will prevent the spread of pollutant containing material. Extra attention to surfaces can significantly reduce pollutant wash-off. In addition, an orderly work environment will also reduce the chance for inadvertent spills. The following good housekeeping practices are employed onsite:

- Keep outdoor work areas neat and organized.
- Drums, containers, and chemicals will be stored with lids closed, labeled, and located in the secondary containment area or by storage methods discussed in the applicable Safety Data Sheets (SDS) and relevant waste handling SOPs.
- Sediment residue will be swept in a timely fashion to reduce potential contact with stormwater run-off and reduce vehicle tracking. If vehicle or machinery tracking becomes an issue, the Broom Crew Chief will be notified, and a sweeper will clean the area.
- Trash, floatables, and debris will be contained with lid shut and regularly disposed of.
- Vehicles and equipment are regularly maintained to ensure no leaks or drips.
- Absorbent material will be used on minor drips and leaks around the facility and disposed of properly.
- During the summer if dust generation becomes an issue, vehicles and machinery will reduce speeds. If the problem continues, stockpiles may be sprayed down with clean water.
- Paved areas around the facility are swept weekly to reduce vehicle tracking with addition rounds as needed throughout the week.

3.3.3 Building Repair, Remodeling, & Construction

While buildings are under construction it will be important to remember the following:

- BMPs should be installed prior to construction and removed once the area has been restabilized.
- Cover stockpiles as necessary to reduce soil exposure.
- Place all liquid or hazardous materials in secondary containment sized appropriately, and store according to SDS and relevant waste handling SOPs.
- Reduce runoff from area by implementing appropriate BMPs such as straw wattles, sandbags, silt fence, etc...
- If track out is identified, manually sweep the area or request a street sweeper to clean the area.
- Protect catch basins using inlet protection and avoid hosing the area down with water.
- Appropriately store and dispose of waste materials. No waste material is allowed in storm drain.

3.4 Spill Prevention and Response

ACHD is responsible for spill prevention and response at the Facility. If an unauthorized non-stormwater discharge is observed, the spill will be handled in accordance with ACHD's Spill Response Plan. All spills shall be documented and included in the monthly inspection (form located in Appendix D). If the spill source is of a petroleum product, the Spill Prevention Control and Countermeasures (SPCC) plan should be referenced to ensure appropriate reporting and cleanup occurs. Additionally, if the spill or leak is related to one of the UST, the Idaho Department of Environmental Quality (DEQ) should be notified immediately. For further information regarding spills, clean up, and reporting procedures within the facility, refer to ACHD's Spill Response Plan, the Spill Prevention Control and Countermeasures Plan, (SPCC) and the Accidental Spill Prevention Plan (ASPP). Copies of the plans are in the superintendent's office and in the Q drive.

3.5 Erosion and Sediment Controls

Erosion and Sediment Control BMPs are implemented around the site as deemed necessary. BMPs implemented onsite include but are not limited to:

- Non-stormwater Discharges to Drain see section 3.1.1.
- Outdoor Storage of Raw Materials see section 3.1.2.
- Contaminated or Erodible Surfaces see section 3.2.5.

If channelized flows are observed, check dams may be installed to dissipate sediment and reduce flow velocity. If at any point operations at the facility are modified, additional BMPs may be installed as necessary and the SWPPP will be modified to include the changes.

3.6 Management of Runoff

Stormwater from the facility is conveyed to the Boise River via catch basin and sand and grease traps throughout the paved areas. Section 1.5. includes the specific regarding the drainage areas and section 1.6. for discharge locations. Catch basins are inspected monthly and will be cleaned as needed by the broom crew or drainage crew. Berms are placed around storage piles to limit potential stormwater runoff.

3.7 Storage of Winter Maintenance Materials

Salt and salt with sand mixture is used on roadways as deicer. When this material is exposed to stormwater it can transport chloride pollution to waterways and into groundwater.

The following practices can help keep salt and sand/salt piles from being transported by stormwater:

- Keep raw salt in covered salt shed.
- Sweep any salt seen migrating outside of the covered shed back into a covered area.
- Consider a door or berms on the salt shed to keep materials inside.
- Keep sand/salt piles as far away as possible from catch basins.

All salt and salt with sand mixture is stored in structure A-21, see section 2.4.12 for structure specifics.

3.8 Dust Generation and Vehicle Tracking

During summer months moving stockpiles may generate dust and become an air quality issue. Additionally after rain events, vehicle tracking may be noticeable.

See section 3.3.2. Building and Ground Maintenance for specific procedures in place at the facility to reduce the possibility of dust generation and vehicle tracking.

3.9 Employee Training

Annually, staff are trained in Pollution Prevention and Good Housekeeping for Municipal Operations. This training covers the following topics:

- Cloverdale and Adams Facility SWPPP requirements and BMPs
- Good Housekeeping
- Spill Prevention and Response
- Vehicle Fueling

- Vehicle and Equipment Maintenance
- Vehicle and Equipment Washing
- Vehicle Tracking
- Materials Management
- Waste Management
- Municipal Facility Maintenance
- Parking Lots and Streets
- Storm Drain System Cleaning
- Landscaping and Grounds Maintenance
- Working over or Near Waters
- Air quality conditions for the day

Training will be coordinated with the Training Specialist, the Stormwater Quality Specialist, and/or other qualified individuals and must be documented and recorded in the ACHD training compliance database. Training records must be retained for five years. Training records are retained by the Training Specialist as well as the Stormwater Quality Specialist.

Section 4: Inspections and Records

4.1 Inspections and Assessments

Monthly inspections are conducted to ensure BMPs are being implemented and are adequate for preventing stormwater pollutants discharging offsite. The Maintenance Superintendent, Crew Chief, or Leadworker are responsible for conducting the inspections or delegating inspection responsibilities to qualified staff members.

Inspections are conducted to:

- Verify that the description of the storm drain system in section 1.5 Drainage Areas and Appendices B and C are accurate. If additional BMPs are installed, modify figures as necessary for accuracy.
- Verify that BMPs are being implemented, maintained, and are functioning adequately.
- Inspect all drainage structures including outfalls for defects and maintenance needs.
- List observations of floating materials, oil and grease, turbidity, odor, etc. in drainage structures.

Inspections will be documented and recorded on Stormwater Routine Facility Inspection Report in Appendix D. If at any time a BMP is not effective, it must be repaired or maintained before the next anticipated storm event. If maintenance prior to the next storm event is not possible, maintenance must be completed as soon as possible and documented on the inspection form for the extended repair schedule. In the interim, alternative measures must be implemented to ensure that water quality is not degraded by stormwater discharges from the facility. Inspections must be retained for five years.

4.2 Record Retention

Per NPDES requirements records must be retained for a minimum of five (5) years. Adams Facility records will be retained by the Adams Maintenance Superintendent or as otherwise documented below. Records to be retained include, but are not limited to:

- Inspection Forms
- Maintenance Records
- Waste Disposal Records
- Monthly Analytical Reports for Indirect Discharge Permit
- The Facilities Coordinator will maintain the Waste Manifest Logs
- Training records are maintained by the Training Specialist and Stormwater Quality Specialist

Section 5: Corrective Actions

All corrective actions will be documented in monthly inspections and the SWPPP will be modified to include all new or updated BMPs and any other pertinent information.

Section 6: SWPPP Modifications

This SWPPP is a living document that is intended to replace the 2015 SWPPP. As such, it can be modified as facility operations are altered. Alterations include but are not limited to new structures, construction, or additional BMPs. Any modifications should be documented in the revision section. Additionally, the SWPPP will be updated if new information regarding facility compliance or other documentation is deemed necessary. Reporting of modifications to the Environmental Programs Coordinator is the responsibility of the Superintendent. The SWPPP will be updated by the Environmental Programs Coordinator forms, or observed.

Section 7: References & Resources

ACHD Accidental Spill Prevention Plan, November 2020, link-Q:\Maintenance\Adams Maintenance\2020 Adams Yard Submittals to Garden City

- ACHD Spill Prevention, Control, and Countermeasures Plan (SPCC), September 2019, link-Q:\Maintenance\Adams Maintenance\ ACHD Garden City SPCC Sep 2019
- ACHD Spill Response Plan, February 2021, link-Q:\Maintenance\Spill Response_Spill Response Plan\2021
- Environmental Protection Agency. *EPA Industrial SWPPP Template*. 2015. https://www.epa.gov/sites/production/files/2015-11/msgp2015_swppptemplate.docx.

- Environmental Protection Agency. *When are You Required to Report an Oil Spill and Hazardous Substance Release.* 14 March, 2017. www.epa.gov/emergency-response/when-are-you-required-report-oil-spill-and-hazardoussubstance-release.
- State of Idaho, Department of Environmental Quality. *Catalog of Stormwater Best Management Practices for Idaho Cities and Counties*. 2005. http://www.deq.idaho.gov/media/622263-Stormwater.pdf.
- State of Idaho, Department of Environmental Quality. *Idaho Catalog of Storm Water Best Management Practices, draft.* 2019. https://www.deq.idaho.gov/media/60183104/idaho-catalog-storm-water-bmps-draft-0719.pdf

Stormwater Pollution Prevent Plan

Ada County Highway District Cloverdale Maintenance Facility 440 North Cloverdale Boise, Idaho 83713

November 2020 SWPPP Contact:

Ada County Highway District 3775 Adams Street Garden City, Idaho 83714 (208) 373-6100 Monday-Friday 8AM to 4:30PM

Revisions

Date	Revision	Description	
	Number		
October 2015	Rev 0	See old SWPPP	
October 2019	Rev 1	Update for current site conditions	
November 2020	Rev 2	Updated drainage areas and site conditions	

This SWPPP is a living document that is intended to replace the 2015 SWPPP. As such, it can be modified as facility operations are altered. Alterations include but are not limited to new structures, construction, or additional BMPs. Any modifications should be documented in the above revision section. Additionally, the SWPPP will be updated if new information regarding facility compliance or documentation is deemed necessary.

Page intentionally left blank

Table of Contents

Section 1: Facilities Description and Contact Information	5
1.1 Facility Background	5
1.1.1 Facility Information	5
1.2 Site Description	5
1.2.1 Additional Facility Environmental Plans	6
1.3 Facility Site Maps	6
1.4 Contact Information and Responsible Parties	6
1.5 Drainage Areas	7
1.6 Discharge Locations	8
1.6.1 Unauthorized Non-stormwater Discharges Documentation	9
Section 2: Potential Pollutant Sources	
2.1 Potential Pollutants Associated with Industrial Activity	
2.2 Spills and Leaks	10
2.3 Monitoring Requirements and Effluent Limits	
2.4 Facility Features and Structure Descriptions	11
2.4.1 Structure C-1	11
2.4.2 Structure C-2.	11
2.4.3 Structure C-3	12
2.4.4 Structure C-4.	12
2.4.5 Structure C-5 and Wastewater Decant System.	12
2.4.6 Structure C-6.	13
2.4.7 Structure C-7	13
2.4.8 Structure C-8.	14
2.4.9 Structure C-9	14
2.4.10 Hose Sheds	14
2.4.11 Fueling Stations	14
2.4.12 Magnesium Chloride Tanks	15
2.4.13 Sanders Racks	15
2.4.14 Material Storage Piles	16
2.4.15 Outdoor Secondary Containment Areas	16

Section 3: Stormwater Control Measures	16
3.1 Minimize Exposure	17
3.1.1 Non-Stormwater Discharges to Drains	17
3.1.2 Outdoor Storage of Raw Materials	17
3.2 Good Housekeeping	17
3.2.1 Vehicle and Equipment Fueling	18
3.2.2 Vehicle and Equipment Cleaning	18
3.2.3 Outdoor Loading and Unloading of Materials	18
3.2.4 Waste Handling and Disposal	18
3.2.5 Contaminated or Erodible Surface Areas	19
3.3 Maintenance	19
3.3.1 Vehicle and Equipment Maintenance and Repair	19
3.3.2 Building and Ground Maintenance	20
3.3.3 Building Repair, Remodeling, & Construction	20
3.4 Spill Prevention and Response	20
3.5 Erosion and Sediment Controls	21
3.6 Management of Runoff	21
3.7 Winter Maintenance Materials Storage	21
3.8 Dust Generation and Vehicle Tracking	22
3.9 Employee Training	22
Section 4: Inspections and Records	22
4.1 Inspections and Assessments	22
4.2 Record Retention	23
Section 5: Corrective Actions	23
Section 6: SWPPP Modifications	23
Section 7: References & Resources	24
Appendix A. Vicinity Map Appendix B. Drainage Areas and Outfall Map	

Appendix C. Facility Site Map

Appendix D. Stormwater Routine Facility Monthly Inspection Form

Section 1: Facilities Description and Contact Information

1.1 Facility Background

Ada County Highway District (ACHD) is a permittee under the National Pollutant Discharge Elimination System (NPDES) Phase I and Phase II Municipal Storm Sewer System (MS4) permits. The NPDES permits require permittees develop and implement Storm Water Pollution Prevention Plans (SWPPPs) for all permittee-owned material storage facilities and maintenance yards located within the permit area. Both the Adams and Cloverdale Maintenance Facilities are located within the Phase I permit area and are covered under Permit No: IDS-027561 (Permit). This SWPPP is intended to meet Permit requirement II.B.4.f of the Boise Area NPDES MS4 Permit and prevent the discharge of stormwater pollutants into receiving waters through the implementation of site-specific Best Management Practices (BMPs).

1.1.1 Facility Information	
Facility Name:	Ada County Highway District Cloverdale Maintenance Facility
Facility Street Address:	440 North Cloverdale Road Boise, Idaho 83713
Facility Mailing Address:	440 North Cloverdale Road Boise, Idaho 83713
Facility Phone Number	(208) 387-6100
During Standard Working Hours:	8am-4:30pm, Monday - Friday
Owner Name:	Ada County Highway District
Owner Address:	3775 Adams Street Garden City, Idaho 83714
Operator Company Name:	Ada County Highway District
Operator Company Address:	3775 Adams Street Garden City, Idaho 83714
Latitude/Longitude:	43°36′33.27″ N 116°20′02.70″ W
River Drainage Basin:	Boise River (Hydrologic Unit Code – HUC 170501)
Receiving Water Bodies:	Evans Drain, Fivemile Creek

1.2 Site Description

The ACHD Cloverdale Maintenance Facility (Facility) located in Boise, Idaho, is a construction, distribution and maintenance facility that is used to service the public roadways in Ada County, Idaho. The Facility is located on 15.5 acres in west Boise. The Facility consists of twelve structures used for

general office, vehicle maintenance, and storage. Fuel dispersing islands, two underground storage tanks (USTs), and a wastewater decant system are also located on the Facility.

The land immediately surrounding the Facility includes commercial warehouse properties on the east and west sides, Union Pacific Railroad (UPRR) track right-of-way to the south, and west of W. Executive Drive to the north. There are two entrances along N. Cloverdale Road and one along W. Executive Drive.

1.2.1 Additional Facility Environmental Plans

Located centrally within the Facility campus are two underground storage tanks (USTs) located beside the fuel dispersing islands which store a total of 20,000-gallons. The Cloverdale Facility meets the requirements of a Tier I self-regulating facility under the Spill Prevention Control and Counter measures (SPCC) Oil Pollution Prevention regulations. The SPCC plan, prepared by a professional engineer, meets requirements for both a Tier I and Tier II facility. The SPCC Plan outlines the procedures, methods and equipment used at the Facility to prevent and respond to spills of liquid materials. A copy of the SPCC plan and corresponding documents are in the Cloverdale Superintendent's office, the on-call go bag, and in the maintenance facilities office.

1.3 Facility Site Maps

Cloverdale Facility site maps are located in Appendices A-C. Appendix A contains the general vicinity map, Appendix B site stormwater outfall locations and drainage areas, and Appendix C consists of the Facility site map.

1.4 Contact Information and Responsible Parties

The following people are involved in implementing and modifying the SWPPP.

Responsible Officals-					
Deputy Director of Main	ntenance 2	08-387-6322 (office)			
	Responsibilit	es: Ensure overall compliar	ce of all ACHD owned maintenance		
	facilities with	in the county.			
Maintenance Manager	2	08-387-6319 (office)	208-919-4623 (cell)		
	Responsibilities: Maintain coordination between maintenance staff and				
	environment	al staff, ensure consistent e	nvironmental compliance, and provide		
	budget when	needed for compliance relations	ated issues.		
Cloverdale Superintend	ent 20	3-387-6352 (office)	208-484-0416 (cell)		
	Responsibilit	es: Direct, coordinate and	ensure that BMPs are implemented;		
	budget for co	nstruction of new BMPs, m	odification of existing BMPs and		
	maintenance	of existing BMPs. Direct an	d educate employees working at the		
	Cloverdale fa	cility of their roles and resp	onsibilities in implementing this SWPPP.		
	Participate in	compliance evaluations an	d inspections of the facility.		
Environmental Program	is Coordinator	208-387-6279 (office)	208-608-3983 (cell)		
	Responsibilit	es: Initial development of t	he SWPPP and updates, as needed, for		
	compliance s	upport and facility changes	Participate in compliance evaluations		
	and inspection	ns of the facility as needed			

Drainage Crew Chief 208-387-6357 (office) 208-488-0561 (cell) Responsibilities: Monthly inspections and documentation. As well as, maintenance and implementation of BMPs as needed around the facility.

1.5 Drainage Areas

Stormwater at the Cloverdale Facility consists of either onsite retention or discharge to the Evans Drain. A site map showing the drainage areas, outfalls, and site features are in Appendix B and C (drainage areas labeled as D-1 through D-9).

- Drainage Area 1(D-1) Drainage area 1 is approximately 5.78 acres and includes the southern portion of the Facility. The area drains to the west through a series of catch basins and underground pipes to a bioretention swale, BRS-1, along N. Cloverdale Road. Portions of this area are paved with asphalt, rotomilled asphalt (an uncompacted recycled asphalt material), or gravel. Materials stored in this drainage area consist of stockpiles of sand, aggregates, sweeper debris, construction debris, salt/sand mixture within the salt shed, sander racks, and magnesium chloride tanks, as well as general construction equipment.
 - Potential pollutants in this area include:
 - Oil from vehicle/equipment leaks
 - o Sediment from stockpiles and unpaved surfaces
 - Chlorides from salt/sand shed
- Drainage Area 2 (D-2) Drainage area 2 is approximately 2.72 acres. The area drains to the west through a series of catch basins and underground pipes to two bioretention swales, BRS-2 and BRS-3, along N. Cloverdale Road. This area has both impervious asphalt, concrete, and rotomilled asphalt. The guest parking lot along the Cloverdale Rd entrance is composed of permeable pavers (BMP ID# PP-1) to manage stormwater. Specific industrial activities in the drainage area include equipment storage, employee vehicle parking, and vehicle refueling at the fuel islands.

Potential pollutants in this area include:

- Oil from vehicle/equipment leaks
- o Gasoline and diesel drips or spills from vehicle fueling islands
- Drainage Area 3 (D-3) Drainage area 3 is approximately 1.54 acres. The area drains the north portion of the Facility. This area contains the decant water treatment system, decant basins, sand filter, hose sheds, and water storage tanks. Stormwater from this area as well as wastewater drains into the decant treatment system for reuse during cleaning of equipment onsite or is discharged to the Boise City sanitary sewer system. Additionally along the eastside of the property there is a stormwater outfall that discharges (12-inch corrugated metal pipe) to Evans Drain. Currently the outfall pipe is plugged however, the piping remains with potential discharge to Cloverdale Outfall 1 (COF1). The outfall is plugged at the manhole adjacent to the water tanks.
 - Potential pollutants in this area include:
 - o Sediments from swept and vacuumed catch basin material
 - o Bacteria from swept and vacuumed catch basin material

- Other pollutants from swept and vacuumed catch basin material
- Drainage Area 4 (D-4)- Drainage area 4 is approximately 3.22 acres. The majority of this area is rotomilled asphalt or remains as gravel and compacted soil. Specific industrial activities in the drainage area include stockpiling, vehicle parking, and secondary containment for petroleum products. Stormwater from this area ultimately drains to the north and is conveyed to a bioretention swale, BRS-4, via a catch basin adjacent to Executive Drive. Potential pollutants in this area include:
 - o Sediments from tracking vehicles and chip storage area
 - Petroleum from vehicle/equipment leaks
 - Overflow of containment areas containing petroleum products
- Drainage Area 5 (D-5)- Drainage area 5 is 0.54 acres. This area is asphalt paved with curb and gutter along the north side for stormwater conveyance to two catch basins. The catch basins are located along the northern curb to convey stormwater into adjacent bioretention swales, BRS- 5 and BRS-6. There are no industrial activities associated with this area, this area is used as the entrance and exit to employee parking.
- Drainage Areas 6 and 7 (D-6 and D-7)- Drainage areas 6 and 7 are used for employee parking. There are no industrial activities associated with these areas. Drainage area 6 is 0.59 acres and drainage area 7 is 0.32 acres. Both areas are graded to allow stormwater to infiltrate in bioretention swales, BRS-7 through BRS-10 via curb cuts.
- Drainage Areas 8 and 9 (D-8 and D-9)- Drainage areas 8 and 9 are used for employee parking. There are no industrial activities associated with these areas. Drainage area 8 is 0.39 acres and drainage area 9 is 0.38 acres. Both areas are graded to collect stormwater in catch basins along north and western curbs for conveyance into adjacent bioretention swales, BRS-11 and BRS-12.

1.6 Stormwater Discharge Locations

In 2017 the Facility was redesigned to reduce the potential of offsite stormwater discharges. Facility updates modified existing drainage areas to convey stormwater to onsite bioretention swales along N. Cloverdale Road and Executive Drive. Drainage areas 1, 2, 8, and 9 discharge to bioretention swales located on N. Cloverdale Road. Drainage areas 4, 5, and 9 discharge to bioretention swales along Executive Drive. Drainage areas 6 and 7 drain to bioretention swales via curb cuts to allow stormwater to infiltrate within each individual area. Drainage area 3 includes the decant system which was designed to overflow from two 20,000-gallon storage tanks into a 12 inch corrugated metal pipe on the eastern border of the property. The pipe flows south and discharges to the Evans Drain via COF1 (Photo 3). Evans Drain connects to Fivemile Creek approximately 2.5 miles downstream. Currently the outfall pipe is plugged at the manhole structure next to the water tanks. Water from the decant system is discharged to the Boise City sanitary sewer through a temporary hose connection or reused within the decant system for cleaning equipment.

Appendix B includes the bioretention swales, outfalls, and permeable pavers, as well as storm drain inlets and seepage beds adjacent to the Facility in case of an overflow event. Table 1 specifies the BMP type and BMP identification number per each drainage area.

Drainage Area	ВМР Туре	BMP Identification Number
1	Bioretention Swale	BRS-1
	Bioretention Swales	BRS-2
2	DIOLETELITION 2Males	BRS-3
	Permeable Pavers	PP-1
4		BRS-4
5		BRS-5
		BRS-6
		BRS-7
0	Bioretention Swales	BRS-8
7		BRS-9
		BRS-10
8		BRS-11
9		BRS-12

Table 1. Structural BMPs within each Drainage Area

Photos 1-3 from left to right. Drainage area 1 bioretention swale (BRS-1), drainage area 4 bioretention Swale (BRS-4) and Evans Drain outfall (COF1).

1.6.1 Unauthorized Non-stormwater Discharges Documentation

ACHD is responsible for spill prevention and response at the Facility. If an unauthorized non-stormwater discharge is observed, the spill will be handled in accordance with ACHD's Spill Response Plan. All spills shall be documented and included in the monthly inspection (form located in Appendix D) and reported to applicable agencies, if deemed necessary. If the spill is a petroleum product, the Spill Prevention Control and Countermeasures (SPCC) plan should be referenced to ensure appropriate reporting and cleanup occurs. If the spill or leak is related to a UST, the Idaho Department of Environmental Quality (DEQ) should be notified immediately. The SPCC file path and DEQ website are located in Section 7. References & Resources.

Section 2: Potential Pollutant Sources

2.1 Potential Pollutants Associated with Industrial Activity

Throughout the Facility there are potential pollutants that could spill, leak, or drip. Below are industrial activities that occur at the facility and their associated pollutants.

Industrial Activity	Associated Pollutants	
Fueling and Vehicle Maintenance	Oil, gas, diesel, or hydraulic fluid	
Salt Stockpiling	Chlorides (NaCl and MgCl)	
Stockpiling of sand, dirt, riprap, or rubble	Sediment	
Street Sweeper and Vehicle Washing	Sediment or Bacteria	
Vacuum Truck and Sweeper Waste Decanting	Sediment or Bacteria	

 Table 2. Cloverdale Industrial Activities and Associated Pollutants

2.2 Spills and Leaks

Throughout the Facility there are areas that are more prevalent to leaks or spills. Spills and leaks that are observed during the site inspection are documented on the inspection reports. Minor drips occur from the removal of the spreaders from the sander racks (see 2.4.13 for additional information). Staff are trained to clean up any spills or leaks observed onsite.

Table 3. Industrial Activity and Correlated Discharge Area and End Point Structure

Location	Discharge Area	End Point Structure (BMP Structure No.)
Sanders Racks	Drainage Area 1	BRS-1
Fueling Station	Drainage Area 2	BRS-2, BRS-3
Decant Water Treatment	Drainage Area 3	COF1, BRS-2, BRS-3, BRS-4
Vehicle Storage	Drainage Areas 1,2, & 4	BRS-1, BRS-2, BRS-3 BRS-4

2.3 Monitoring Requirements and Effluent Limits

Currently there are three types of scheduled monitoring conducted at the Cloverdale Facility:

- 1. Stormwater effluent monitoring is currently not performed. If the plug within the Evans drain outfall is removed, then sampling would be performed. While the plug remains, there is no stormwater effluent monitoring completed on the site.
- 2. Solid waste sampling occurs quarterly to ensure sweeper and vacuum waste stored onsite meets Ada County Landfill disposal requirements.
- 3. Health and Safety sampling is completed monthly to ensure reuse water from the decant system is within appropriate bacteria limits to be utilized by staff for cleaning equipment. Wastewater samples are collected from the hose sheds.

2.4 Facility Features and Structure Descriptions

2.4.1 Structure C-1

The administrative office, C-1, is used for office purposes. The mechanics shop located adjacent to the administrative office building is used for general mechanical maintenance of vehicles and equipment. The structure is approximately 12,520 SF. This building also houses the oil storage room. The concrete floor of the mechanic shop drains into a trough that lies along the axis of the shop. The trough is connected to the storm drain system; however, the connection was plugged in 2015. This plug should remain in place until the connection can be removed during future renovations. Spills within the mechanic shop tend to be small and are cleaned up immediately by ACHD personnel. For detail on the oil handling, storage and spill response refer to the Cloverdale SPCC Plan, as well as relevant waste handling SOPS or BMPs for work activities. The roof drains on this building are connected to the storm drain system on the north and south which discharge into Drainage Area 1 and 2. Vehicles and machinery enter the yard portion of the facility via the gates to the north of the Administrative offices and mechanics shops. The entrances are paved and are regularly swept if sediment accumulates. The covered portion of this area houses salt dye, old rags, degreaser, asphalt and other general supplies. Materials needing secondary containment are kept under cover with appropriate secondary containment. The visitor parking area contains permeable pavers which are identified in Appendix B and C.

2.4.2 Structure C-2

Structure C-2 is mainly used for vacuum truck storage. The structure is approximately 3500 SF. There are six vacuum trucks and one vacuum sweeper stored inside.

Photos 4-5. From left to right Structures C-1 and C-2.

2.4.3 Structure C-3

Structure C-3 contains the weld shop and a secondary containment concrete storage area. The weld shop houses welding materials, oxygen and acetylene tanks, and is approximately 3,300 SF. The secondary containment area contains hazardous waste storage. Products typically stored in this area are related to chipseal waste and include products such as Slide (New and Used) and FlashPhalt (Used). The containment capacity for the area is approximately 950 gallons. FlashPhalt products are no longer in use and transition to a Slide product is occurring.

2.4.4 Structure C-4

Structure C-4 is mainly used for specific maintenance crew equipment and materials storage, a wood shop, and vehicle storage. The structure is approximately 13,350 SF. The crew sheds have a concrete liner. Materials stored include vegetation crew supplies like, glyphosate and 2 stroke oil, and vehicle storage.

Photos 6-7. From left to right, Structures C-3 and C-4.

2.4.5 Structure C-5 and Wastewater Decant System

Structure C-5 houses the hydraulic equipment that runs the wastewater decant system on the east side of the property. This structure consists of a pump house, two 20,000-gallon water tanks that are plumbed to store wastewater from the four decant bays and adjacent sand filter. Structure C-5 and the decant system work in line with each other to treat wastewater from vacuum and sweeper trucks as well as general equipment washing. Wastewater collected in this system is from material that is vacuumed from storm drainage structures or swept from roadways within the county. The wastewater is released onto a large pad that is designed to drain excess water away from the solids, which then gravity conveys to a 3,200 SF settling basin that is divided into four cells. Wastewater is slowly routed through each of the cells to help facilitate maximum settling of any solids. Settled water is then sprayed over the surface of a 2,800 SF sand filter designed to remove any suspended pollutants in the water. The sand filter contains a pipe that is plumbed into an adjacent manhole where it is treated with chlorine and is then pumped to two aboveground 20,000-gallon storage tanks. In this manhole there is a plug that blocks the discharge into the Evans Drain outfall (CO1). The treated water is used to clean trucks and equipment in the yard.

Stormwater runoff from this area is contained by berms. Runoff from the decant pad and decant basins is retained in the decant system itself. Grades and berms are maintained to prevent stormwater runoff from this area from reaching other drainage areas in the facility. Dried waste materials from the decant pad are disposed of at the Ada County Landfill and documented on the Waste Manifest Log with amount, date, and time by each employee.

Photos 8-10. From left to right, structure C-5, settling basins, and initial decant area.

2.4.6 Structure C-6

The truck wash building, C-6, consists of two wash bays, one being for vehicles with oil, grease, and tar and the other for all other vehicles. The wash bays contain pressure washing equipment used to clean vehicles and equipment and drain to an oil water separator prior to discharge to the sanitary sewer.

2.4.7 Structure C-7

Structure C-7 is used to store road crew traffic supplies. Supplies include traffic signs, cones, flagging materials, and construction information posters.

Photos 11 and 12. From left to right Structures C-6 and C-7.

2.4.8 Structure C-8

Sodium chloride (NaCl), salt, is stored in covered building, C-8, located on the southern border of the Facility and is approximately 12,000 SF. ACHD also stores the sand/salt mixture in the storage shed. There are berms located on both sides of the structure to limit tracking and potential discharge during rain events.

2.4.9 Structure C-9

Building shed C-9 is located adjacent to the magnesium chloride (MgCl) tanks (see 2.4.12 for additional information) in the southwest section of the Facility. The shed contains a pump, miscellaneous electrical and spare parts, as well as an eyewash station.

Photos 13 and 14. From left to right, Structures C-8 and C-9.

2.4.10 Hose Sheds

Hose Sheds 1, 2, and 3 are located adjacent to the wastewater decant system. The hose sheds are used for sweepers, vacuum trucks, and other equipment to utilize either with recycled reuse water from the decant system or potable water from Suez for washing equipment.

2.4.11 Fueling Stations

There are two fuel dispensing stations within the Facility. A diesel pump with an underground storage tank and gasoline pump with an underground storage tank are both located between the mechanics shop (Structure C-2) and covered vehicle storage area (Structure C-3). The total storage between the two UST structures is 20,000 gallons. Both fueling islands are controlled through a centrally located keypad and are equipped with spill kits. The fueling stations are not covered. To contain minor drips and spills, a 1-inch deep, 3-inch wide channel has been cut into the asphalt. The fuel station area drains to the storm drain system that discharges into bioretention swales, BRS-2 and BRS-3, located in drainage area 2.

Photos 15 and 16. From left to right, hose shed and diesel fueling station.

2.4.12 Magnesium Chloride Tanks

The Facility houses eight 10,000-gallon magnesium chloride tanks. The tanks are stored in a concrete secondary containment structure with drain valves that are closed during day to day operations. Secondary containment for the tanks consists of a concrete berm; the bermed area has the capacity to store approximately 25,000 gallons. Drain valves are used to discharge rainwater that has collected in the containment structure. The drain valves are to be opened only after careful inspection to ensure there are no contaminants in the collected rainwater. Inflow and outflow of the tanks are metered, and volume can be monitored continuously. Inspections of the tanks occur at least once a month or daily, as needed, during winter operations.

2.4.13 Sander Racks

Sander racks house the salt and sand/salt dispersing equipment (spreaders) that can be attached to dump trucks. The spreaders are operated with hydraulics and residual hydraulic oil may seep out of the lines. It is the operator's responsibility to ensure hydraulic lines on the spreaders are empty before storage. If drips are encountered, absorbent pads or floor dry will be used to clean up and disposed of properly.

Photos 17 and 18. From left to right magnesium chloride tanks and sanders racks.

2.4.14 Material Storage Piles

There are two material storage pile areas located within drainage areas 1 and 4. Examples of materials stored include sand, gravel chips, fill, rock, woody debris, excavated materials, sweeper and vacuum debris. Storage of erodible materials is to be located away from storm drains. Storage areas and piles are to be kept in a neat organized fashion.

Photos 19 and 20. Material Storage Pile Areas

2.4.15 Outdoor Secondary Containment Areas

There are two outdoor secondary containment areas for oil related products. Both are located in drainage area 4. Each secondary containment area is composed of sufficiently impervious material per SPCC regulations and should be been sized for the largest single container with sufficient freeboard for precipitation. Distributor trucks are parked in a third containment area, SC-3. Distributor trucks are to be parked empty eliminating the requirement to have an area sufficiently impervious and sized for the largest single container with sufficient freeboard for precipitation. This area was designed for minor drips that may occur from the spray bars on the trucks.

Photo 21 through 23. From left to right, SC-1, SC-2, and SC-3.

Section 3: Stormwater Control Measures

This section discusses the day-to-day operations, procedures, and Best Management Practices (BMPs) implemented at the facility for good housekeeping and pollution prevention.

3.1 Minimize Exposure

The following structural controls and BMPs are used to minimize the exposure of industrial activities to rain, snow, snowmelt, and runoff.

3.1.1 Non-Stormwater Discharges to Waterways

Portions of the Facility site were remodeled in 2017 to build a new sand/salt shed, retain stormwater runoff on site using green stormwater infrastructure, and install new employee parking. During this process the storm drain inlets within the Facility were rerouted to bioretention swales along N. Cloverdale Road and W. Executive Drive, Appendix B includes site specifics as they relate to drainage areas. Storm drains within the Facility are inspected monthly and cleaned out to reduce sediment entering the area. Discharges to the Waters of the US can occur through Structure C-5 and the water decant system, by means of a leaking plug, or if there is an overflow of the bioretention swales along Executive Rd or Cloverdale Rd from drainage areas 1, 2, 8, or 9.

- Storm drains within the Facility are to be covered with fabric catch basin inserts (aka witches hats) or above grate protection.
- Above grate protection and catch basin inserts are to be inspected monthly and replaced or cleaned, if excess sediment has built up. This includes sediment/debris build up around the surface of the catch basin.

Depending on the spilt material, if a non-stormwater discharge is observed related to petroleum, staff is to reference the SPCC for appropriate procedures, documentation, and reporting requirements.

3.1.2 Outdoor Storage of Raw Materials

Raw materials that are stored outside and uncovered on the site include soil, chips, debris, spoils, and aggregate. To minimize exposure and protect materials during rain, snow, and wind the following are required unless stated otherwise:

- Sweep paved areas at a minimum weekly with additional sweeping as necessary to eliminate sediment accumulation.
- Stockpiles shall not be placed adjacent to catch basins.
- Spill kits with clean-up materials are adjacent to fuel pumps and outdoor storage areas.
- Reduce offsite run-on potential by sloping the area away from the side and/or adding berms.
- Prior to rain event, consider covering stockpiles to reduce run-off or ensure material will not flow into storm drains.
- Salt shall always be stored within the salt storage shed, Structure C-8.

3.2 Good Housekeeping

The following BMPs are implemented onsite to reduce areas exposed to precipitation/wind and ensure the site is maintained using good housekeeping practices.

3.2.1 Vehicle and Equipment Fueling

Vehicle and equipment fueling are managed to reduce the potential of gas or diesel from entering the system through the implementation of the following practices. Additionally, a 1-inch deep, 3-inch wide channel has been cut into the asphalt to catch small spills that may occur during the fueling of vehicles. The following shall be maintained to minimize employee exposure and ensure good housekeeping procedures are following:

- Spill kits are located at the fueling station to mitigate leaks or drips.
- Spill kit contents includes absorbent pads, booms, pillows, quick-dry, goggles, gloves, and disposal bag.
- Additional spill kit supplies are located in the mechanics shop, Structure C2.
- Employees are instructed to stay with the vehicle while fueling, avoid topping off fuel tanks, and are trained yearly in proper fueling and cleanup procedures.
- Additional spill prevention and tanker delivery procedures are located in the Cloverdale SPCC plan (Section 9.0)

3.2.2 Vehicle and Equipment Cleaning

There are two wash areas at this Facility where vehicles and equipment are cleaned at the truck wash building (C-6 structure) and decant system (adjacent to C-5 structure). Water from both systems is discharged to the sanitary sewer system.

- Both structures are paved or concreted and sloped to ensure wastewater collection occurs within each structure.
- Maintenance staff are to sweep the site weekly or additionally as needed.
- There is an oil/water separator in structure C-6 to pretreat wash water prior to discharging to the sanitary sewer. The oil/water separator is cleaned yearly and additionally as needed by a vendor.

3.2.3 Outdoor Loading and Unloading of Materials

Below are the minimum activities to be implemented for loading and unloading material.

- Ensure forklifts operators are trained in proper loading and unloading to prevent spills.
- Maintain clean disposal locations in drainage areas 1-4.
- Limit delivery vehicle unloading where storm drains are present or nearby.
- If leaks occur during transfer, contain, use appropriate spill cleanup materials with nearby spill kit, and report and record or report as necessary according to the SPCC and other relevant regulations and the Stormwater Routine Facility monthly inspection.
- During dry weather, move stockpiles slowly to reduce generating dust or spray water.

3.2.4 Waste Handling and Disposal

An important part of facilities operations addresses waste handling, disposal and tracking. Activities tracked include generation, storage, disposal, recycling, and reuse. Waste streams are characterized

prior to disposal and tracking logs are located in the SWPPP binder in the superintendent's office or as documented below and must be retained for five years.

- Chemicals, materials, quantities, and Safety Data Sheets (SDS) are stored onsite.
- Storage containers are inspected regularly to determine container integrity, identify any leaks or spills, labeled and ensure lids are secure.
- If stored outside, scrap metal and other waste shall be stored in a covered container.
- Less toxic substitute materials shall be used when deemed possible by the waste handling contractor.
- Chemical specific SOPs for disposal have been generated by the waste handling contractor and are located in the superintendent's office for review.
- The Facilities Coordinator has records of the waste manifests for the yard.

3.2.5 Contaminated or Erodible Surface Areas

Sediment can be transported to receiving waters through erosion of unpaved areas of the Facility, permanent sand and gravel storage and temporary soil piles. The following activities are to be performed to address potential pollutants from contaminated and/or erodible surface areas:

- Keep erodible material as far away as possible from catch basins.
- Consider use of check dams to dissipate sediment in channelized areas.
- Consider covering piles with plastic tarps or installing berms around the perimeter if sediment discharges continues to be observed.
- Inspect and maintain catch basin inserts.
- Maintain raised berms around the perimeter to keep stormwater onsite.

3.3 Maintenance

The following procedures and BMPs are in place to maintain site equipment and reduce the potential of spills and leaks. Maintenance records are maintained digitally through Asset Works and must be maintained for five years.

3.3.1 Vehicle and Equipment Maintenance and Repair

Vehicles and equipment maintenance and repair are integral to successfully accomplishing ACHD's mission. Vehicles and heavy machinery go through a maintenance screening prior to use to ensure the equipment is functioning as designed and there are no leaks. The following practices are implemented when performing equipment and vehicle repair:

- Prior to each use, vehicles and equipment are inspected for leaks and drips.
- When vehicle maintenance is required, vehicles are stored inside the mechanics shop (C-2).
- Drip pans are to be placed under vehicles or equipment if leaks are a concern.
- Drip pans associated with this activity are properly disposed of in a timely fashion.
- Additional spill kit materials are located in the mechanics shops for use as needed.

3.3.2 Building and Grounds Maintenance

Building and grounds maintenance practices are important to reduce potential stormwater runoff impacts. Keeping areas clean will prevent the spread of pollutant containing material. Extra attention to surfaces can significantly reduce pollutant wash-off. In addition, an orderly work environment will also reduce the chance for inadvertent spills. The following good housekeeping practices are employed onsite:

- Keep outdoor work areas neat and organized.
- Drums, containers, and chemicals will be stored with lids closed, labeled, and located in the secondary containment area or by storage methods discussed in the applicable Safety Data Sheets (SDS) and relevant waste handling SOPs.
- Sediment residue will be swept in a timely fashion to reduce potential contact with stormwater run-off and reduce vehicle tracking. If vehicle or machinery tracking becomes an issue, the Broom Crew team will be notified, and a sweeper will clean the area.
- Trash, floatables, and debris will be contained with lid shut and regularly disposed of.
- Vehicles and equipment are regularly maintained to ensure no leaks or drips.
- Absorbent material will be used on minor drips and leaks around the facility, swept up, and disposed of properly.
- During the summer, if dust generation becomes an issue, vehicles and machinery will reduce speeds. If the problem continues, stockpiles may be sprayed down with clean water (not reuse water).
- Paved areas around the facility are swept weekly to reduce vehicle tracking with additional sweeping done as needed throughout the week.

3.3.3 Building Repair, Remodeling, & Construction

These BMPs are essential for reducing discharge of pollutants to stormwater related to repair, remodel, and construction. While a building is under construction it will be important to remember the following:

- BMPs should be installed prior to construction and removed once the area has been stabilized.
- Cover stockpiles as necessary to reduce soil exposure.
- Place all liquid or hazardous materials in secondary containment sized appropriately, and store according to SDS and waste handling SOPs.
- Reduce runoff from area by implementing appropriate BMPs such as straw wattles, sandbags, silt fence, etc...
- If track out is identified, manually sweep the area or request a street sweeper to clean the area.
- Protect catch basins using inlet protection and avoid hosing the area down with water.
- Appropriately store and dispose of waste materials. No waste material is allowed in storm drain.

3.4 Spill Prevention and Response

ACHD is responsible for spill prevention and response at the Facility. If an unauthorized non-stormwater discharge is observed, the spill will be handled in accordance with ACHD's Spill Response Plan. All spills shall be documented and included in the monthly inspection (form located in Appendix D). If the spill source is of a petroleum product, the Spill Prevention Control and Countermeasures (SPCC) plan should

be referenced to ensure appropriate reporting and cleanup occurs. Additionally if the spill or leak is related to one of the UST, the Idaho Department of Environmental Quality (DEQ) should be notified immediately.

3.5 Erosion and Sediment Controls

Erosion and Sediment Control BMPs are implemented around the Facility site. BMPs implemented onsite include but are not limited to:

- Non-stormwater Discharges to Drain, see section 3.1.1.
- Outdoor Storage of Raw Materials, see section 3.1.2.
- Contaminated or Erodible Surfaces, see section 3.2.5.

If channelized flows are observed, check dams may be installed to dissipate sediment and reduce flow velocity. If at any point operations at the Facility are modified, additional BMPs may be installed as necessary.

3.6 Management of Runoff

Stormwater from around the site has been designed to infiltrate in drainage areas 1,2, and 4 through 9. Permanent Stormwater BMPs are listed in section 1.6 in table 1 and included in Appendix B. The permanent stormwater BMPs are maintained using the following practices:

- Bioretention swales in drainage areas 1, 2, 4,5, 8 and 9 located along Cloverdale Rd and Executive Way are mowed, as needed, throughout the year by a contractor.
- Curb cuts in drainage areas 6 and 7 that lead into the bioretention swales are inspected during the monthly inspection. If maintenance is required or debris observed, the drainage crew will address the issue.
- Catch basins throughout the facility are inspected monthly. Those that need to be cleaned are documented on the inspection form. The Drainage Crew is responsible for the cleaning of the catch basins.
- Permeable pavers in the guest parking area are located at the entrance of the Facility in drainage area 2 along Cloverdale Rd. Inspections occur monthly and the drainage crew ensures the permeable pavers are maintained.

3.7 Winter Maintenance Materials Storage

Salt and salt with sand mixture is used on roadways as deicer. When this material is exposed to stormwater it can transport chlorides and sediment to waterways and into groundwater. The following practices can help keep salt and sand/salt piles from being transported by stormwater:

- Keep salt in covered salt shed.
- Sweep any salt that is outside of the covered shed back into the covered shed.
- A berm is located on both sides of the salt shed to keep materials inside.
- All salt and salt with sand mixture is stored in structure C-8, see section 2.4.8 for structure specifics.

3.8 Dust Generation and Vehicle Tracking

During summer months moving stockpiles may generate dust and become an air quality issue. Additionally, after rain events, vehicle tracking may be noticeable. See section 3.3.2. Building and Ground Maintenance for specific procedures in place at the facility to reduce the possibility of dust generation and vehicle tracking.

3.9 Employee Training

Annually, staff are trained in Pollution Prevention and Good Housekeeping for Municipal Operations. This training covers the following topics:

- Cloverdale and Adams Facility SWPPP requirements and BMPs
- Good Housekeeping
- Spill Prevention and Response
- Vehicle Fueling
- Vehicle and Equipment Maintenance
- Vehicle and Equipment Washing
- Vehicle Tracking
- Materials Management
- Waste Management
- Municipal Facility Maintenance
- Parking Lots and Streets
- Storm Drain System Cleaning
- Landscaping and Grounds Maintenance
- Working over or Near Waters
- Air quality conditions for the day

Training will be coordinated with the Training Specialist, the Stormwater Quality Specialist, and/or other qualified individuals and must be documented and recorded in the ACHD training compliance database. Training records must be retained for five years. Training records are retained by the Training Specialist as well as the Stormwater Quality Specialist.

Section 4: Inspections and Records

4.1 Inspections and Assessments

Monthly inspections are conducted to ensure BMPs are being implemented and are adequate for preventing stormwater pollutants discharging offsite. The Maintenance Superintendent, Crew Chief, or Lead Worker are responsible for conducting the inspections or delegating inspection responsibilities to qualified staff members.

Inspections are conducted to:

• Verify that the description of the storm drain system in Section 1.5 Drainage Areas and Appendix B and C are accurate. If additional BMPs are installed, modify figures as necessary for accuracy.

- Verify that BMPs throughout the facility are being implemented, maintained, and are functioning adequately.
- Inspect all drainage structures including outfalls for defects and maintenance needs.
- List observations of floating materials, non-stormwater discharges, oil and grease, turbidity, odor, etc. in drainage structures.

Inspections must be documented and recorded on Stormwater Routine Facility Inspection Report provided in Appendix D. If at any time a BMP is not effective, it must be repaired or maintained before the next anticipated storm event. If maintenance prior to the next storm event is not possible, maintenance must be completed as soon as possible and documented on the inspection form for the extended repair schedule. In the interim, alternative measures must be implemented to ensure that water quality is not degraded by stormwater discharges from the facility. Inspections must be retained for five years.

4.2 Record Retention

Per NPDES requirements records must be retained for a minimum of five (5) years. Cloverdale Facility records will be retained by the Cloverdale Maintenance Superintendent or as otherwise documented below.

Records to be retained include, but are not limited to:

- Inspection Forms
- Maintenance Records
- Waste Disposal Records
- Analytical Reports for Lab Analysis of Reuse Water
- The Facilities Coordinator will maintain the Waste Manifest Logs
- Training records are maintained by the Training Specialist and Stormwater Quality Specialist

Section 5: Corrective Actions

All corrective actions will be documented in monthly inspections and the SWPPP will be modified to include all new or updated BMPs and any other pertinent information.

Section 6: SWPPP Modifications

This SWPPP is a living document that is intended to replace the 2015 SWPPP. As such, it can be modified as facility operations are altered. Alterations include but are not limited to new structures, construction, or additional BMPs. Any modifications should be documented in the revision section. Additionally, the SWPPP will be updated if new information regarding facility compliance or other documentation is deemed necessary. Reporting of modifications to the Environmental Programs Coordinator is the responsibility of the Superintendent. The SWPPP will be updated by the Environmental Programs Coordinator forms, or observed.

Section 7: References & Resources

ACHD Spill Prevention, Control, and Countermeasures Plan (SPCC) link-

S:\STORMWATER\Municipal Pollution Prevention\Cloverdale Yard\SPCC

Environmental Protection Agency. EPA Industrial SWPPP Template. 2015.

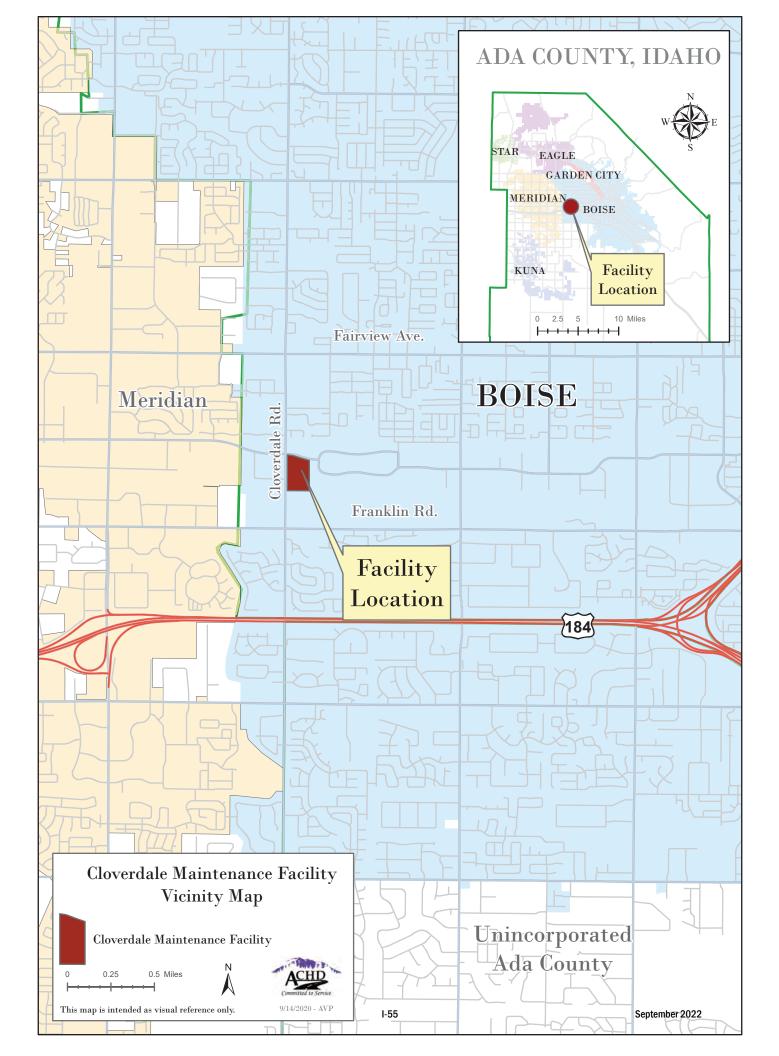
https://www.epa.gov/sites/production/files/2015-11/msgp2015_swppptemplate.docx.

Environmental Protection Agency. *When are You Required to Report an Oil Spill and Hazardous Substance Release.* 14 March, 2017.

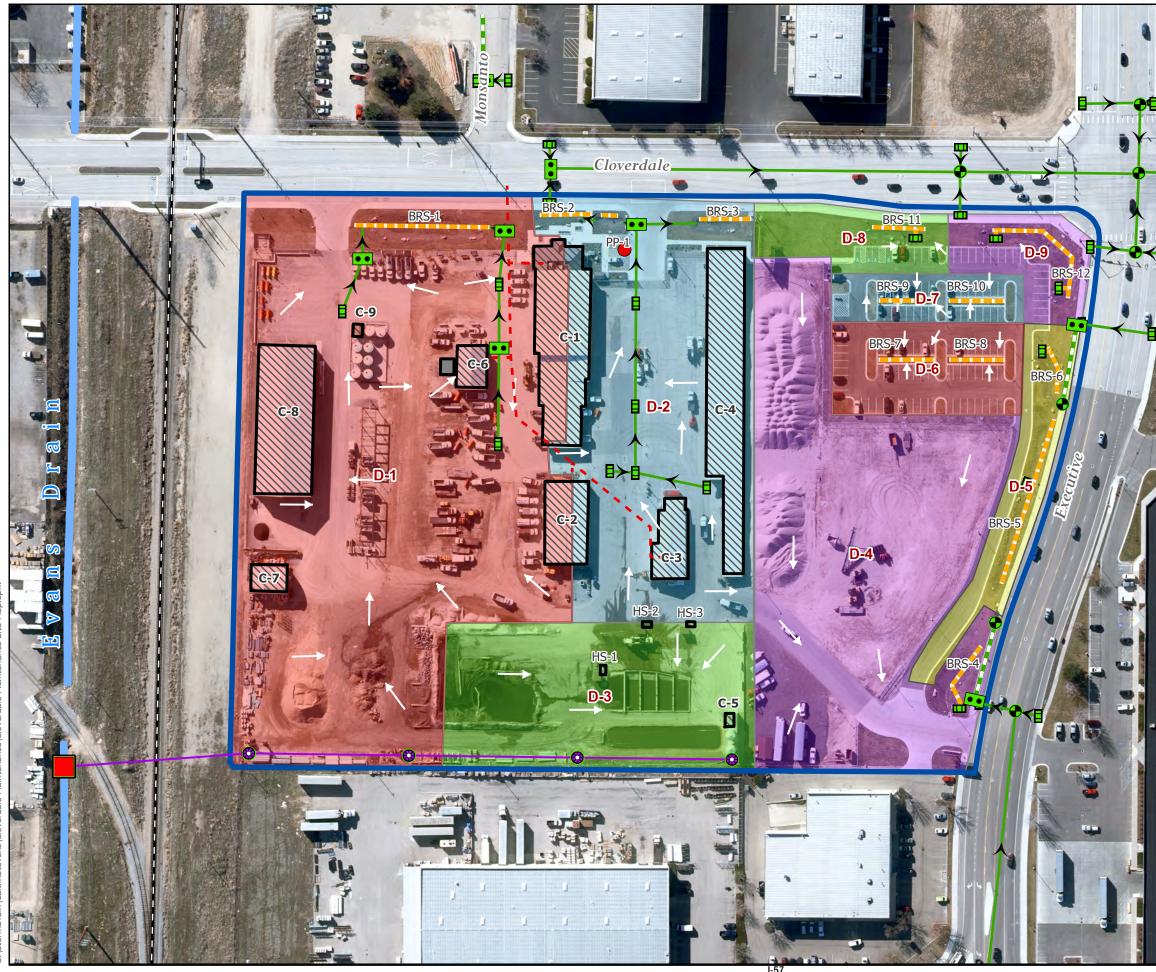
www.epa.gov/emergency-response/when-are-you-required-report-oil-spill-and-hazardous-substance-release.

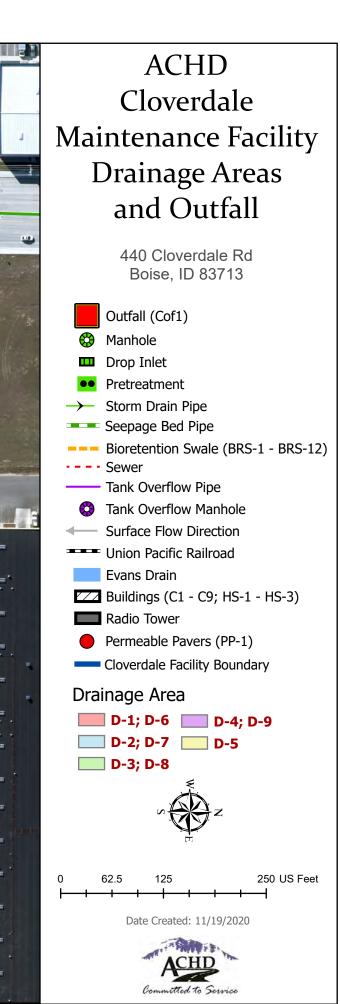
Idaho Department of Environmental Quality. *Catalog of Stormwater Best Management Practices for Idaho Cities and Counties*. 2005.

http://www.deq.idaho.gov/media/622263-Stormwater.pdf.

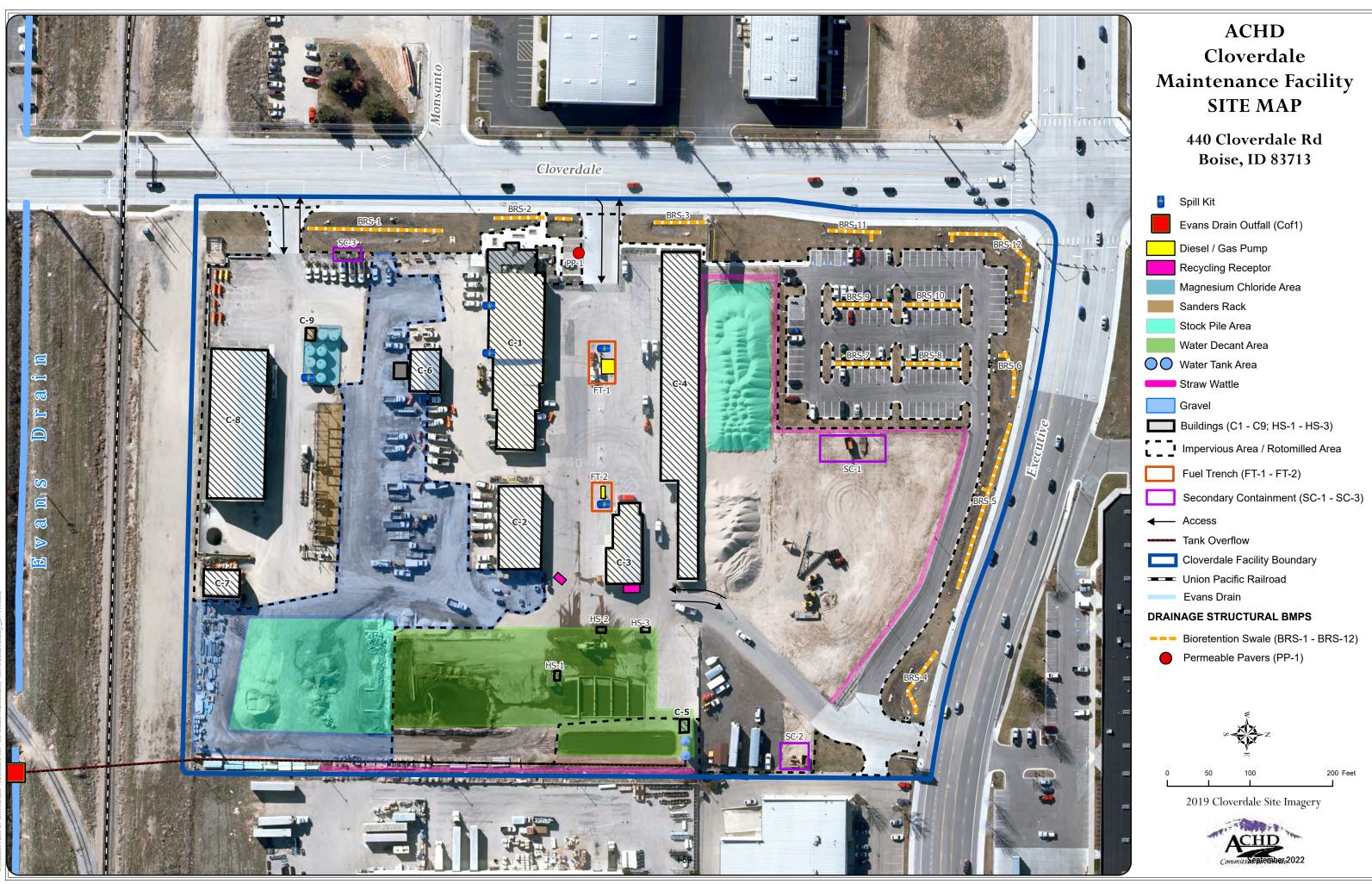

Idaho Department of Environmental Quality- Underground Storage Tanks in Idaho.

https://www.deq.idaho.gov/waste-mgmt-remediation/storage-tanks/underground-storage-tanks/


State of Idaho, Department of Environmental Quality. *Idaho Catalog of Storm Water Best Management Practices, draft.* 2019.


https://www.deq.idaho.gov/media/60183104/idaho-catalog-storm-water-bmps-draft-0719.pdf

Appendix A. Vicinity Map


Appendix B. Drainage Areas and Outfall Map

September 2022

Appendix C. Facility Site Map

Appendix D. Stormwater Routine Facility Monthly Inspection Form

Stormwater Routine Facility Inspection Report

General Information				
Facility Name	Cloverdale Rd Maintenance Facility			
Date of Inspection	Start/End Time			
Inspector's Name(s)				
Inspector's Title(s)				
	Weather Information			
Weather at time of this inspection	2			
□ Clear □ Cloudy □ Rain	□ Sleet □ Fog □ Snow □ High Winds			
□ Other:	Temperature:			
Have any previously unidentified discharges of pollutants occurred since the last inspection? □Yes □No If yes, describe:				
Are there any discharges occurring at the time of inspection? Yes No				
If yes, describe:				

Control Measures

• Describe corrective actions initiated, date completed, and note the person that completed the work in the Corrective Action Log.

	Structural Control	Control	If No, In Need of	Corrective Action Needed and Notes
	Measure	Measure is	Maintenance,	(identify needed maintenance and repairs, or any
		Operating	Repair, or	failed control measures that need replacement)
		Effectively?	Replacement?	
1	Drop Inlet Protection	□Yes □No	Maintenance	
			Repair	
			Replacement	
2	Bioretention Swales	□Yes □No	Maintenance	
			Repair	
			Replacement	
3	Gasoline Spill Kit	□Yes □No	Maintenance	
			Repair	
			Replacement	
4	Diesel Spill Kit	□Yes □No	Maintenance	
			Repair	
			Replacement	
5	Secondary	□Yes □No	Maintenance	
	Containment		Repair	
			Replacement	
6	Site Perimeter	□Yes □No	Maintenance	
			Repair	
			Replacement	
7	Evans Drain Outfall	□Yes □No	□ Maintenance	
			Repair	
			Replacement	
8	Permeable Pavers	□Yes □No	□ Maintenance	
			Repair	
			Replacement	
9		□Yes □No	Maintenance	
			Repair	
			Replacement	
10		□Yes □No	□ Maintenance	
			Repair	
			Replacement	

Areas of Industrial Materials or Activities exposed to stormwater

Below are some general areas that should be assessed during routine inspections. Customize this list as needed for the specific types of industrial materials or activities at your facility.

	Area/Activity	Inspected?	Controls Adequate (appropriate, effective, and operating)?	Corrective Action Needed and Notes
1	Sander Racks	Yes No N/A	QYes QNo	
2	Decant System	Yes No N/A	Yes No	
3	Fueling Areas	Yes No N/A	Yes No	
4	Vehicle and Equipment Washing Areas	Yes No N/A	Yes No	
5	Waste Handling and Disposal Areas	□Yes □No □ N/A	Yes No	
6	Erodible Areas/Construction	Yes No N/A	□Yes □No	
7	Sand & Salt Shed	Yes No N/A	Yes No	
8	Material Storage Piles	Yes No N/A	Yes No	
9	Magnesium Chloride Tanks and Secondary Containment	Yes No N/A	UYes DNo	
10	Secondary Containment	□Yes □No □ N/A	Yes No	
11	Dust Generating & Vehicle Tracking	Yes No N/A	Yes No	
12		QYes QNo Q N/A	□Yes □No	
Des	cribe any incidents of non-co	ompliance observed and	not described above:	
Add	litional Control Measures (D	escribe any additional c	control measures needed to	comply with the permit requirements
Not	es (Use this space for additio	nal notes or observation	is from the inspection):	